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Multiple entropy production for multitime quantum processes
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Entropy production and the detailed fluctuation theorem are of fundamental importance for thermodynamic
processes. In this paper we study the multiple entropy production for multitime quantum processes in a unified
framework. For closed quantum systems and Markovian open quantum systems, the given entropy productions
all satisfy the detailed fluctuation relation. This also shows that the entropy production rate under these processes
is non-negative. For non-Markovian open quantum systems, the memory effect can lead to a negative-entropy
production rate. Thus, in general, the entropy production of the marginal distribution does not satisfy the detailed
fluctuation theorem relation. Our framework can be applied to a wide range of physical systems and dynamics.
It provides a systematic tool for studying entropy production and its rate under arbitrary quantum processes.
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I. INTRODUCTION

The fluctuation theorem can give a generalization of the
second law of thermodynamics and imply the Green-Kubo
relations. It applies to fluctuations far from equilibrium and
is of fundamental importance to nonequilibrium statistical
mechanics. Roughly speaking, fluctuation theorems (FTs) are
closely related to time-reversal symmetry and the relations
between the probabilities of forward and backward processes.
For isolated quantum systems, the forward and backward pro-
cesses can be described by unitary evolution. In addition, there
is always a widely held detailed FT [1]. For open quantum
systems, one can assume that the entire system-environment
combination is a large closed system and make use of the
detailed FT of the closed system. Within this framework,
the state of the environment must be detectable. If this is
not the case, the backward mapping cannot fully recover the
system state due to the lack of environment information. One
approach is to use the Petz recovery map as the backward pro-
cess and establish the relation between the quantum channel
and its Petz recovery map [2]. The FTs for closed systems and
the FTs for open systems give the same entropy production
when dealing with maps with global fixed points [3].

The FTs focus mainly on entropy production. If the entropy
production satisfies the detailed FT, we call it a fluctuation
quantity here. In the single-shot scenario, the entropy produc-
tion depends on two-point measurements. For the multitime
processes, the intermediate measurements may affect the sys-
tem state and subsequent evolution, so the entropy production
may depend on multipoint measurements. The process in the
presence of feedback control is a typical multitime process.
Further, the corresponding FTs need to be modified to take
into account the information gained from the measurement
[4–6]. With the multipoint measurements, it becomes more
natural to study the entropy production rate. An important
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observation is that the non-negativity of the entropy produc-
tion does not guarantee the non-negativity of the entropy
production rate. The entropy production rate is determined by
the entropy production relation between the (k + 1)-step pro-
cesses and the k-step processes. Since non-negative average
entropy production is a natural consequence of the FT, study-
ing the entropy production and the detailed FT for multitime
processes can help in the understanding of the relationship
between the sign of the entropy production rate and the oc-
currence of non-Markovian effects.

It should be noted that in the single-shot scenario, the en-
tropy production rate can also be discussed by comparing the
average entropy production for different evolutionary times.
However, as we will explain later, evolution with different
evolution times can be described by the same evolution pro-
cess, but the measurement process is completely different.
Therefore, entropy production at different evolutionary times
does not correspond to the same overall process and cannot be
described by the same joint distribution.

Usually the FT is directly related to the actual observation
and the multipoint measurements can give a joint probability
distribution that can reflect the multitime properties of the
system. However, in the quantum regime, the measurements
are generally invasive: The measurements are invasive not
only to the system itself, but also to the subsequent dynamics
of the open system. On the one hand, since the measurement
is invasive to the state, the measurement contributes directly to
the entropy production. The cost of quantum measurement in
a thermodynamic process is addressed in [7,8]. Reference [7]
tried to use a single measurement and obtained a Jarzynski-
like equality. Since there is only a single-point measurement,
the properties it gives must also depend only on a single point.
There will be neither the concept of the backward processes
nor a fluctuation-dissipation theorem related to the properties
of two-point measurements. On the other hand, because the
measurement is invasive to the subsequent dynamics of the
open system, it must have other indirect effects on the entropy
production of multitime processes. Therefore, in this paper we
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TABLE I. Average entropy production relation of unitary evolution requires the Kolmogorov consistency condition. For Markovian
evolution, even if the measurement is noninvasive, due to the irreversibility of evolution, there will generally be 〈R〉 > 〈R1〉 + 〈R2〉. One
can find an entropy production such that R′

1 + R2 = R, but the fluctuation relation of R′
1 is established in another process (61).

Time evolution Satisfy the FT relation Average relation Subsequent entropy production

unitary R, R1, R2, . . . 〈R〉 = 〈R1〉 + 〈R2〉 〈R〉 � 〈Rsub〉
Markovian R, R1, R2, . . . 〈R〉 � 〈R1〉 + 〈R2〉 〈R〉 � 〈Rsub〉
non-Markovian R, others to be determined depends on conditions depends on conditions

consider the combined effects of evolution and measurement
on the entropy production and the FT.

The quantum dynamical semigroups are standard Marko-
vian quantum processes. Their entropy production and
detailed FT have been studied in [9,10]. For non-Markovian
quantum processes, the memory effect makes the evolution
much more complex. The process tensors [11,12] are powerful
operational tools for studying various temporally extended
properties of general quantum processes. Using these tools,
Ref. [13] set up a framework for quantum stochastic ther-
modynamics and discussed the entropy production of the
Markovian processes. In our previous work [14] we used
an equivalent form of process tensors to obtain the FTs for
non-Markovian processes. In this work we continue to use this
form and consider the marginal distribution of the multitime
quantum processes. The detailed FT of the joint probability
does not guarantee that the marginal distribution also satisfies
these relations. If these relations are indeed satisfied, then
there can be several compatible fluctuation quantities in the
same processes. As we will show later, the existence of mul-
tiple compatible fluctuations is directly related to the issue of
the entropy production rate.

Due to the invasiveness of the measurements, the marginal
distributions do not correspond to derived processes, in which
some measurements are not performed, since the memory
effect can lead to a negative-entropy production rate. Thus,
in general, the entropy production of the marginal distribu-
tion does not satisfy the detailed FT relation. Only if the
Kolmogorov consistency condition is satisfied, then not per-
forming a measurement is the same as averaging over its
probabilities [15]. In addition, the entropy production of the
corresponding marginal distributions will be the same as that
of the derived processes. The entropy production of the de-
rived processes should satisfy the detailed FT relation, so
the entropy production of the marginal distributions should
also do so. Another interesting relationship between the Kol-
mogorov condition and quantum thermodynamics is work
extraction [16]. Work extraction itself is not a fluctuation
quantity and the proof of [16] has nothing to do with backward
processes. So the relation between the sum of each inter-
mediate amount of entropy production and the total entropy
production is still unclear, which we will discuss briefly in
this paper.

This paper is organized as follows. In Sec. II we first
briefly introduce the general framework of operator states and
process states. Then, for closed quantum systems, Markovian
open quantum systems, and non-Markovian open quantum
systems, we try to derive the entropy production and the
detailed FT of the joint probability and marginal distributions
(see Table I). We show that the Kolmogorov condition will
make the sum of each intermediate amount of entropy pro-
duction equal to the total entropy production in the closed

system but fails for other systems. We also show how multiple
compatible fluctuations are related to the entropy production
rate. In Sec. III we discuss the average entropy production of
a simple Jaynes-Cummings model. Section IV summarizes.

II. ENTROPY PRODUCTION FOR MULTITIME
QUANTUM PROCESSES

In the operator-state formalism [14,17], operators are
treated as states. The inner product of these states is defined
as

(O1|O2) = Tr(O†
1O2). (1)

The operator vector space is orthonormalized as

(�kl |�i j ) = δikδ jl , (2)

where �i j = |i〉 〈 j|. The completeness relation is

Î =
∑

i j

|�i j )(�i j |. (3)

The evolution of the system can be generally described with
the quantum channel N , which is a superoperator that maps
a density matrix |ρ) to another density matrix |ρ ′) = N |ρ).
The operator state |�AS ) =∑i j |�A

i j ⊗ �S
i j ) is often used to

link the input and output of the state. It differs from the
maximally entangled state by only a normalization factor
N . Hence, the state |�AS

N ) ≡ N S|�AS )/N is nothing but the
Choi state obtained from the Choi-Jamiłkowski isomorphism.
We use the Choi-state form of the process tensors, which
we call the process states. This form can help us separate the
measurement from evolution, and it is more convenient to use
the results for the Choi state of the quantum channel.

