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Cooling and work extraction under memory-assisted Markovian thermal processes
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We investigate the limits on cooling and work extraction via Markovian thermal processes assisted by a finite-
dimensional memory. Here the memory is a d-dimensional quantum system with trivial Hamiltonian and initially
in a maximally mixed state. For cooling a qubit system, we consider two paradigms: cooling under coherent
control and cooling under incoherent control. For both paradigms, we derive the optimal ground-state populations
under the set of general thermal processes (TP) and the set of Markovian thermal processes (MTP), and we
further propose memory-assisted protocols, which bridge the gap between the performances of TP and MTP. For
the task of work extraction, we prove that when the target system is a qubit in the excited state the minimum
extraction error achieved by TP can be approximated by Markovian thermal processes assisted by a large enough
memory. Our results can bridge the performances of TP and MTP in thermodynamic tasks including cooling and
work extraction.
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I. INTRODUCTION

Laws of thermodynamics pose essential restrictions on
processes such as cooling and work extraction. Ever since
Szilard’s discussion of Maxwell’s demon, where the amount
of extracted work is related to the knowledge of the target sys-
tem, the information-theoretic approach has been employed to
investigate thermodynamic processes [1]. In particular, pro-
posals for quantum engines have been proposed [2–5] and
experimentally demonstrated [6–9]. Further, quantum gates
are employed to design schemes for cooling, where the en-
tropy of the target system is transferred to an auxiliary system,
which can then release the entropy to a heat bath. Such scheme
of cooling is called heat bath algorithmic cooling [10–13].

Recently, great progresses have been made in resource-
theoretic approaches to quantum thermodynamics [14,15].
In particular, conditions on state transformations under the
set of thermal processes (TP) are established [16]. Based
on these conditions, bounds on work extraction are derived
[16]. Also, limitations on cooling in different regimes are
derived [17–20]. Further, the heat-bath algorithmic cooling
is extended to involve general thermal processes, such that
the ground-state population of the target system goes to 1
exponentially fast in the number of rounds [21].

When the set of thermal processes is restricted by the
Markovian condition, which means that the evolution of states
under such processes can be described by a master equa-
tion with the thermal state a fixed point, state transformations
are restricted by stronger limitations. Such processes are de-
fined as the set of Markovian thermal processes (MTP) in
Refs. [22,23], where it is proved that any operation in MTP
can be realized by a sequence of elementary thermalizations.
A direct consequence of this result is that under MTP and
without any auxiliary system, a two-level system cannot be
cooled to a temperature lower than that of the reservoir.
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By noticing that memory effect of the environment sets the
difference between Markovian and non-Markovian processes,
we introduce a d-dimensional auxiliary system, with trivial
Hamiltonian and initially in a maximally mixed state, to assist
state transformations under MTP. Because this auxiliary sys-
tem does not provide energy or nonequilibrium resources, it
acts as a “memory” in state transformations.

In this paper, we study the limits on cooling and work
extraction via memory-assisted Markovian thermal processes,
and compare the performance with TP and MTP. For cooling
a qubit system, we consider two paradigms, cooling under
coherent control and cooling under incoherent control. For
both paradigms, we derive the optimal ground-state popula-
tions under TP and MTP, and find that for the paradigm with
coherence control, there is a gap between asymptotic ground-
state populations (in the limit of infinite rounds) achieved by
TP and MTP, while for the paradigm with incoherent control,
both TP and MTP can reach the same asymptotic ground-state
population but the convergence rate differs. We further pro-
pose memory-assisted protocols for cooling under coherent
and incoherent control, which bridges the gap between the
performances of TP and MTP. For the problem of extract-
ing work from an out-of-equilibrium qubit state, we prove
that if the qubit is initially in the excited state, the optimal
strategy by TP can be approximated by MTP assisted by a
large enough memory, indicating that memory-assisted MTP
can outperform elementary thermal processes (ETP) when
the dimension of the target is larger than 2. Our results may
shed light on the study of memory effect of non-Markovian
thermodynamic processes.

II. PRELIMINARIES

A. Markovian thermal processes and related concepts

Consider a quantum system S with Hamiltonian HS and
surrounded by a reservoir R at inverse temperature β. In
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equilibrium, the state of S reads τ ≡ e−βHS /Tr(e−βHS ), which
is also called a Gibbs state.

Here we briefly review three sets of completely positive
and trace-preserving (CPTP) maps: the TP [24,25], the MTP
[22,23], and ETP [26].

A CPTP map � belongs to TP if and only if it satisfies the
following two conditions [24,25].

(P1) � is time-translationally symmetric:

�(e−iHStρeiHSt ) = e−iHSt�(ρ)eiHSt ,∀ρ, t . (1)

(P2) � preserves the Gibbs state:

�(τ ) = τ. (2)

Here and following, we focus on quantum states which are
diagonal on the eigenbasis of the Hamiltonian. Such states can
be fully characterized as vectors p of occupation probabilities
pk = 〈k|ρ|k〉, where |k〉 are eigenstates of HS corresponding
to energy levels Ek . Then the action of a CPTP map on ρ can
be described as a stochastic matrix acting on p:

ρ ′ = �(ρ) ⇒ p′ = Gp. (3)

Here G is a matrix of transition probabilities Gk′k = pk′ |k ≡
〈k′|�(|k〉〈k|)|k′〉 from state |k〉 to state |k′〉, and p′ is a vector
of occupation probabilities p′

k = 〈k|ρ ′|k〉 for the output state
ρ ′. From P2, the population dynamics G induced by TP is
a stochastic matrix which preserves the Gibbs distribution.
According to Refs. [16,27],

p
TP−→ p′ ⇔ p 
T p′, (4)

where 
T stands for thermomajorization.
An elementary thermal process [26] is realized as a se-

quence of thermal processes which involve only two energy
levels at a time. The set of ETP is equivalent to TP for the
qubit case, while for high-dimensional systems, ETP are strict
subsets of TP [26]. When a thermal process involves only
two energy levels |i〉 and | j〉 with energy gap Ei j , the reduced
transition matrix in the subspace spanned by {|i〉, | j〉} can be
written as

Gi j = (1 − λ)1i j + λβ i j, (5)

where λ ∈ [0, 1], 1i j is the identity matrix, and β i j is called
β-swap between i and j, expressed as

β i j =
(

1 − e−βEi j 1
e−βEi j 0

)
. (6)

The following lemma follows directly from Eq. (5).
Lemma 1. Consider a qubit system with Hamiltonian HS =

E |e〉〈e|, and two states which are incoherent on energy
eigenbasis with occupation vectors p = [p, 1 − p] and p′ =
[p′, 1 − p′]. Then p can be transformed to p′ via TP, if and
only if

p � p′ � pβ, p � γ ,

pβ � p′ � p, p � γ , (7)

where pβ = [βg,e p]g = 1 − pe−βE is the ground-state popu-
lation of the output state obtained from β-swap, and γ ≡
1/(1 + e−βE ) is the ground-state population of the Gibbs
state.