A. Closed quantum system

In general, the time evolution of closed quantum systems
is described by unitary operators acting on the system. Under
(n − 1)-step evolution, the forward process state is

|Sn:1 ) := USn
n−1 ◦ · · · ◦ US2

1

∣∣∣∣∣ρS1
0 ⊗

[
n⊗

j=2

�A( j−1)S j

])
. (4)

In such processes, it is natural to measure the state and use the
measurement results as input for the next step. Therefore, we
define the n-point measurement operation as

(
O(xn:x1 )

n:1

∣∣ :=
(

ISn ⊗
[

n−1⊗
i=1

�SiA(i)

]∣∣∣∣∣M(xn )
n ⊗ · · · ⊗ M(x1 )

1 ,

(5)

where the operation M(xi )
i = |�xi )(�xi | acts on Si. With

this notation in hand, the joint probability for n-point
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FIG. 1. Forward process state Sn:1 and backward process state S tr
1:n for (n − 1)-step unitary evolution. The inner product of n-point

measurement operation O and the process state gives a joint probability distribution. The dashed line represents the separation of measurements
and evolution.

measurements can be expressed as (see Fig. 1)

Pn:1(xn:1|Mn:1) = (O(xn:x1 )
n:1

∣∣Sn:1
)

= (�xn |Un−1|�xn−1 )

× · · · (�x2 |U1|�x1 )(�x1 |ρ0). (6)

The unitary evolution is invertible with the time-reversed evo-
lution. So the backward process state is

∣∣Str
1:n

)
:= (USn−1

n−1

)† ◦ · · · ◦ (US1
1

)†∣∣∣∣∣∣ρ̃Sn
0 ⊗

⎡
⎣ n−1⊗

j=1

�A( j+1)S j

⎤
⎦
⎞
⎠,

(7)

where ρ̃0 is the initial state of the backward process and U†

is the adjoint map. For single-shot evolution, the final state of
the forward process is usually chosen as the initial state of the
backward process. For open quantum systems, there are also
some other choices [3]. Here we choose

|ρ̃0) = Un−1 ◦ · · · ◦ U1|ρ0), (8)

which is the final state of the forward process without any con-
trol operations. The backward n-point measurement operation
can be defined as

(
O(x1:xn )

1:n

∣∣ :=
(

IS1 ⊗
[

n−1⊗
i=1

�Si+1A(i+1)

]∣∣∣∣∣M(xn )
n ⊗ · · · ⊗ M(x1 )

1 .

(9)

The joint probability for the backward process can be ex-
pressed as

P tr
1:n(x1:n|M1:n) = (O(x1:xn )

1:n

∣∣Str
1:n

)
= (�x1

∣∣U−1
1

∣∣�x2
)

× · · · (�xn−1
∣∣U−1

n−1

∣∣�xn
)
(�xn |ρ̃0). (10)

It is easy to see that

(�x j |U j−1|�x j−1 ) = (�x j−1 |U†
j−1|�x j ). (11)

The entropy production is defined as usual as the logarithm of
the ratio of the forward and backward probabilities

R(xn:1) := ln
Pn:1(xn:1|Mn:1)

P tr
1:n(x1:n|M1:n)

. (12)

It follows from Eqs. (6), (10), and (11) that

R(xn:1) = R(xn, x1) = ln
(�x1 |ρ0)

(�xn |ρ̃0)
, (13)

which depends only on local measurements of the initial and
final states. The distribution of entropy production is given by

p(R) =
∑
x1:n

Pn:1(xn:1|Mn:1)δ(R − R(xn, x1)), (14)

ptr (R) =
∑
x1:n

P tr
1:n(x1:n|M1:n)δ(R + R(xn, x1)). (15)

It then follows that

p(R) = eR ptr (−R), (16)

which gives the detailed FT.
Now consider the marginal distribution of the forward and

backward probabilities. Without loss of generality, we divide
the overall process into two parts: the first n − 2 steps and the
(n − 1)th step. Summing over outcomes of the last measure-
ment Mn, we obtain a marginal distribution of the forward
probability

Pn:1(xn−1:1|Mn:1) :=
∑

xn

Pn:1(xn:1|Mn:1 ). (17)
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The backward one can be similarly defined. With these two
probabilities, we can define another entropy production

R(xn−1:1) := ln
Pn:1(xn−1:1|Mn:1)

P tr
1:n(x1:n−1|M1:n)

. (18)

Similar to Eq. (13), it is easy to show that

R(xn−1:1) = R(xn−1, x1) = ln
(�x1 |ρ0)

(�xn−1 |ρ̃1)
, (19)

where |ρ̃1) = U−1
n−1 ◦ Mn|ρ̃0). In addition, Mk =∑xk

M(xk )
k

is a dephasing map. The entropy production R(xn−1:1) depends
only on local measurements of ρ0 and ρ̃1. The corresponding
distribution of entropy production is given by

p(R1) =
∑
x1:n

Pn:1(xn:1|Mn:1)δ(R − R(xn−1, x1)), (20)

ptr (R1) =
∑
x1:n

P tr
1:n(x1:n|M1:n)δ(R + R(xn−1, x1)). (21)

The entropy production R1 also satisfies the detailed FT

p(R1) = eR1 ptr (−R1). (22)

If summing over outcomes of measurements Mn−2:1, we
obtain another marginal distribution of the forward probability

Pn:1(xn:n−1|Mn:1 ) :=
∑
xn−2:1

Pn:1(xn:1|Mn:1 ). (23)

Similar to previous procedures, we can define

R(xn:n−1) := ln
Pn:1(xn:n−1|Mn:1)

P tr
1:n(xn−1:n|M1:n)

(24)

and show that

R(xn:n−1) = ln
(�xn−1 |ρn−1)

(�xn |ρ̃0)
, (25)

where

|ρn−1) = Un−2 ◦ Mn−2 ◦ · · · ◦ U1 ◦ M1|ρ0). (26)

The corresponding distribution of entropy production is given
by

p(R2) =
∑
x1:n

Pn:1(xn:1|Mn:1)δ(R − R(xn, xn−1)), (27)

ptr (R2) =
∑
x1:n

P tr
1:n(x1:n|M1:n)δ(R + R(xn, xn−1)). (28)

The entropy production R2 also satisfies the detailed FT. As
stated above, the multitime quantum processes allow multiple
entropy production terms. They all satisfy the detailed FT
in a common multitime process. The previous procedures
are actually applicable to all the marginal distributions. The
corresponding entropy production also depends on local mea-
surements.

If the joint probabilities Pn:1 and P tr
1:n satisfy the Kol-

mogorov consistency condition [15], then measuring but
summing the measurements is equivalent to not measuring.
In such cases, the probability distributions for all subsets of
times can be obtained by marginalization. In addition, the
detailed FTs mentioned above are all equivalent to two-point
measurement FTs of some processes. In addition, when the
Kolmogorov condition is met, there will be |ρn−1) = Un−2 ◦

· · · ◦ U1|ρ0) and |ρ̃1) = U−1
n−1|ρ̃0). If choosing the initial state

of the backward process as Eq. (8), then we have

|ρ̃1) = (U−1
n−1 ◦ Un−1

) ◦ · · · ◦ U1|ρ0) = |ρn−1) (29)

and (�xn−1 |ρn−1) = (�xn−1 |ρ̃1). Under these circumstances,
the previously mentioned entropy production terms have the
relation

R(xn−1:1) + R(xn:n−1) = ln
(�xn−1 |ρn−1)(�x1 |ρ0)

(�xn |ρ̃0)(�xn−1 |ρ̃1)

= ln
(�x1 |ρ0)

(�xn |ρ̃0)
= R(xn:1). (30)

With this relation, one can easily see that 〈R1〉 + 〈R2〉 = 〈R〉,
which is very similar to the relation of average work done
shown in [16]. However, the work itself is not the entropy
production. The relation of average work has nothing to do
with the backward processes. Therefore, the two relations are
very different.

Combining Eq. (30) and the detailed FT of R(xn:n−1), we
have

〈e−[R(xn:1 )−R(xn−1:1 )]〉 = 1. (31)

The condition (30) is strong, but it is not a necessary condition
for Eq. (31). In fact, if both R and R1 satisfy the detailed FT,
then we have

〈e−[R(xn:1 )−R(xn−1:1 )]〉
=
∑
x1:n

Pn:1(xn:1|Mn:1 )e−[R(xn:1 )−R(xn−1:1 )]

=
∑
x1:n

P tr
1:n(x1:n|M1:n)eR(xn−1:1 )

=
∑
x1:n−1

P tr
1:n(x1:n−1|M1:n)eR(xn−1:1 )

=
∑
x1:n−1

Pn:1(xn−1:1|Mn:1) = 1. (32)

Using Jensen’s inequality 〈eX 〉 � e〈X 〉, Eq. (31) implies

0 � 〈R(xn:1 ) − R(xn−1:1)〉 = 〈R〉 − 〈R1〉 , (33)

which means the total average entropy production is not less
than an intermediate average entropy production. This also
implies that the entropy production rate at step n − 1 is non-
negative. The proof (32) applies to all cases where the joint
probability is well defined.

Now let us calculate the average of the entropy pro-
duction. The aforementioned Kolmogorov consistency con-
dition and Eq. (8) are mainly used to give (�xn−1 |ρn−1) =
(�xn−1 |ρ̃1). Without these conditions, using Eqs. (6), (13),
and (26), the average entropy production R can be expressed
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generally as

〈R〉 = Tr[(M1ρ0) ln(M1ρ0)] − Tr[(Mnρn) ln(Mnρ̃0)]

= S(Mnρn||Mnρ̃0) + S(Mnρn) − S(M1ρ0)

= S(Mnρn||Mnρ̃0) +
n∑

m=2

[S(Mmρm) − S(ρm)], (34)

where S(ρ||σ ) := Tr[ρ(ln ρ − ln σ )] is the quantum relative
entropy. In the third equality of Eq. (34) we exploit the
fact that unitary transformations do not change entropy. For
single-shot unitary evolution, if two-point measurements do
not invade ρ0, ρn, and ρ̃0, then we can obtain the commonly
used average entropy production [1]

〈R〉 = S(ρ(t ))||ρ̃0). (35)

The average of the entropy productions R1 and R2 is

〈R1〉 = S(Mn−1ρn−1||Mn−1ρ̃1)

+ S(Mn−1ρn−1) − S(M1ρ0),

〈R2〉 = S(Mnρn||Mnρ̃0)

+ S(Mnρn) − S(Mn−1ρn−1). (36)

Using the non-negativity of relative entropy and the data pro-
cessing inequality, it is easy to find that these average entropy
productions are non-negative. Combining Eqs. (34) and (36),
it is easy to find that

〈R1〉 + 〈R2〉 − 〈R〉 = S(Mn−1ρn−1||Mn−1ρ̃1) � 0. (37)

If the Kolmogorov consistency condition is not satisfied, then
the sum of the segmental entropy production is generally
greater than the total average entropy production.

B. Markovian open quantum system

The time evolution of the Markovian open quantum system
can be described by a sequence of independent completely
positive and trace-preserving (CPTP) maps [18]. Under (n −
1)-step evolution, the forward process state is

|Sn:1) := N Sn
n−1 ◦ · · · ◦ N S2

1

∣∣∣∣∣ρS1
0 ⊗

[
n⊗

j=2

�A( j−1)S j

])
. (38)

With the measurements (5), the joint probability for n-point
measurements can still be expressed as

Pn:1(xn:1|Mn:1) = (O(xn:x1 )
n:1

∣∣Sn:1
)
. (39)

For open quantum systems, the lack of information about the
environment makes the evolution irreversible. It is common to
use the Petz recovery map as the backward map [19]. For (n −
1)-step evolution, the backward process state can be written as

∣∣Str
1:n

)
:= RSn−1

n−1 ◦ · · · ◦ RS1
1

∣∣∣∣∣ρ̃Sn
0 ⊗

[
n−1⊗
j=1

�A( j+1)S j

])
, (40)

where Rm := J 1/2
γm

◦ N †
m ◦ J −1/2

Nm (γm ) is the Petz recovery map
of Nm, J α

O (·) := Oα (·)Oα† is the rescaling map, and γm is the
reference state that can be freely chosen. The Petz recovery
map is a CPTP map and fully recovers the reference state.

With the measurements (9), the joint probability for the back-
ward process can be expressed as (see Fig. 2)

Pn:1(xn:1|Mn:1) = (O(xn:x1 )
n:1

∣∣Sn:1
)
. (41)

Similar to Eq. (11), the adjoint map N † and N obey the
following relation:

(�k′l ′ |N |�i j ) = (�i j |N †|�k′l ′ )
∗. (42)

The rescaling map in Petz recovery will make the joint prob-
abilities (39) and (41) generally unable to establish a relation
similar to Eq. (16). Only with the following operation can we
obtain a detailed FT:

(
O(xn:1,in−1:1,...,l ′n−1:1 )

n:1

∣∣ :=
(

ISn ⊗
[

n−1⊗
m=1

�
Sm
im jm

�A(m)

im jm

]∣∣∣∣∣
× M(xn )

n M(k′
n−1l ′n−1 )

n ⊗
× · · · ⊗ M(x2 )

2 M(k′
1l ′1 )

2 ⊗ M(x1 )
1 . (43)

Here M(k′
ml ′m )

m+1 := |�Sm+1

k′
ml ′m

)(�Sm+1

k′
ml ′m

|. The basis |im〉 is chosen such
that it diagonalizes the reference state γm and |k′

m〉 is cho-
sen as the eigenbasis of Nm(γm). On this basis, we have
J α/2

γm
|�im jm ) = Zγ α

i j |�im jm ), where

Zγ α

i j := ∥∥J α/2
γ �i j

∥∥
2 = √(�i|γ α )(γ α|� j ). (44)

With the operation (43), we obtain a quasiprobability distribu-
tion [2]

Pn:1
(
xn:1, in−1:1, jn−1:1, k′

n−1:1, l ′
n−1:1|Mqs

n:1

)
:= (O(xn:1,...,l ′n−1:1 )

n:1

∣∣Sn:1
)
. (45)

This distribution is not positive, but it can be obtained from
observable quantities [2]. The operation (43) can also be fully
reconstructed as a linear combination of the n-point positive-
operator-valued measurement operation. Moreover, the joint
probability can be directly derived from the quasiprobability∑

in−1:1,...

Pn:1(xn:1, . . . , l ′
n−1:1|Mqs

n:1) = Pn:1(xn:1|Mn:1 ). (46)

The backward quasimeasurement operation can be defined as

(
O(x1:n,...,l ′n−1:1 )

1:n

∣∣ :=
(

IS1 ⊗
[

n−1⊗
m=1

�
Sm+1

k′
ml ′m

�A(m+1)

k′
ml ′m

]∣∣∣∣∣
× M(xn )

n ⊗ M(xn−1 )
n−1 M(in−1 jn−1 )

n−1 ⊗
× · · · ⊗ M(x1 )

1 M(i1 j1 )
1 , (47)

with which we obtain the quasiprobability distribution of
backward processes

P tr
1:n

(
x1:n, . . . , l ′

1:n−1

∣∣Mqs
1:n

)
:= (O(xn:1,...,l ′n−1:1 )

1:n

∣∣Str
1:n

)∗
. (48)

The joint probability of backward processes can also be
directly derived from the quasiprobability of backward pro-
cesses like Eq. (46). Similar to (12), the entropy production of
which can be defined as

R(xn:1, . . . , l ′
n−1:1) := ln

Pn:1
(
xn:1, . . . , l ′

n−1:1

∣∣Mqs
n:1

)
P tr

1:n

(
x1:n, . . . , l ′

1:n−1

∣∣Mqs
1:n

) , (49)
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FIG. 2. Forward and backward processes of (n − 1)-step Markovian quantum evolution. The quasimeasurements make the link �AS become
�A

i j ⊗ �S
i j and �A

k′ l ′ ⊗ �S
k′ l ′ , which are abbreviated as i j and k′l ′ in the figure.

with Eq. (42) it is easy to show that(
�k′

ml ′m

∣∣Nm|�im jm

)∗ = (�im jm

∣∣Rm

∣∣�k′
ml ′m

)
Zγ −1

m
im jm

ZNm (γm )
k′

ml ′m
. (50)

Combining this with Eqs. (45) and (48), we find that

R(xn:1, . . . , l ′
n−1:1) = R(xn, x1, . . . , l ′

n−1:1)

= ln
(�x1 |ρ0)

(�xn |ρ̃0)
+

n−1∑
m=1

ln
(
Zγ −1

m
im jm

ZNm (γm )
k′

ml ′m

)
(51)

is independent of intermediate measurements {xn−1:2}. The
distribution of entropy production for forward processes is
given by

p(R) =
∑

xn:1,...,l ′n−1:1

Pn:1
(
xn:1, . . . , l ′

n−1:1

∣∣Mqs
n:1

)

× δ(R − R(xn, x1, . . . , l ′
n−1:1)). (52)

The backward one can be similarly defined. The detailed FT

p(R) = eR ptr (−R) (53)

has been shown in Ref. [14].
Now following the same procedure used in Sec. II A, the

marginal distribution can be defined as

Pn:1
(
xn−1:1, in−2:1, . . . , l ′

n−2:1

∣∣Mqs
n:1

)
:=

∑
xn,in−1,...,l ′n−1

Pn:1
(
xn:1, . . . , l ′

n−1:1

∣∣Mqs
n:1

)
. (54)

The corresponding entropy production is

R(xn−1:1, . . . , l ′
n−2:1) := ln

Pn:1
(
xn−1:1, . . . , l ′

n−2:1

∣∣Mqs
n:1

)
P tr

1:n

(
x1:n−1, . . . , l ′

1:n−2

∣∣Mqs
1:n

) ,
(55)

which is independent of intermediate measurements {xn−2:2},
R(xn−1:1, . . . , l ′

n−2:1) = R(xn−1, x1, . . . , l ′
n−2:1)

= ln
(�x1 |ρ0)

(�xn−1 |ρ̃1)
+

n−2∑
m=1

ln
(
Zγ −1

m
im jm

ZNm (γm )
k′

ml ′m

)
,

(56)

where |ρ̃1) = Rn−1 ◦ Mn|ρ̃0). The distributions of entropy
production can be defined similarly to the previous one, and
the detailed FT also holds (see Fig. 3).