A Markovian thermal process is defined as a thermal pro-
cess generated by a Markovian master equation. A Markovian
process is memoryless, meaning that the evolution rate of a
system at time t solely depends on its state at time t . As
recently proved in Ref. [22], any state transformation induced
by the set of MTP can be achieved by a sequence of ele-
mentary partial thermalizations, which involves two energy
levels at a time. It follows that MTP are subsets of ETP. A
partial thermalization between energy levels Ei and Ej (E ≡
Ej − Ei > 0) is expressed as

T i j
λ =

(
1 − λ(1 − γ ) λγ

λ(1 − γ ) 1 − λγ

)
, (8)

where λ ∈ [0, 1]. For λ = 1, T i j
λ transforms any state to a

balanced distribution on i and j. It means that if p′ = T i j
1 p,

then p′
j = p′

ie
−βE , ∀p. This is called a full thermalization

between i and j, which we will label T i j in the following.
When a catalytic system is employed, the state transforma-

tions are enhanced [28–36]. A catalyst is finite-dimensional
ancilla, which interacts with the system via free operations
and then returns to the exact original state. When the set of
free operations is TP, the initial state of a catalyst is nonequi-
librium. Interestingly, as recently discovered in Ref. [36],
with Gibbs state catalysts, elementary thermal processes can
emulate any operation in TP.

B. Memory-assisted Markovian thermal process

Consider a qubit system with Hamiltonian HS = E |e〉〈e|
and initially in state p = [p0, 1 − p0]. According to the re-
sults in Refs. [22,23], ρ can be transformed to state pMTP =
[pMTP, 1 − pMTP] by MTP, if and only if γ � pMTP � p0 for
p0 > γ , and p0 � pMTP � γ for p0 � γ . In other words, any
state which can be reached by MTP from a qubit state ρ is a
mixture of ρ and γ .

By employing a qubit ancillary with trivial Hamiltonian
HA = 0 and initially in a maximally mixed state τ

(2)
A =

1
2 (|1〉〈1| + |2〉〈2|), a global MTP can transform the state of
S to ρ (2) = p(2)|g〉〈g| + (1 − p(2) )|e〉〈e| with

p(2) = γ + γ (1 − γ )(γ − p0). (9)

See Appendix B for detailed calculations. Because p(2) > γ

for p0 < γ and p(2) < γ for p0 > γ , ρ (2) cannot be reached
from ρ via MTP.

It is worth mentioning that the auxiliary system con-
sidered here is similar to the catalyst system proposed in
Refs. [22,23], in the sense that the initial and final states of the
auxiliary system are the same. Nevertheless, here we impose
stronger requirements on the auxiliary system, i.e., a trivial
Hamiltonian and maximally mixed initial state. In other
words, it does not provide energy or a nonequilibrium re-
source for the state transformation of the target system. The
reason why it can enable state transformations which cannot
be realized by MTP is that, instead of fully thermalizing
after each elementary thermalization, the assisted system
memorizes its state as well as its correlation to the target
system. Therefore, we will call state transformations which
are assisted by such auxiliary systems the memory-assisted
Markovian thermal processes.
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Definition 1. (Memory-assisted MTP, MMTP(d )) A quan-
tum channel E is a memory-assisted Markovian thermal
process if there are an assisted system A with trivial
Hamiltonian HA = 0 and initially in a maximally mixed state
τA = 1A/d and a joint Markovian thermal process EMTP such
that

E (·) = TrA[EMTP(· ⊗ τA)]. (10)

When the dimension of A is restricted to d , the set of memory-
assisted Markovian thermal processes is labeled as MMTP(d ).

The above definition is similar to that proposed in the
recent paper [37], but we impose the trivial Hamiltonian con-
dition to avoid energy exchange between the memory and
the other systems. The following theorem is also proved in
Ref. [37]. For consistency in this paper, we provide our proof
in Appendix B.

Theorem 1. Let p be an initial state of the target system,
which undergoes �i j ∈ MMTP(d ) involving only two energy
levels Ei and Ej (E = Ej − Ei > 0). Then the state p(d ) with
p(d )

i in the following form can be reached:

p(d )
i = (1 − e−βE )pi + p j + [(1 − γ )pi − γ p j]δd (γ ), (11)

where δd (γ ) < o{[4γ (1 − γ )]dd−3/2}.
Notice that the action of β-swap β i j leads to [β i, j p]i =

(1 − e−βE )pi + p j . Therefore, β-swap can be simulated by
MMTP(d ) with error exponentially decreasing in the dimen-
sion of the assisted memory.

III. COOLING

A. Settings and main results

Our target system is a qubit system with Hamiltonian
HS = E |e〉〈e| and is surrounded by a reservoir R at inverse
temperature β. Initially, the target system is thermalized to
an equilibrium state τ = γ |g〉〈g| + (1 − γ )|e〉〈e| with γ =
1/(1 + e−βE ).

In order to cool the target system, we consider two
paradigms: cooling under coherent control and cooling un-
der incoherent control, which are schematically depicted in
Fig. 1. Both paradigms consist of n rounds. In each round,
the target system absorbs the energy for cooling and then
undergoes a process which belongs to TP, MTP, or MMTP(d ).
The difference between the two paradigms lies in the source
of energy. In the paradigm of coherent control, the energy
for cooling comes from a unitary operation, while the energy
in incoherent control is provided by a hot bath H at inverse
temperature βH < β.

In the paradigm of coherent control, each round consists
of two steps. In the first step, a unitary operation is applied
to invert the populations of the target system, while the target
system is decoupled from the heat bath. The second step is
to maximize the ground-state population via TP, MTP, or
MMTP(d ). We denote the state of the target qubit after the
nth cycle as ρF,coh

n = pF,coh
n |g〉〈g| + (1 − pF,coh

n )|e〉〈e|, where
F = TP, MTP, or MMTP(d ) denotes the allowed operations
in the cooling process, and the superscript coh means that
the energy comes from coherent control. Our main result for
coherent control is summarized in the following theorem.

System
Auxiliary

Reservoir Heat bath

Ini�aliza�on

Step  2

Step  1

Incoherent Control

ba

System

Reservoir

Ini�aliza�on

Coherent Control

Step  1

Step  2

FIG. 1. Cooling paradigms. (a) Cooling under coherence control.
The target qubit is first initialized as a thermal state in R. In step 1 of
each round, the target qubit transforms under the unitary σx; in step 2,
it undergoes a process �F ∈ F , where F = TP, MTP, or MMTP(d ).
(b) Cooling under incoherent control. To initialize the composed
system, the target qubit is thermalized in R while the auxiliary is
thermalized in H . In step 1 of each round, one preserves the state of
S and thermalizes A in H ; in step 2, the composed system of S and A
undergoes a joint process �F ∈ F .

Theorem 2. Under coherent control, the ground-state pop-
ulations after the nth round, under cooling processes involving
TP and MTP, are respectively upper bounded by

pTP,coh
n,∗ = 1 − (1 − γ )e−nβE , (12)

pMTP,coh
n,∗ = γ , (13)

where the bounds are reachable. Moreover, under MMTP(d ),
the ground-state population can reach

p(d ),coh
n,∗ = p(d ),coh

max − [e−βE − δd (γ )]n
(
p(d ),coh

max − γ
)
, (14)

where

p(d ),coh
max = 1 − γ

1 + (1 − e−βE )/δd (γ )
. (15)

Detailed proof and discussion of the above theorem are in
Sec. III B.

In the paradigm of incoherent control, we employ an aux-
iliary qubit with Hamiltonian HA = (E − E )|1A〉〈1A|, where
we set E > E . Initially, the target system S is thermalized in
R while the auxiliary is thermalized in H . Each round of the
protocol consists of two steps. In the first step, the auxiliary
is fully thermalized in H , absorbing the energy for cooling,
while the state of the target system is preserved. In the second
step, the target system and the auxiliary are brought in contact
with R and undergo a thermal process. After the nth round, the
state of the target system becomes ρF,inc

n = pF,inc
n |g〉〈g| + (1 −

pF,inc
n )|e〉〈e|, where the superscript inc indicates incoherent

control. We prove the following.
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Theorem 3. After the nth round, ground-state population
of the target system under incoherent control can reach

pF,inc
n = pinc

∗ − vn
F (pinc

∗ − γ ), (16)

∀F = TP, MTP, MMTP(d ). The asymptotic ground-state pop-
ulation reads

pinc
∗ = 1

1 + e−βEeβH (E−E )
. (17)

The convergence rates for F = TP, MTP, and MMTP(d ) are
respectively

vTP = η(1 − e−βE ), (18)

vMTP = vTP + 1 − η + ηe−βE

1 + eβE , (19)

vMMTP(d ) = vTP + η − (2η − 1)

1 + e−βE δd (γE ), (20)

where γ = 1/(1 + e−βE ), η = 1/(1 + e−βH (E−E ) ), and γE =
1/(1 + e−βE ). Further, for F = TP, MTP, Eq. (16) is also the
upper bound for ground-state population.

It can be inferred from the theorem that cooling processes
under TP, MTP, and MMTP(d ) can all approach pinc

∗ in the
asymptotic limit, while the rates of convergence are different.
Further, for H in the high-temperature limit βH → 0, the
asymptotic ground-state population pinc

∗ reaches its maximum.
Then we arrive at the following corollary.

Corollary 1. Under incoherent control, in the limit of infin-
ity cycles, the ground-state population of a qubit target system
is upper bounded by

p∗ = 1

1 + e−βE (21)

where E stands for the largest energy gap of the composed
system consisting of the target qubit S and the auxiliary
qubit A.

B. Cooling under coherent control

In the nth round, the state of the system first transforms
under the unitary σx := |g〉〈e| + |e〉〈g|, and then undergoes a
process �F ∈ F . Precisely, the ground-state population after
the nth round can be expressed as

pF,coh
n = 〈g|�F

[(
1 − pF,coh

n−1

)|g〉〈g| + pF,coh
n−1 |e〉〈e|]|g〉,

= pF
g|g + (pF

g|e − pF
g|g
)
pF,coh

n−1 . (22)

Because pF,coh
0 = γ , it follows that

pF,coh
n = pF,coh

∗ − vn
F,coh(pF,coh

∗ − γ ), (23)

where pF,coh
∗ = pF

g|g/(pF
g|g + pF

e|e) and vF,coh = pF
g|e − pF

g|g. Be-
cause |vF,coh| < 1 as long as �F is not an identical operation,
the ground-state population converges to pF,coh

∗ at a speed
exponentially fast in the number of rounds.

For F = TP, Eq. (12) has been proved in Ref. [21]. For
consistency, we give the proof as follows. From Eq. (5), we
have

pTP,coh
∗ =

(
1 + 1 − λ

1 − λe−βE

)−1

, (24)

and vTP,coh = λ(1 + e−βE ) − 1 with λ ∈ [0, 1]. It follows that
if one requires to cool the system to a temperature below
that of the reservoir, i.e., pTP,coh

∗ � γ , the thermal process
employed should satisfy λ � γ . Further, from Lemma 1,
in each round, pTP,coh

n is maximized at λ = 1, as long as
1 − pTP,coh

n−1 � γ , which naturally holds. For λ = 1, we have
pTP,coh

∗ = 1 and vTP,coh = e−βE . It then follows from Eq. (23)
that the maximum of pTP,coh

n is in the form of Eq. (12). A
direct consequence is that, under coherence control and with
F = TP, the target qubit can be cooled to absolute zero in the
asymptotic limit.

In contrast, when F = MTP, the system can only be cooled
to the temperature of the reservoir. This is because MTP acting
on a qubit system is equivalent to partial thermalizations.