After summing over outcomes of measurements Mn−2:1,
we obtain marginal distribution

Pn:1
(
xn:n−1, in−1, . . . , l ′

n−1

∣∣Mqs
n:1

)
:=

∑
xn−2:1,in−2:1,...,l ′n−2:1

Pn:1
(
xn:1, . . . , l ′

n−1:1

∣∣Mqs
n:1

)
. (57)

The corresponding entropy production is

R(xn:n−1, . . . , l ′
n−1) := ln

Pn:1
(
xn:n−1, . . . , l ′

n−1

∣∣Mqs
n:1

)
P tr

1:n

(
xn−1:n, . . . , l ′

n−1

∣∣Mqs
1:n

) . (58)

It then follows that

R(xn:n−1, . . . , l ′
n−1) = ln

(�xn−1 |ρn−1)

(�xn |ρ̃0)

+ ln
(
Z

γ −1
n−1

in−1 jn−1
ZNn−1(γn−1 )

k′
n−1l ′n−1

)
, (59)

where

|ρn−1) = Nn−2 ◦ Mn−2 ◦ · · · ◦ N1 ◦ M1|ρ0). (60)

The distributions of entropy production can be defined simi-
larly to the previous one, and the detailed FT also holds.

Due to the irreversibility of open-system evolution, there
is no relation like Eq. (29) for ρ̃1 and ρn−1, even if the Kol-
mogorov condition is met. Further, Eq. (30) no longer holds
for the {R, R1, R2} defined here. The backward process of R1 is
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FIG. 3. For Markovian processes, summing over outcomes of (quasi)measurements gives a dephasing map.

derived from Str
1:n. If we use instead the (n − 2)-step backward

processes

∣∣Str
1:n−1

)
:= RSn−2

n−2 ◦ · · · ◦ RS1
1

∣∣∣∣∣ρSn−1
n−1 ⊗

[
n−2⊗
j=1

�A( j+1)S j

])
,

(61)

then we can obtain the quasiprobability distribution

P tr
1:n−1

(
x1:n−1, . . . , l ′

1:n−2

∣∣Mqs
1:n−1

)
:= (

O(xn−1:1,...,l ′n−2:1 )
1:n−1

∣∣Str
1:n−1

)∗
(62)

and another entropy production

R′(xn−1:1, . . . , l ′
n−2:1)

:= ln
Pn:1

(
xn−1:1, . . . , l ′

n−2:1

∣∣Mqs
n:1

)
P tr

1:n−1

(
x1:n−1, . . . , l ′

1:n−2

∣∣Mqs
1:n−1

) , (63)

which satisfies

R′(xn−1:1, . . . , l ′
n−2:1)

= R′(xn−1, x1, . . . , l ′
n−2:1)

= ln
(�x1 |ρ0)

(�xn−1 |ρn−1)
+

n−2∑
m=1

ln
(
Zγ −1

m
im jm

ZNm (γm )
k′

ml ′m

)
. (64)

We can similarly define a distribution of entropy produc-
tion p(R′

1) and prove the detailed FT. However, the obtained
fluctuation relation is related to the processes (61), not
to the processes (40). The entropy productions R1 and R′

1 share
the same forward processes but use different initial states in
the backward processes. Obviously,

R′(xn−1:1, . . . , l ′
n−2:1) + R(xn:n−1, . . . , l ′

n−1)

= R(xn:1, . . . , l ′
n−1:1). (65)

Similarly, we can use different initial states in the forward
processes

|Sn:n−1) := N Sn
n−1

∣∣ρ̃Sn−1
1 ⊗ [�A(n−1)Sn

]
) (66)

to obtain another entropy production R′
2, which satisfies

R(xn−1:1, . . . , l ′
n−2:1) + R′(xn:n−1, . . . , l ′

n−1)

= R(xn:1, . . . , l ′
n−1:1). (67)

Similar to Eq. (32), if both R and R1 satisfy the detailed FT,
then

〈e−[R(xn:1,...,l ′n−1:1 )−R(xn−1:1,...,l ′n−2:1 )]〉 = 1. (68)

With Jensen’s inequality, the conclusion that the total average
entropy production is not less than the intermediate average
entropy production still holds. Also, the entropy production
rate is still non-negative. Note that the forward process of R′

2
is different from that of R and R1, so we have in general

〈R〉 − 〈R1〉 = 〈R(xn:1, . . . , l ′
n−1:1) − R(xn−1:1, . . . , l ′

n−2:1)〉
=
∑

Pn:1
(
xn:1, . . . , l ′

n−1:1

∣∣Mqs
n:1

)
× R′(xn:n−1, . . . , l ′

n−1)

	=
∑

Pn:n−1
(
xn:n−1, . . . , l ′

n−1

∣∣Mqs
n:n−1

)
× R′(xn:n−1, . . .)

=: 〈R′
2〉′ , (69)

where Pn:n−1 is the probability distribution from the two-point
measurement of the processes (66) and 〈·〉′ is the correspond-
ing probability average.

Similar to Eq. (34), using Eqs. (45), (51), and (60), the av-
erage of entropy production R here can be generally expressed

032217-7



ZHIQIANG HUANG PHYSICAL REVIEW A 108, 032217 (2023)

as

〈R〉 = S(Mnρn||Mnρ̃0) + S(Mnρn) − S(M1ρ0)

+
n−1∑
m=1

[Tr(ρm+1 lnNmγm) − Tr(Mmρm ln γm)]

= S(Mnρn||Mnρ̃0) +
n∑

m=2

[S(Mmρm) − S(ρm)]

+
n−1∑
m=1

[S(Mmρm||γm) − S(ρm+1||Nmγm)]. (70)

Comparing Eqs. (34) and (70), it is easy to see that both
of them contain the term 
SM = S(Mρ) − S(ρ), which is
the direct contribution of the measurements to the entropy
production [7]. If we choose ρn = ρ̃0, set the reference states
γm+1 = Nmγm, and assume that all measurements are nonin-
vasive, then the average of the entropy production R can be
simplified to

〈R〉 = S(ρ0||γ0) − S(Nn−1:1ρ0||Nn−1:1γ0), (71)

where the evolution map

Nn−1:1 = Nn−1 ◦ · · · ◦ N1. (72)

For single-shot CPTP evolution, the average entropy produc-
tion is [2]

〈R〉 = S(ρ0||γ0) − S(Nρ0||Nγ0), (73)

where the reference state γ0 can be freely chosen according to
the needs, and the Gibbs states are a common choice. Since the
Gibbs states are fixed points of many processes, the following
average entropy production formula is often used [20–22]:

〈R〉 = S(ρ0||ρ (β ) ) − S(ρτ ||ρ (β ) ). (74)

However, if Gibbs states are not fixed points, then Eq. (74) is
inappropriate (see [23] for related discussion).

If we choose ρn = ρ̃0 and assume that all measurements
are noninvasive, then from Eq. (70) we can get

〈R〉 =
n−1∑
m=1

[S(ρm||γm) − S(ρm+1||Nmγm)]. (75)

When the evolution of the system state can be described
through an exact time-convolutionless master equation

ρS (t ) = exp

(∫ t

0
L(τ )dτ

)
ρS (0), (76)

one can choose the instantaneous fixed point γt as the refer-
ence state. Here γt is a null eigenvector of the generator of
the dynamics. For continuous evolution and measurement, the
total average entropy production can be written as

〈R〉 = −
∫ t

0
dτ

d

ds

∣∣∣∣
s=0

S(ρS (τ + s)||γτ ). (77)

It is just the entropy production used in Refs. [23,24].