When F = MMTP(d ), we apply simulated β-swap on the
target qubit and thermalize the memory before each round.
The ground-state population after the nth round can be cal-
culated by using Eq. (11) and setting pi = 1 − p(d ),coh

n−1 and
p j = 1 − pi. Precisely, We obtain the following:

p(d ),coh
n = [e−βE − δd (γ )]p(d ),coh

n−1

+1 − e−βE + (1 − γ )δd (γ )

= p(d ),coh
max − [e−βE − δd (γ )]

(
p(d ),coh

max − p(d ),coh
n−1

)
= p(d ),coh

max − [e−βE − δd (γ )]n
(
p(d ),coh

max − γ
)
, (25)

where p(d ),coh
max is in the form of Eq. (15). This completes the

proof of Theorem 2.
Careful analysis shows that p(d ),coh

max > γ , ∀d � 2, indicat-
ing that cooling is enhanced by the memory. Further, p(d ),coh

max
is monotonically increasing in d , which means that the en-
hancement grows with the size of the memory. Last but
not least, p(1),coh

max = pMTP,coh
∗ = γ and p(∞),coh

max = pTP,coh
∗ = 1,

and this bridges the gap between the performances of TP
and MTP.

C. Cooling under incoherent control

Initially, the target qubit is fully thermalized in R
while the auxiliary is fully thermalized in H . On basis
{|g0A〉, |g1A〉, |e0A〉, |e1A〉}, the initial state of SA can be
written as

p(0) = [
p(0)

g0 , p(0)
g1 ; p(0)

e0 , p(0)
e1

]
= [γ η, γ (1 − η); (1 − γ )η, (1 − γ )(1 − η)], (26)

where η = 1/(1 + e−βH (E−E ) ). The target in the first round is
then to maximize the sum of the occupations on |g0A〉 and
|g1A〉 by a quantum operation in F .

We first consider the case F = TP. Let τ = [γ , 1 − γ ] ⊗
[γA, 1 − γA] with γA = 1/(1 + e−β(E−E ) ) be the Gibbs state of
SA in the reservoir R. Because βH < β, we have

p(0)
g1

τg1
= p(0)

e1

τe1
>

p(0)
g0

τg0
= p(0)

e0

τe0
. (27)

It means that one can neither increase the population on
|g1A〉, nor decrease the population on |e0A〉 via any opera-
tion in TP. The optimal strategy is then the β-swap between
the |g0A〉 and |e1A〉. The ground-state population of S then
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becomes

pTP,inc
1 = 1 − η + γ η(1 − e−βE ). (28)

Equivalently, (
pinc

∗ − pTP,inc
1

) = vTP(pinc
∗ − γ ), (29)

where pinc
∗ and vTP are defined in Eqs. (17) and (18) re-

spectively. Notice that pinc
∗ > pTP,inc

1 , because pinc
∗ > γ and

vTP > 0.
In the second round, the auxiliary is first fully thermalized

in H , resulting in state [η, 1 − η]. The joint state of SA be-
comes

p(1) = [
p(1)

g0 , p(1)
g1 ; p(1)

e0 , p(1)
e1

]
= [

pTP,inc
1 η, pTP,inc

1 (1 − η);

(1 − pTP,inc
1 )η, (1 − pTP,inc

1 )(1 − η)
]
. (30)

Then we check that

p(1)
g1

τg1
>

p(1)
e1

τe1
>

p(1)
g0

τg0
>

p(1)
e0

τe0
. (31)

Therefore, the best strategy is still the β-swap between the
|g0A〉 and |e1A〉. The resulted ground-state population pTP,inc

2
then satisfies(

pinc
∗ − pTP,inc

2

) = vTP
(
pinc

∗ − pTP,inc
1

)
. (32)

We apply the above discussion n times and obtain the recur-
rence relation(

pinc
∗ − pTP,inc

n

) = vTP
(
pinc

∗ − pTP,inc
n−1

)
. (33)

Importantly, this recurrence relation implies pinc
∗ > pTP,inc

n as
long as pinc

∗ > pTP,inc
n−1 , which in turn ensures that the ordering

in Eq. (31) holds for p(n). This is the reason for employing
the β-swap between |g0A〉 and |e1A〉 as the optimal cooling
strategy in every round. Combining Eqs. (29) and (33), we
arrive at Eq. (16) in Theorem 3 for F = TP.

As for F = MTP, the discussions are similar. The only
difference is that β-swap is not in MTP. The optimal strat-
egy in each cycle then becomes full thermalization between
|g0A〉 and |e1A〉. Therefore, we have the following recurrence
relation:

pMTP,inc
n = γ

[
pMTP,inc

n−1 η + (1 − pMTP,inc
n−1

)
(1 − η)

]
+ (1 − η)pMTP,inc

n−1 , (34)

where pMTP,inc
0 = γ . This is equivalent to(

pinc
∗ − pMTP,inc

n

) = vMTP
(
pinc

∗ − pMTP,inc
n−1

)
. (35)

Equation (16) then follows directly for F = MTP. Interest-
ingly, even though the allowed thermal process is restricted to
be Markovian, one can still approach pinc

∗ in the asymptotic
limit. The difference between the performances of TP and
MTP is the convergence rate. Because vMTP > vTP, pTP,inc

n
converges faster than pMTP,inc

n .
For F = MMTP(d ), our strategy is to implement simulated

β-swap between |g0A〉 and |e1A〉 in each cycle. From Theorem
1, where we set pi = ηp(d ),inc

n−1 and p j = (1 − η)(1 − p(d ),inc
n−1 ),

the sum of populations on |g0A〉 and |g1A〉 after the nth round
then reads

p(d ),inc
n = (1 − η)p(d ),inc

n−1 + (1 − e−βE )ηp(d ),inc
n−1

+ (1 − η)
(
1 − p(d ),inc

n−1

)[
(1 − γE )ηp(d ),inc

n−1

− γE (1 − η)
(
1 − p(d ),inc

n−1

)]
δd (γE ),

= pinc
∗ − vMMTP(d )

(
pinc

∗ − p(d ),inc
n−1

)
,

= pinc
∗ − vn

MMTP(d ) (pinc
∗ − γ ), (36)

with vMMTP(d ) in the form of Eq. (20). This completes the
proof for F = MMTP(d ). Still, the asymptotic limit of p(d ),inc

n
is the same as that of pTP,inc

n and pMTP,inc
n . Further, vMMTP(d )

is monotonically decreasing in d . It bridges the gap between
the convergence rates for TP and MTP, in the sense that
vMMTP(1) = vMTP and vMMTP(∞) = vTP.

IV. WORK EXTRACTION

Consider a qubit S initially in a nonequilibrium state
[p0, 1 − p0], and a work bit with Hamiltonian HW = W |1〉〈1|
initially in the ground state [1,0]. The task of work extraction
is to transform the state of the work bit to its excited state |1〉
by joint thermal processes on SW . Precisely, in a single-shot
work extraction,

[p0, 1 − p0]S ⊗ [1, 0]W
F�−→ [γ , 1 − γ ]S ⊗ [ε, 1 − ε]W ,

(37)

where F = TP, MTP, ETP, or MMTP(d ), and ε is called the
error of work extraction. The task of work extraction is to
minimize ε over F .

Here we analytically solve the above problem for the case
where the target qubit is in the excited state, i.e., p0 = 0, and
prove the following theorem.

Theorem 4. Consider a qubit S with Hamiltonian HS =
E |e〉〈e| and initially in state [0, 1]S , and a work bit with
Hamiltonian HW = W |1〉〈1| and initially in state [1, 0]W . By
MMTP(d ), the error ε (d ) of work extraction can reach

ε (d )(W ) = Id

(
1

1 + e−β(E−W )
,

1

1 + eβW

)
. (38)

Moreover, for d → ∞, the error can approach

ε (∞)(W ) = εTP(W ) =
{

0, W � W0,

1 − eβ(E−W ) − e−βW , W > W0

(39)

where Z ≡ 1 + e−βE is the partition function of the target
qubit, W0 ≡ E + kBT ln Z is the maximal work which can be
extracted from S via TP with vanishing error, and εTP(W ) is
the minimum error that can be reached via TP for given W .

Here the function Id (x, y) is defined in Eq. (A34) in
Appendix A.

This theorem provides an evidence in the regime of high-
dimensional systems for the conjecture that MMTP(d ) can
approach TP for d → ∞. This conjecture is not trivial, be-
cause if it is proved, then the thermal bath can be divided into
two parts. The first one can exchange energy with the system
but does not have memory effect, while the second one serves
as a memory and does not exchange energy with the system.

032216-5



YUANCHENG LIU AND XUEYUAN HU PHYSICAL REVIEW A 108, 032216 (2023)

A. Error of work extraction via TP, MTP, and ETP

In the following, we derive the minimum error of work
extraction as a function of W , when the allowed operations
are TP, MTP, and ETP. In particular, for comparison with the
performance of MMTP(d ), we focus on the case with p0 = 0.
On basis {|g0〉, |g1〉, |e0〉, |e1〉}, the initial state of SW then
reads p0 = [0, 0, 1, 0]. The task of work extraction is then to
minimize the sum of populations on |g0〉 and |e0〉 in the output
by the allowed thermal processes.

First, we consider the case with F = TP. The optimal
extraction error εTP(W ) can be computed via the thermoma-
jorization condition:

[0, 1]S ⊗ [1, 0]W 
T [γ , 1 − γ ]S ⊗ [ε, 1 − ε]W . (40)

This condition leads to

εTP(W ) =
{

0, W � W0,

1 − eβ(E−W ) − e−βW , W > W0
(41)

where W0 is defined in Theorem 4. The optimal strategy is to
implement a joint thermal operation described by the transi-
tion matrix GTP, followed by a local full thermalization on S.
The form of GTP reads as follows.

For W � E ,

GTP
1 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 − e−β(E−W ) 1 0
0 e−β(E−W ) 0 0
0 0 0 1

⎞
⎟⎟⎟⎠. (42)

For E < W � W0, which implies eβE < eβW � 1 + eβE ,

GTP
2 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 e−β(W −E ) 0
0 1 0 eβW − eβE

0 0 1 − e−β(W −E ) 1 − eβW + eβE

⎞
⎟⎟⎟⎠. (43)

For W > W0, which implies eβW > 1 + eβE ,

GTP
3 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 e−β(W −E ) 0
0 1 1 − e−βW (1 + eβE ) 1
0 0 e−βW 0

⎞
⎟⎟⎟⎠. (44)

The above form of GTP minimizes the sum of Gg0|e0 and Ge0|e0,
and thus minimizes ε in the output.

Next we study the performance of MTP. The optimal strat-
egy reads

GMTP = TST g1,e0T g1,e1, (45)

or

G̃MTP = TST g1,e1T g1,e0, (46)

where TS denotes full thermalization of system S. Both GMTP

and G̃MTP give

εMTP(W ) = 1

(1 + eβ(E−W ) )(1 + e−βW )
. (47)

Notice that, for W → 0, εMTP(W ) → 1
2 (1 − γ ) �= 0.

FIG. 2. The error ε of work extraction as a function of extracted
work W . Work is extracted from a qubit S with energy gap E and
initially in the excited state [0, 1]S .

For F = ETP, we find that the optimal transition matrix is

GETP = TSβ
g1,e0βg1,e1, (48)

or

G̃ETP = TSβ
g1,e1βg1,e0. (49)

It then follows that

εETP(W ) =
{

0, W � E ,

(1 − eβδ )(1 − e−βW ), W > E .
(50)

Here we briefly mention that the Gibbs-preserving stochastic
matrices GTP

2 and GTP
3 in Eqs. (43) and (44) satisfy the detailed

balanced condition, i.e., Gj|i = e−β(Ej−Ei )Gi| j . However, these
transformations are impossible via ETP, because as shown
in Fig. 2, the error of work extraction achieved by these
two stochastic matrices cannot be reached by ETP. This ob-
servation shows that detailed balance is a necessary but not
sufficient condition for a thermal process to be realized as a
sequence of thermal processes which involve only two energy
levels at a time.

B. Memory-assisted protocol for work extraction

Here we propose a protocol for work extraction from a
qubit system in the excited state with the assistance of a
d-dimensional memory. The basis of the Hilbert space of
the composed system SW M reads {|g〉, |e〉}S ⊗ {|0〉, |1〉}W ⊗
{|1〉, . . . , |d〉}M = {|ξζk〉}ξ=g,e;ζ=0,1;k=1,...,d . Initially, the sys-
tem is in the excited state |e〉, the work bit is in the ground
state |0〉, and the memory is in a maximally mixed state 1

d .
Our protocol is schematically depicted in Fig. 3.