The averages of the entropy productions R1 and R2 are

〈R1〉 = S(Mn−1ρn−1||Mn−1ρ̃1)

+
n−1∑
m=2

[S(Mmρm) − S(ρm)]

+
n−2∑
m=1

[S(Mmρm||γm) − S(ρm+1||Nmγm)],

〈R2〉 = S(Mnρn||Mnρ̃0) + S(Mnρn) − S(ρn)

+ S(Mn−1ρn−1||γn−1) − S(ρn||Nn−1γn−1). (78)

Combining Eqs. (70) and (78), we have

〈R1〉 + 〈R2〉 − 〈R〉 = S(Mn−1ρn−1||Mn−1ρ̃1) � 0. (79)

Different from the case of unitary evolution, even if the
Kolmogorov consistency condition is satisfied, due to the
irreversibility of the evolution N , the sum of the segmental
entropy production is generally greater than the total average
entropy production.

C. Non-Markovian open quantum system

In general, the non-Markovian processes is indivisible. Un-
der (n − 1)-step evolution, the forward process state can be
written as

|Sn:1) := N Sn:2

∣∣∣∣∣ρS1
0 ⊗

[
n⊗

j=2

�A( j−1)S j

])
, (80)

where

N Sn:2 = (IE
∣∣USnE

n−1 ◦ · · · ◦ US2E
1

∣∣ρE
0

)
. (81)

With the measurements (5), the joint probability for n-point
measurements can still be expressed as Eq. (39). If we use the
Petz recovery map of N Sn:2 to give backward processes

∣∣Str
1:n

)
:= RSn:2

γ2:n

∣∣∣∣∣ρ̃Sn
0 ⊗

[
n−1⊗
j=1

�A( j−1)S j

])
, (82)

then the backward process is not linkable [14]. For such pro-
cesses, measuring with the measurement (9) will lead to an
ill-defined probability distribution. One can freshly prepare
the system state at each step and obtain the detailed FT for
the many-body channels or insert a special operation and
obtain the detailed FT for the derived channel [14]. The for-
mer has no connection with the joint probability distribution
(O(xn:x1 )

n:1 |Sn:1). The latter has n − 1 input states, which are
independent and there is no time-ordered relationship among
them. Therefore, neither of them is suitable for studying mul-
tiple entropy production under the same processes.

For non-Markovian processes (see Fig. 4), the interme-
diate measurements can influence subsequent evolution of
the system and cause entropy increases themselves. Hence,
only by incorporating the intermediate measurements into the
processes themselves can we guarantee that the entropy pro-
duction is due to the processes rather than the measurements.
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FIG. 4. Forward and backward processes of (n − 1)-step non-Markovian quantum evolution. The dotted lines represent summing a fraction
of the (quasi)measurements and then obtaining the marginal distributions. Unlike the Markovian cases, the subsequent evolution depends on
the state of the environment, which in turn depends on the previous measurement results of the system. Therefore, we need N S,E

M to help us
find the relation between marginal distributions. The green dotted line corresponds to the division used by R(xn−1:1, . . . , l ′

n−2:1 ). One needs to
sum the measurements to the right of the green dotted line. The red dotted line corresponds to the division used by R(xn:n−1, . . . , l ′

n−1). One
needs to sum the measurements to the left of the red dotted line.

In this manner, the forward process state is

∣∣SM
n:1

)
:= N Sn:2

M

∣∣∣∣∣ρS1
0 ⊗

[
n⊗

j=2

�A( j−1)S j

])
, (83)

where N Sn:2
M = (

⊗n−1
k=2 Mk ) ◦ N Sn:2 . Note that the induction

condition is naturally satisfied in the present framework; the
present state and the measurement outcome of the present
state cannot be affected by future measurements. Hence,
we can obtain the first (m − 1)-step evolution by ignoring
the results of subsequent evolution N Sm:2

M = TrSn:m+1N Sn:2
M . Per-

forming a measurement and discarding the outcomes will not
affect the remeasurement of the intermediate state

M(xk )
k ◦ Mk = M(xk )

k . (84)

Thus, with the measurements (5), the joint probability dis-
tribution given by |SM

n:1 ) will be the same as that given
by Eq. (80). Since the |SM

n:1 ) has incorporated intermediate
measurements into the processes itself, even without further
measurements, the final state is also different from that given
by Eq. (80),

|ρn) =
([

n−1⊗
i=1

�SiA(i)

]∣∣∣∣∣SM
n:1

)
	=
([

n−1⊗
i=1

�SiA(i)

]∣∣∣∣∣Sn:1

)
.

(85)

For the same reason, their reference final states are also
different.

Here we propose the backward process state

∣∣SM,tr
1:n

)
:= RSn:2

M

∣∣∣∣∣ρ̃Sn
0 ⊗

[
n−1⊗
j=1

�A( j−1)S j

])
, (86)

where

RSn:2
M =

(
n⊗

l=2

J 1/2
γl

)
◦ (N Sn:2

M )† ◦
(

n⊗
m=2

J −1/2
γ ′

m

)
(87)

and

γ ′
m =

([
m−1⊗
i=1

�SiA(i)

]∣∣∣∣∣
(

min{m,n−1}⊗
k=2

Mk

)

× ◦N Sm:2

∣∣∣∣∣γ S1
0 ⊗

[
m⊗

j=2

�A( j−1)S j

])
, (88)

where γ ′
m is the output of γ0 after m − 1 steps of evolution. Ac-

cording to this, for m � n − 1, we know that γ ′
m is the output

state of the measurement Mm, so they share the same basis.
We set γ2 = γ0 and γl = γ ′

l−1 for the other l . We still use the
quasimeasurements (43) for forward processes and Eq. (47)
for backward processes. Now the basis |im〉 is chosen such that
it diagonalizes γm and |k′

m〉 is chosen as the eigenbasis of γ ′
m.

The relation (46) still holds and so does the one of backward
processes.

Before further discussion of the entropy production, we
briefly analyze the probability distribution of backward
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processes. Since γ ′
m and Mm share the same basis, we have

J 1/2
γm+1

◦ M(xm )
m ◦ J −1/2

γ ′
m

◦ Mm = M(xm )
m = M(xm )

m ◦ Mm.

(89)

Combining this with the definition of P tr
1:n(x1:n|Mqs

1:n), we
obtain∑

x1

P tr
1:n

(
x1:n

∣∣Mqs
1:n

) =
∑

x1

(
O(xn:1 )

1:n

∣∣SM,tr
1:n

)∗
= (γ ′

n,x2:n−1

∣∣J −1/2
γ ′

n
◦ M(xn )

n

∣∣ρ̃0
)∗

, (90)

where

γ ′
n,x2:n−1

=
([

n−1⊗
i=1

�SiA(i)

]∣∣∣∣∣
(

m−1⊗
m=2

M(xm )
m

)
◦
(

n−1⊗
k=2

Mk

)

× ◦N Sn:2

∣∣∣∣∣γ S1
0 ⊗

[
n⊗

j=2

�A( j−1)S j

])
(91)

is related to the intermediate measurement results. It is easy to
show that

∑
x2:n−1

γ ′
n,x2:n−1

= γ ′
n, which leads to∑

x1:n−1

P tr
1:n

(
x1:n

∣∣Mqs
1:n

)

= (
γ ′

n

∣∣J −1/2
γ ′

n
◦ M(xn )

n |ρ̃0
)∗ = (�xn |ρ̃0). (92)

So the joint probability distribution P tr
1:n(x1:n|Mqs

1:n) is normal-
ized.

Now we continue to discuss the FTs. The quasiprobabil-
ity, entropy production, and probability distribution can be
defined similarly to the definitions in Sec. II B. The entropy
production reads

R(xn:1, . . . , l ′
n−1:1) = ln

(�x1 |ρ0)

(�xn |ρ̃0)
+

n−1∑
m=1

ln
(
Z

γ −1
m+1

im jm
Z

γ ′
m+1

k′
ml ′m

)
.

(93)

If we choose ρ̃0 = ρn, the average of the entropy production
is

〈R(xn:1, . . . , l ′
n−1:1)〉 = S(ρ0||γ0) − S(ρn||γ ′

n). (94)

Since the intermediate measurements are already included in
the processes N Sn:2

M , the applied intermediate measurements
are noninvasive. Furthermore, the intermediate reference
states cannot be chosen arbitrarily. These make the entropy
production (94) quite similar to the form (71). However,
note that their evolutions are completely different. The cor-
responding evolution (85) in entropy production (94) contains
measurements and cannot be divided due to memory effects,
which are quite different from the evolution (72).