Precisely, our protocol consist of two steps, which are
summarized as

[0, 0, 1, 0] ⊗
[ d times︷ ︸︸ ︷

1

d
, . . . ,

1

d

]

=
[

0, . . . , 0; 0, . . . , 0;
1

d
, . . . ,

1

d
; 0, . . . , 0

]
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Ini�al State

…
d-dimensional Memoryd

Step(II)

… …

Preserve

… … …

Step (I) 

…
t

………
Final State

……

…

…

FIG. 3. Scheme for work extraction under MMTP(d ). The color
of each dot stands for the population distribution. Initially, the qubit
S is in the excited state and thus the composed state of SW reads
[0, 0, 1, 0]SW , while the d-dimensional memory is in a maximally
mixed state. In step I, MTP is applied to the subspace spanned
by {|g11〉, . . . , |g1d〉; |e01〉, . . . , |e0d〉}. In step II, MTP is applied
to the subspace spanned by {|e01〉, . . . , |e0d〉; |e11〉, . . . , |e1d〉}.
The error ε (d ) of extraction equals to the sum of populations on
|e01〉, . . . , |e0d〉.

I�−→ [
0, . . . , 0; a(1)

d , . . . , a(d )
d ; b(d )

1 , . . . , b(d )
d ; 0, . . . , 0

]
II�−→ [

0, . . . , 0; a(1)
d , . . . , a(d )

d ; ε1, . . . , εd ; c(d )
1 , . . . , c(d )

d

]
.

In step I, simulated β-swap is implemented between |e〉S ⊗
|0〉W and |g〉S ⊗ |1〉W . Notice that instead of fully ther-
malizing M after the above operation, we preserve the
total state of SW M for the second step. By combining
Eqs. (B11), (B13), and (B15) together in Appendix B2, we
obtain

b(d )
j = (1 − γδ )d

d

j−1∑
j′=0

f ( j′ )
d γ

j′
δ , (51)

where δ = W − E , and γδ = 1/(1 + e−βδ ). See Appendix D
for detailed derivation. Notice that b(d )

j is monotonically in-
creasing with j.

Step II consists of d subroutines. In the kth subroutine,
full elementary thermalizations are sequentially implemented
between |e0k〉 and |e1 j〉 with j = 1, . . . , d . This results in

εk =
k∑

j=1

b(d )
k+ j−1γ

d
W (1 − γW ) j−1 f ( j−1)

d . (52)

Consequently, we have

ε (d ) =
d∑

k=1

εk = Id (γδ, 1 − γW ). (53)

The detailed derivation of the above formulas can be found in
Appendix D. Further, in Appendix A, we prove that

lim
d→∞

Id (x, y) =
{

1 − x
1−x − y

1−y ,
x

1−x + y
1−y < 1,

0, x
1−x + y

1−y � 1.
(54)

This directly leads to Eq. (39) in Theorem 4. The comparison
between the performances of TP, MTP, ETP, and MMTP(d )

with finite d is plotted in Fig. 2. Interestingly, although
ε (d )(W ) with finite d is an analytic function, in the limit of

d → ∞, it approaches εTP(W ), whose first derivative on W is
not continuous at W = W0.

V. CONCLUSION

We have introduced a finite-dimensional memory sys-
tem with trivial Hamiltonian and initially in a maximally
mixed state to bridge the gap between the performances of
Markovian thermal processes and general thermal processes
in thermodynamic tasks, including cooling and work ex-
traction. We study two cooling paradigms: under coherent
control and under incoherent control. In both paradigms, the
ground-state population of the target qubit approaches a limit
exponentially fast in the number of rounds, whether the set of
allowed processes is TP, MTP, or MMTP(d ). For the paradigm
under coherence control, the limit of achievable ground-state
population via MMTP(d ) is monotonically increasing in d ,
which reduces to the limit for MTP when d = 1, and ap-
proaches the limit for TP when d → ∞. For the paradigm
under incoherent control, we show that the limits of achiev-
able ground-state population are the same for TP, MTP, and
MMTP(d ), while the convergence rates are different. Still, the
rate for MMTP(d ) bridges the rates for TP and MTP.

In the problem of work extraction, the system which under-
goes MMTP(d ) consists of an out-of-equilibrium qubit S and a
work qubit W . We derive the analytic expression for the error
of work extraction achieved by MMTP(d ) when S is initially
in the excited state. Interestingly, the extraction error achieved
by MMTP(d ), which is an analytic function of the energy gap
W of the work bit, approaches in the limit d → ∞ to the
extraction error achieved by TP, whose first-order derivation
is not continuous.

Our results provide evidences for the conjecture that
MMTP(d ) can simulate transformations under TP with van-
ishing error, when the size d of the memory is large enough.
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APPENDIX A: SEVERAL FUNCTIONS

In this Appendix, we give the definitions to several
functions, and derive some equivalent expressions for these
functions.

Definition 2. We define functions L(m)
n (x), K (m)

n (x), and
I (m)
n (x) as follows:

L(m)
n (x) := (1 − x)n

m∑
j=0

f ( j)
n x j, (A1)

K (m)
n (x) := (1 − x)n

n

m∑
j=0

j f ( j)
n x j, (A2)

I (m)
n (x) := (1 − x)n

n

m∑
j=0

(n − j) f ( j)
n x j, (A3)

where x ∈ [0, 1], m and n are positive integers satisfying
m � n − 1, and f ( j)

n are defined by the following recurrence

032216-7



YUANCHENG LIU AND XUEYUAN HU PHYSICAL REVIEW A 108, 032216 (2023)

relation:

f (0)
j = 1, f (k+1)

j =
j∑

j′=1

f (k)
j′ , (A4)

or equivalently,

f j (k) = Ck
j−1+k . (A5)

By definition, K (m)
n (x) and I (m)

n (x) are related to L(m)
n (x) as

K (m)
n (x) = x

1 − x
L(m)

n (x) + x

n

d

dx
L(m)

n (x), (A6)

I (m)
n (x) = L(m)

n (x) − K (m)
n (x). (A7)