Before considering the marginal distribution
Pn:1(xn−1:1, in−2:1, . . . , l ′

n−2:1|Mqs
n:1), we need to clarify

the relation between N Sn−1:2

M and N Sn:2
M . Unlike the cases

in Sec. II B, the memory effect will make the subsequent
evolution depend on the previous measurement results, so the
relation is more complex here. From the definition (81), we
can utilize

N Sn−1:2,E
M =

(
n−1⊗
k=2

Mk

)
◦ USn−1E

n−2 ◦ · · · ◦ US2E
1 (95)

to bridge N Sn−1:2

M and N Sn:2
M . Since the measurements on the

system will destroy quantum correlations between the system
and environment [25], we have(

n−2⊗
m=1

�
Sm+1

k′
ml ′m

∣∣∣∣∣N Sn−1:2,E
M

∣∣∣∣∣
[

n−2⊗
m=1

�
Sm+1
im jm

]
⊗ ρE

0

)

=
(

n−2⊗
m=1

δk′
ml ′m�

Sm+1

k′
m

∣∣∣∣∣N Sn−1:2

M

∣∣∣∣∣
n−2⊗
m=1

�
Sm+1
im jm

)

× ∣∣σ E
in−2:1, jn−2:1,k′

n−2:1

)
, (96)

where σ E represents the state of the environment. Since both
Mk and U are CPTP maps, N Sn−1:2,E

M is also a CPTP map and
this requires

(
IE
∣∣σ E

in−2:1, jn−2:1,k′
n−2:1

) =
n−2⊗
m=1

δim jm . (97)

Equation (96) can relate RSn−1:2

M to RSn:2
M . According to the

definition (87), the recovery map can be rewritten as

RSn:2
M = (ρE

0

∣∣( n⊗
l=2

J 1/2
γl

)
◦ (N Sn−1:2,E

M
)†

× ◦(USnE
n−1

)† ◦
(

n⊗
m=2

J −1/2
γ ′

m

)∣∣IE
)
. (98)

Combining this with Eq. (96), we obtain(
n−1⊗
m=1

�
Sm+1
im jm

∣∣∣∣∣RSn:2
M

∣∣∣∣∣
n−1⊗
m=1

�
Sm+1

k′
ml ′m

)

= (�Sn
in−1 jn−1

∣∣J 1/2
γn

◦ (σ E
in−2:1, jn−2:1,k′

n−2:1

∣∣(USnE
n−1

)†∣∣IE
)

× ◦J −1/2
γ ′

n
|�Sn

k′
n−1l ′n−1

)

×
(

n−2⊗
m=1

�
Sm+1
im jm

∣∣∣∣∣RSn−1:2

M

∣∣∣∣∣
n−2⊗
m=1

�
Sm+1

k′
ml ′m

)
. (99)

The quasiprobability, entropy production, and probability dis-
tribution can also be defined similarly to the definition in
Sec. II B. However, unlike Eq. (56), according to Eq. (99), the
entropy production becomes

R(xn−1:1, . . . , l ′
n−2:1) = R(xn−1, x1, . . . , l ′

n−2:1)

= ln
(�x1 |ρ0)(

�xn−1
∣∣ρ̃ in−2:1,k′

n−2:1
1

) +
n−2∑
m=1

ln
(
Z

γ −1
m+1

im jm
Z

γ ′
m+1

k′
ml ′m

)
. (100)

The density matrix will depend on the historical measure-
ments

ρ̃
in−2:1,k′

n−2:1
1 = J 1/2

γn
◦ N †

in−2:1,k′
n−2:1

◦ J −1/2
γ ′

n
◦ Mn(ρ̃0),

where the evolution depends on the state of the environment

Nin−2:1,k′
n−2:1

= (IE
∣∣USnE

n−1

∣∣σ E
in−2:1,in−2:1,k′

n−2:1

)
. (101)
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The detailed FT relation still holds, but the entropy production
(100) is no longer a combination of time-localized measure-
ments but contains temporal nonlocal measurements. Only
when the evolution Nin−2:1,k′

n−2:1
does not change with histor-

ical measurements, such as the Markovian processes, will the
entropy production be related to the two-point measurement.

Now let us discuss another marginal distribution. Summing
over {xn−2:1, in−2:1, . . . , l ′

n−2:1} is related to the process

N Sn−1,E
M = Mn−1 ◦ USE

n−2 ◦ · · · ◦ M2 ◦ USE
1 . (102)

Similar to Eq. (96), the measurement makes(
�k′

n−2l ′n−2

∣∣N Sn−1,E
M

∣∣�i1 j1 ⊗ ρE
0

)
= ∣∣σ E

i1, j1,k′
n−2

)
δk′

n−2l ′n−2

(
�k′

n−2

∣∣N Sn−1

M
∣∣�i1 j1

)
, (103)

where N Sn−1

M = (IE |N Sn−1,E
M |ρE

0 ). For the same reason as in
Eq. (97), it requires (IE |σ E

i1, j1,k′
n−2

) = δi1 j1 . With N Sn−1,E
M , the

quasiprobability distribution of forward processes can be writ-
ten as

Pn:1
(
xn:n−1, . . . , l ′

n−1

∣∣Mqs
n:1

) ∝ (IE ⊗ �k′
n−1l ′n−1

∣∣USE
n−1

∣∣�in−1 jn−1

)(
�xn−1

∣∣N Sn−1,E
M ◦ M1

∣∣ρ0 ⊗ ρE
0

)
=

∑
i1, j1,k′

n−2

(
�k′

n−1l ′n−1

∣∣N Sn

i1,k′
n−2

∣∣�in−1 jn−1

)(
�xn−1

∣∣�k′
n−2

)(
�k′

n−2

∣∣N Sn−1

M
∣∣�i1 j1

)
[�i1 j1 |M1(ρ0)], (104)

where N Sn

i1,k′
n−2

= (IE |USE
n−1|σ E

i1,i1,k′
n−2

) and the proportional to symbol is used because we ignore some common terms like
(�x|�i j ), which also exist in the quasiprobability distribution of backward processes. The quasiprobability distribution of
backward processes is

P tr
1:n

(
xn−1:n, . . . , l ′

n−1

∣∣Mqs
1:n

)
∝ [(I ⊗ ρE

0

∣∣J1/2
γ2

◦ (N Sn−1,E
M

)† ◦ J−1/2
γ ′

n−1

∣∣�xn−1
)(

�in−1 jn−1

∣∣J 1/2
γn

◦ (USE
n−1

)† ◦ J −1/2
γ ′

n

∣∣�k′
n−1l ′n−1

)(
�xn
∣∣ρ̃0 ⊗ IE

)]∗
=

∑
i1, j1,k′

n−2

[
(γ0|�i1 j1 )

(
�i1 j1

∣∣(N Sn−1

M
)† ◦ J−1/2

γ ′
n−1

∣∣�k′
n−2

)(
�k′

n−2

∣∣�xn−1
)(

�in−1 jn−1

∣∣J 1/2
γn

◦ (N Sn

i1,k′
n−2

)† ◦ J −1/2
γ ′

n

∣∣�k′
n−1l ′n−1

)
(�xn |ρ̃0)

]∗
.

(105)

From Eqs. (104) and (105) we find that the summing over
{i1, j1} cannot be eliminated or be attributed to a local mea-
surement. So there is no detailed FT for R(xn:n−1, . . . , l ′

n−1) in
general. Only when N Sn

i1,k′
n−2

is independent of {i1}, which is
also satisfied in the Markovian processes, do we have

R(xn:n−1, . . . , l ′
n−1) = ln

(�xn−1 |ρn−1)

(�xn |ρ̃0)

+ ln
(
Zγ −1

n
in−1 jn−1

Zγ ′
n

k′
n−1l ′n−1

)
, (106)

where

|ρn−1) = N Sn−1

M ◦ M1(ρ0). (107)

The proof uses that γ ′
m and Mm share the same basis. From

the previous analysis we can see that if we want the entropy
production of the marginal distribution to satisfy the fluctu-
ation theorem with time-localized measurements, we must
require that the evolution does not change with historical
measurements, that is to say, the measurement is not invasive
to evolution.