Lemma 2. The function L(m)
n (x) has the following equiva-

lent expressions:

L(m)
n (x) = 1 − nCm

n+mxm+1
n−1∑
l=0

Cl
n−1

(−x)l

m + l + 1
(A8)

= 1 − nCm
n+m

∫ x

0
xm(1 − x)n−1dx. (A9)

Proof. In order to prove Eq. (A8), we decompose L(m)
n (x)

into a polynomial
∑n+m

k=0 ckxk , and calculate the coefficient ck .
(i) For k = 0, we have c0 = f (0)

n = 1.
(ii) For 1 � k � m, direct calculation leads to

ck =∑k
k′=0(−1)k′

M (k)
k′ , where M (k)

k′ =∑k
k′=0 Ck′

n f (k−k′ )
n =∑k

k′=0 Ck′
n Ck−k′

n+k−k′−1. Further, by the definition of M (k)
k′ , the

following equation holds for k � 1 and k′ = 1, . . . , k:

M (k)
k′ = �

(k)
k′−1 + �

(k)
k′ , (A10)

where �
(k)
0 = C0

n f (k)
n = f (k)

n and �
(k)
k′ = M (k)

k′
(n−k′ )(k−k′ )

nk .
Therefore, we get

ck = M0 +
k∑

k′=1

(−1)k′
(�k′−1 + �k′ ) (A11)

=
k∑

k′=0

(−1)k′
�k′ +

k−1∑
k′=0

(−1)k′+1�k′ (A12)

= �k = 0. (A13)

(iii) For m + 1 � k � m + n, let k = m + l and thus, 0 �
l � n − 1. The coefficient ck is calculated as

ck =
n∑

k′=l+1

(−1)k′
Mk′ (A14)

=
n∑

k′=0

(−1)k′
Mk′ −

l∑
k′=0

(−1)k′
Mk′ (A15)

= 0 − (−1)l�l (A16)

= (−1)l+1 n − l

n
Cl

n

n(m + 1)

n(m + l + 1)
Cm+1

n+m (A17)

= (−1)l+1nCm
n+m

Cl
n−1

m + l + 1
. (A18)

This leads to the expression as Eq. (A8).
Further, from Eq. (A8) we have

L(m)
n (0) = 1,

d

dx
L(m)

n (x) = −nCm
n+m

n−1∑
l=0

Cl
n−1(−1)l xm+l

= −nCm
n+mxm(1 − x)n−1. (A19)

This leads to the expression as Eq. (A9). �
Lemma 3. For x ∈ (0, 1

2 ),

I (n−1)
n (x) = 1 − 2x

1 − x
+ xδn(1 − x), (A20)

with δn(1 − x) :=∑∞
n′=n

Cn′
2n′

n′+1 [x(1 − x)]n′
< o{[4x(1 −

x)]nn−3/2}.
Proof. From Eq.(A3), I (0)

1 (x) = 1 − x, and

I (n−1)
n (x) = (1 − x)n

[
1 + C1

n−1x + 1

n

n−1∑
j=2

(n − j)C j
n+ j−1x j

]
,

= (1 − x)n

[
(1 + x)n−1 + 1

n

n−1∑
j=2

(n − j)C j
n+ j−1x j −

n−1∑
j=2

C j
n−1x j

]
,

= (1 − x)n

[
(1 + x)n−1 +

n−1∑
j=2

(
n − j

n
C j

n+ j−1 − C j
n−1

)
x j

]
, (A21)

I (n)
n+1(x) = (1 − x)n

[
(1 − x)(1 + x)(1 + x)n−1 + (1 − x)

n∑
j=2

(
n + 1 − j

n + 1
C j

n+ j − C j
n

)
x j

]
. (A22)

It follows that

I (n)
n+1(x) − I (n−1)

n (x) = (1 − x)n

{
− x2(1 + x)n−1 +

n−1∑
j=2

[
(1 − x)

(
n + 1 − j

n + 1
C j

n+ j − C j
n

)

−
(

n − j

n
C j

n+ j−1 − C j
n−1

)]
x j + (1 − x)xn

(
Cn

2n

n + 1
− 1

)}
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= x2(1 − x)n

⎧⎨
⎩−

n−1∑
j=0

C j
n−1x j +

n−3∑
j=0

[
(1 − x)

(
n − 1 − j

n + 1
C j+2

n+ j+2 − C j+2
n

)

−
(

n − 2 − j

n
C j+2

n+ j+1 − C j+2
n−1

)]
x j + (1 − x)xn−2

(
Cn

2n

n + 1
− 1

)⎫⎬
⎭ (A23)

= x2(1 − x)n

{
n−3∑
j=0

[
− x

(
n − ( j + 1)

n + 1
C j+2

n+ j+2 − C j+2
n

)

−
(

− n − j

n + 1
C j+1

n+ j+1 + C j+1
n

)]
x j − (n − 1)xn−2 − xn−1 + (1 − x)xn−2

(
Cn

2n

n + 1
− 1

)}

= x2(1 − x)n

[
n−3∑
j=0

(
C j+2

n − n − ( j + 1)

n + 1
C j+2

n+ j+2

)
x j+1 +

n−3∑
j=0

(
n − j

n + 1
C j+1

n+ j+1 − C j+1
n

)
x j

−(n − 1)xn−2 − xn−1 + (1 − x)xn−2

(
Cn

2n

n + 1
− 1

)]

= x2(1 − x)n

[(
n − 2

n + 1
Cn−1

2n−1

)
xn−2 − (n − 1)xn−2 − xn−1 + (1 − x)xn−2

(
Cn

2n

n + 1
− 1

)]

= x2(1 − x)n

[
− xn−1 − xn−1

(
Cn

2n

n + 1
− 1

)]
= −xn+1(1 − x)n Cn

2n

n + 1
. (A24)

In obtaining Eq. (A23), we used the relations n−2− j
n C j+2

n+ j+1 =
n−1− j

n+1 C j+2
n+ j+2 − n− j

n+1C j+1
n+ j+1 and C j

n−1 − C j+2
n−1 = C j+1

n−1 +
C j

n−1 − (C j+2
n−1 + C j+1

n−1 ) = C j+1
n − C j+2

n . Furthermore, for
x ∈ (0, 1

2 ), the following equation holds:

∞∑
n=1

Cn
2n

n + 1
[x(1 − x)]n = x

1 − x
. (A25)

The proof is as follows. Let x(1 − x) = t , and for x ∈ (0, 1
2 ),

we have x = 1−√
1−4t
2 . Consequently, Eq. (A25) becomes

∞∑
n=1

Cn
2n

n + 1
t n = 1 − 2t − √

1 − 4t

2t
. (A26)

Taylor expansion of
√

1 − 4t at t = 0 gives

√
1 − 4t = 1 − 2t − 2

∞∑
n=2

(2n − 2)!

n!(n − 1)!
t n

= 1 − 2t − 2
∞∑

n=1

(2n)!

n!(n + 1)!
t n+1

= 1 − 2t − 2
∞∑

n=1

Cn
2n

n + 1
t n+1, (A27)

which is equivalent to Eq. (A26), and thus we arrive at
Eq. (A25).