Let us briefly discuss why the marginal distribution in the
non-Markovian processes does not necessarily give a detailed
FT, since the proof (32) also applies here. If both R and
Rsub satisfy the detailed FT, then we have 〈R〉 � 〈Rsub〉. For
non-Markovian processes, the state of the system could be
fully recovered. Then according to Eq. (94), there must be
〈R〉 = 0. However, 〈Rsub〉 > 0 is very natural when there is
a contraction in the state space of the system. So there is
a conflict here, which makes the detailed FT for marginal
distributions conditional.

Since the proof (32) applies to all cases here, it leads to
the following conclusion: For the marginal distribution, if its
corresponding entropy production satisfies the detailed fluc-
tuation theorem, then its average gives a lower bound on the
total average entropy production.

III. EXAMPLE

To illustrate our framework we briefly discuss the Jaynes-
Cummings model. For simplicity, here we consider a two-state
atom coupled to a single harmonic-oscillator mode. Suppose
the atom is our system of interest. The non-Markovian dynam-
ics and the memory effects of this model have been discussed
in [26,27]. Reference [24] took it as an example to calculate
the entropy production of a single-shot evolution under differ-
ent evolution durations so as to obtain the entropy production
rate. The total Hamiltonian is given by

HJC = ωa
σz

2
+ ωca†a + �

2
(aσ+ + a†σ−). (108)

Its eigenstates are

|n,+〉 = cos

(
αn

2

)
|n, 1〉 + sin

(
αn

2

)
|n + 1, 0〉 ,

(109)

|n,−〉 = sin

(
αn

2

)
|n, 1〉 − cos

(
αn

2

)
|n + 1, 0〉 ,

where n denotes the number of radiation quanta in the mode,
1 and 0 denote the excited and ground states, respectively,
αn = tan−1(�

√
n + 1/
), and 
 = ωa − ωc. The energy

eigenvalues associated with the eigenstates |n,±〉 are given
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by

En,± = ωc
(
n + 1

2

)± 1
2�n, (110)

where �n =
√


2 + �2(n + 1). The unitary evolution op-
erator Ut = e−iHJCt in the basis {|0〉 , |1〉} is given by the
matrix [26]

Ut = e−iωcn̂t

(
c†

n̂(t ) −b†d†
n̂+1(t )

dn̂+1(t )b cn̂+1(t )

)
, (111)

where the operators

cn̂(t ) = e−iωct/2

[
cos

(√
ϕ̂

t

2

)
− i
 sin

(√
ϕ̂

t

2

)/√
ϕ̂

]
,

dn̂(t ) = −ie−iωct/22g sin

(√
ϕ̂

t

2

)/√
ϕ̂, (112)

with ϕ̂ = 
2 + 4g2n̂. All functions related to the particle
number operator satisfy the relations

b fn̂(t ) = fn̂+1(t )b, b† fn̂+1(t ) = fn̂(t )b†. (113)

Using these relations and

c†
n̂(t )cn̂(t ) + n̂d†

n̂ (t )dn̂(t ) = 1, (114)

one can easily verify the unitarity of U (t ). In addition, using

c†
n̂(τ2)c†

n̂(τ1) − n̂d†
n̂ (τ2)dn̂(τ1)eiωcτ1 = c†

n̂(τ1 + τ2),

cn̂(τ2)dn̂(τ1) + dn̂(τ2)c†
n̂(τ1)e−iωcτ1 = dn̂(τ1 + τ2), (115)

it is easy to verify that U (τ2)U (τ1) = U (τ1 + τ2).
Suppose the initial state of the system and the environment

is factorized ρSE
0 = ρS

0 ⊗ ρE
0 and the environment is initially

in the thermal equilibrium (Gibbs) state ρE
0 = exp(−βHc)/Zc.

Then the dynamical map of the system is

N0→t (ρ
S
0 ) = TrE

(
Utρ

S
0 ⊗ ρE

0

)
. (116)

Since the unitary evolution obeys the energy conservation
relation [H0, HI ] = 0, the thermal equilibrium state of the
system ρ

(β )
S = exp(−βHa)/Za is the fixed point of the map

N0→t . For single-shot evolution, the corresponding forward
process state is

|S2:1) = N S2
0→t

∣∣ρS1
0 ⊗ �A(1)S2

)
=
∑
i jk′l ′

�i j→k′l ′ (t )
∣∣ρS1

0 ⊗ �A(1)

i j ⊗ �
S2
k′l ′
)
, (117)

where �i j→k′l ′ (t ) = 〈�0(t )〉i j→k′l ′ . See Eq. (A3) for its spe-
cific matrix form.

If considering two-step evolution, the corresponding chan-
nel is

N S2S3
0→t1→t2

(
ρ

S2
0 ⊗ ρS3

t1

) = TrE
(
US2E

t2−t1U
S1E
t1 ρ

S2
0 ⊗ ρS3

t1 ⊗ ρE
0

)
.

(118)

The corresponding forward process state is given by

|S3:1) = N S2S3
0→t1→t2

∣∣ρS1
0 ⊗ �A(1)S2 ⊗ �A(2)S3

)
=

∑
i2:1 j2:1k′

2:1l ′2:1

�i2:1 j2:1→k′
2:1l ′2:1

(t1, t2)

× ∣∣ρS1
0 ⊗ �A(1)

i1 j1 ⊗ �
S2
k1l1

⊗ �A(2)

i2 j2 ⊗ �
S3
k2l2

)
. (119)

FIG. 5. Average entropy production for the Jaynes-Cummings
model under different processes. Here Nt is single-shot evolution
and Nt2−t1 ◦ Nt1 is two-step Markovian evolution. We applied a
measurement to the system at time ω0t1 = 10 while simultaneously
refreshing the environment to the initial thermal state. Here NM

0→t1→t2
is two-step non-Markovian evolution. We applied a measurement to
the system at time ω0t1 = 10, but did no additional operations on the
environment. The parameters are ωa = ω0, g = 0.1ω0, ωc = 0.1ω0,
kBT = ω0, ρ11

S (0) = 0.25, and ρ01
S (0) = 0. All the measurements are

in the basis {|0〉 , |1〉}.

The specific matrix form of �i2:1 j2:1→k′
2:1l ′2:1

(t ) can be found in
Eq. (A5).

Here we plot the comparison between the entropy produc-
tions (71), (73), and (94) (see Fig. 5). Comparing the entropy
production of Nt with Nt2−t1 ◦ Nt1 , we can find that the mem-
ory effect reduces entropy production. When the memory is
erased (by refreshing the environment state), the restoration
of the state will be prevented. Comparing Nt with NM

0→t1→t2
, it

can be found that the recovery of the state is weakened, which
means that the measurement can destroy part of the memory.
This is consistent with the fact that memory can be divided
into quantum and classical parts. Comparing Nt2−t1 ◦ Nt1 with
NM

0→t1→t2
, it can be found that the negative-entropy production

still exists, which means that the measurement will not de-
stroy all the memories. In addition, for the process NM

0→t1→t2
,

we can see that 〈Rω0t=10〉 > 〈Rω0t=20〉. This makes it impos-
sible for the corresponding marginal distribution to give a
detailed FT.

IV. CONCLUSION

In this paper we have studied the entropy production and
the detailed FT for multitime quantum processes in the frame-
work of the operator-state formalism. For closed quantum
systems and Markovian open quantum systems, the entropy
production of the joint probability and marginal distributions
all satisfy the detailed FT relation. This also leads to a non-
negative-entropy production rate. In addition, the total average
entropy production is not less than the intermediate average
entropy production. For closed quantum systems, we further
showed that the sum of each intermediate amount of entropy
production can be equal to the total entropy production if the
Kolmogorov condition is satisfied. For non-Markovian open
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quantum systems, the memory effect can lead to a negative-
entropy production rate. Therefore, the entropy production
of the marginal distribution generally does not satisfy the
detailed FT relation.

To illustrate the framework, we briefly calculated the to-
tal average entropy production of the three processes in
the Jaynes-Cummings model. The results show that memory
effects do reduce the average entropy production, while mea-
surements destroy part of the memory. For the non-Markovian
open quantum system, the intermediate measurements can de-
stroy the system-environment quantum correlations and thus
part of the memory. If these intermediate measurements are
not performed, then the full memory effect can be preserved.
If the environment state is refreshed at each step, as in [28],
then the evolution is completely Markovian and the memory
effect is completely destroyed. A further discussion of the
effect of measurement on different memories and the effect of
different memories on entropy production will help us fully
understand the influence of memory effects on the fluctuation
theorems.

This paper mainly focused on the fluctuation theorem
of multiple entropy production under the same process and
the same measurement. The multiple fluctuations here were
obtained by calculating the marginal distribution of mea-
surements at different times. Some previous studies such as
[29] considered the fluctuation theorem under the single-shot
process and the multibody measurement, where the multiple
fluctuations were obtained by calculating the marginal distri-
bution of different measurement objects (such as the system
and reference). The conditional mutual information obtained
by introducing the auxiliary system can be used to measure the
memory effect. Therefore, studying the fluctuation theorem of
many-body measurements under multitime evolution can give
some interesting results.
In [30,31] the entropy production and the detailed FT relation
of multiple channels were used to develop an arrow of time

statistics associated with the measurement dynamics. Evolu-
tion with memory effects is clearly beyond these frameworks,
so irreversibility may be violated. The framework of this pa-
per allows us to discuss path probabilities of non-Markovian
processes and thus may help us to deepen our understanding
of the relation between the Poincaré recurrence theorem and
the statistical arrow of time.

The FTs considered here are completely general but only
useful when R can be expressed exclusively in terms of phys-
ical and measurable quantities. For closed quantum systems
and Markovian open quantum systems, the entropy production
defined here is consistent with previous work, so we do not go
into detail here. The main difference is in the non-Markovian
cases, where memory effects cause the entropy production to
include temporally nonlocal measurements. This issue needs
further investigation.
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APPENDIX: OVERALL PROCESS STATE
AND OPEN-SYSTEM PROCESS STATE

Here we use the system-environment unitary evolution pro-
cess state to obtain the open-system process state. The overall
process state corresponding to a single-shot unitary evolution
is ∣∣SU

2:1

)
:= US2E

t

∣∣ρS1
0 ⊗ �A(1)S2 ⊗ ρE

0

)
=
∑
i jk′l ′

∣∣ρS1
0 ⊗ �A(1)

i j ⊗ �
S2
k′l ′ ⊗ T i j,k′l ′

t (ρE
0 )
)
, (A1)

where T i j,k′l ′
t (ρ) can be expressed in the matrix

Tt (ρ) = e−iωcn̂t

⎛
⎜⎜⎜⎜⎜⎝

c†
n̂(t )ρcn̂(t ) c†

n̂(t )ρb†d†
n̂+1(t ) dn̂+1(t )bρcn̂(t ) dn̂+1(t )bρb†d†

n̂+1(t )

−c†
n̂(t )ρdn̂+1(t )b c†

n̂(t )ρc†
n̂+1(t ) −dn̂+1(t )bρdn̂+1(t )b dn̂+1(t )bρc†

n̂+1(t )

−b†d†
n̂+1(t )ρcn̂(t ) −b†d†

n̂+1(t )ρb†d†
n̂+1(t ) cn̂+1(t )ρcn̂(t ) cn̂+1(t )ρb†d†

n̂+1(t )

b†d†
n̂+1(t )ρdn̂+1(t )b −b†d†

n̂+1(t )ρc†
n̂+1(t ) −cn̂+1(t )ρdn̂+1(t )b cn̂+1(t )ρc†

n̂+1(t )

⎞
⎟⎟⎟⎟⎟⎠eiωcn̂t , (A2)

where the rows are i j, the columns are k′l ′, and the value is {00, 01, 10, 11}. According to Eq. (81), we can obtain the process
state of the open system from the overall process state. When the environmental state commutes with the number operator, we
have (IE |Tt (ρE

0 )) = �0(t ), where

�m(t ) =

⎛
⎜⎜⎝

αm(t ) 0 0 1 − αm(t )
0 γ †

m(t ) 0 0
0 0 γm(t ) 0

1 − αm+1(t ) 0 0 αm+1(t )

⎞
⎟⎟⎠, (A3)

with αi(t ) = c†
n̂+i(t )cn̂+i(t ) and γi(t ) = cn̂+i(t )cn̂+i+1(t ). For two-step unitary evolution, the following overall process state can

be obtained:

∣∣SU
3:1

) =
∑

i2:1 j2:1k′
2:1l ′2:1

∣∣ρS1
0 ⊗ �A(1)

i1 j1 ⊗ �
S2
k′

1l ′1
⊗ �A(2)

i2 j2 ⊗ �
S3
k2l2

⊗ T i2 j2,k′
2l ′2

t2−t1

[
T i1 j1,k′

1l ′1
t1

(
ρE

0

)])
. (A4)
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Again, we can use (IE |Tt2−t1 [Tt1 (ρE
0 )]) to obtain the specific form of the map �i2:1 j2:1→k′

2:1l ′2:1
(t1, t2). Using Eqs. (113)–(115)

repeatedly, one can get

�i1 j1→k′
1l ′1,X1 = 〈�0(t1)�
1 (t2 − t1)〉i1 j1→k′

1l ′1,X1
,

�i1 j1→k′
1l ′1,X2 = δ
2+i1− j1−k′

1+l ′1,0 〈�s1 (t1, t2)�s2

1+1/2(t2 − t1)〉

i1 j1→k′
1l ′1,X2

, (A5)

�i1 j1→k′
1l ′1,X3 = δi1,i⊥2

δ j1, j⊥2
δk′

1,k
′⊥
2
δl ′1,l

′⊥
2

〈ξ †
0 (t1, t2)ξ1(t1, t2)〉 ,

where X1 = {i2 j2 → i2 j2, i2i2 → i⊥2 i⊥2 }, X2 = {i2 j2 → i⊥2 j2, i2 j2 → i2 j⊥2 }, X3 = {i2i⊥2 → i⊥2 i2}, 
1 = (i1 + j1 − k′
1 − l ′

1)/2,

2 = (i2 − j2 − k′

2 + l ′
2), and

�s1 (t1, t2) =

⎛
⎜⎜⎝

0 ξ0(t1, t2)c†
n̂(t1) ξ

†
0 (t1, t2)cn̂(t1) 0

−ξ
†
1 (t1, t2)c†

n̂(t1) 0 0 ξ
†
0 (t1, t2)c†

n̂+1(t1)
−ξ1(t1, t2)cn̂(t1) 0 0 ξ0(t1, t2)cn̂+1(t1)

0 −ξ1(t1, t2)c†
n̂+1(t1) −ξ

†
1 (t1, t2)cn̂+1(t1) 0

⎞
⎟⎟⎠, (A6)

�s2
m (t ) =

⎛
⎜⎜⎝

0 c†
n̂+m−1(t ) cn̂+m−1(t ) 0

−c†
n̂+m(t ) 0 0 c†

n̂+m(t )
−cn̂+m(t ) 0 0 cn̂+m(t )

0 −c†
n̂+m+1(t ) −cn̂+m+1(t ) 0

⎞
⎟⎟⎠, (A7)

where

ξi(t1, t2) = cn̂+i(t1)cn̂+i(t2 − t1) − cn̂+i(t2) = e−iωct2ξ
†
i (t1, t2). (A8)

When t2 = t1, there is ξi(t1, t2) = 0, and it is easy to verify that

�i1 j1→k′
1l ′1,i2 j2→k′

2l ′2 = 〈�0(t1)〉i1 j1→k′
1l ′1

δi2,k′
2
δ j2,l ′2 . (A9)

This mapping corresponds to the channel TrE [IS2E ◦ US1E
0→t1

(· ⊗ ρE
0 )]. In addition, one-step evolution can be derived from two-

step evolution when intermediate states are directly connected. Accordingly, it can be verified that∑
k′

2,i2,l
′
2, j2

δk′
2,i2δl ′2, j2�i2:1 j2:1→k′

2:1l ′2:1
(t1, t2) = �i1 j1→k′

2l ′2 (t2). (A10)

If the intermediate states are measured and we assume that the measurement is in the basis {|0〉 , |1〉}, then from∑
k′

2,i2,l
′
2, j2

δk′
2,i2δl ′2, j2δk′

2,l
′
2
�i2:1 j2:1→k′

2:1l ′2:1
(t1, t2) = �M

i1 j1→k′
2l ′2

(t1, t2) (A11)

we can get the mapping corresponding to Eq. (85). Its specific matrix form is

�M(t1, t2) =

⎛
⎜⎜⎝

1 − χ0(t1, t2) 0 0 χ0(t1, t2)
0 η†(t1, t2) 0 0
0 0 η(t1, t2) 0

χ1(t1, t2) 0 0 1 − χ1(t1, t2)

⎞
⎟⎟⎠, (A12)

where

χi(t1, t2) = αi(t1) + αi(t2 − t1) − 2αi(t1)αi(t2 − t1),

η(t1, t2) = −ξ0(t1, t2)cn̂+1(t1)cn̂+1(t2 − t1) − ξ1(t1, t2)cn̂(t1)cn̂(t2 − t1).
(A13)

The mapping (A12) can be used to calculate the entropy production (94).
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