Therefore, for x ∈ (0, 1
2 ),

I (n−1)
n (x) = I0

1 (x) +
n−1∑
n′=1

I (n)
n+1(x) − I (n−1)

n (x)

= 1 − x − x
n−1∑
n′=1

Cn′
2n′

n′ + 1
[x(1 − x)]n′

= 1 − x − x

(
x

1 − x
−

∞∑
n′=n

Cn′
2n′

n′ + 1
[x(1 − x)]n′

)

= 1 − 2x

1 − x
+ xδn(1 − x). (A28)

For n � 0, by Stirling’s approximation n! ≈ √
2πn( n

e )n, we
have

δn(1 − x) =
∞∑

n′=n

Cn′
2n′

n′ + 1
[x(1 − x)]n′

≈
∞∑

n′=n

√
2π (2n′)
2πn′

(
2n′
e

)2n′

(
n′
e

)2n′
1

n′ + 1
[x(1 − x)]n′

=
∞∑

n′=n

1√
πn′(n′ + 1)

[4x(1 − x)]n′

<

∞∑
n′=n

1√
πn(n + 1)

[4x(1 − x)]n′

<
1√

πn3/2

[4x(1 − x)]n

(2x − 1)2
= o{[4x(1 − x)]nn−3/2}.

�
Lemma 4. In the limit n → ∞, the function L(m)

n (x) ap-
proaches a discontinuous function as

lim
n→∞ L(m)

n (x) =
{

1, x < m
m+n−1 ,

0, x > m
m+n−1 .

(A29)
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Proof. By definition, we have L(m)
n (0) = 1 and L(m)

n (1) =
0, ∀m, n. Now let g(m)

n (x) := − d
dx L(m)

n (x) = nCm
n+mxm(1 −

x)n−1. For n � 0 and m being finite, or equivalently, m
m+n−1 →

0+, we have

g(m)
n (x) = n

m!

(n + m)!

n!
xm(1 − x)n−1

≈ n

m!

√
n + m

n

(
n+m

e

)m+n(
n
e

)n xm(1 − x)n−1

= n

m!

√
n + m

n

(
n + m

e

)m(n + m

n

)n

xm(1 − x)n−1

≈ n

m!

√
n + m

n
(n + m)mxm(1 − x)n−1.

In the second line, we used Stirling’s formula, and in the
fourth line, we used ( n+m

n )n ≈ em for n � 0. The above equa-
tion leads to limn→∞ g(m)

n (x) = 0, ∀x ∈ (0, 1]. Therefore,

lim
n→∞ L(m)

n (x) =
{

1, x = 0,

0, 0 < x � 1.
(A30)

It means that Eq. (A29) holds for m
m+n−1 → 0+.

For n � 0 and m
m+n−1 �= 0, which means that m � 0,

g(m)
n (x) = (n + m)

(n − 1 + m)!

m!(n − 1)!
xm(1 − x)n−1 ≈ n + m√

2π

√
n − 1 + m

m(n − 1)

(n − 1 + m)n−1+m

mm(n − 1)n−1
xm(1 − x)n−1

= n + m√
2π

√
n − 1 + m

m(n − 1)

[
n − 1 + m

m
x

]m[n − 1 + m

n − 1
(1 − x)

]n−1

= n + m√
2π

√
n − 1 + m

m(n − 1)

[(
1 + 1

μ

)μ

xμ(1 + μ)(1 − x)

]n−1

(A31)

where μ = m
n−1 � 1. Notice that xμ(1 − x) � [(1 + 1

μ
)μ(1 +

μ)]−1, and the equation holds if and only if x = μ

1+μ
= m

m+n−1 .
Hence,

lim
n→∞ − d

dx
L(m)

n (x) = nCm
n+mxm(1 − x)n−1

=
{∞, x = m

m+n−1 ,

0, otherwise.
(A32)

Combining it with the fact that L(m)
n (0) = 1 and L(m)

n (1) = 0,
we arrive at Eq. (A29). �

Definition 3. The function Id (x, y) with d being a positive
integer and x, y ∈ [0, 1] is defined as

Id (x, y) := (1 − x)d (1 − y)d

d

×
d−1∑
j=0

d− j−1∑
k=0

(d − j − k) f (k)
d xk f ( j)

d y j . (A33)

Lemma 5. In the limit d → ∞, the function Id (x, y) be-
comes

lim
d→∞

Id (x, y) =
{

1 − x
1−x − y

1−y ,
y

1−y < 1 − x
1−x ,

0,
y

1−y � 1 − x
1−x .

(A34)

Proof. Let r ( j)
d (x) := (1−x)d

d

∑d− j−1
k=0 (d − j − k) f (k)

d xk ,
and then,

Id (x, y) = (1 − y)d
d−1∑
j=0

r ( j)
d (x) f ( j)

d y j . (A35)

By definition, the function r ( j)
d (x) is calculated as

r ( j)
d (x) = d − j

d
L(d− j−1)

d (x) − K (d− j−1)
d (x)

=
(

d − j

d
− x

1 − x

)
L(d− j−1)

d (x). (A36)

In the limit of large d , by Lemma 4, we have

lim
d→∞

r ( j)
d (x) =

{
d− j

d − x
1−x , 0 � j < jx,

0, jx < j � d − 1,
(A37)

where jx = (d−1)(1−2x)
1−x .

Submitting the above expression for r ( j)
d (x) into Eq. (A35),

we have for d → ∞

Id (x, y) = (1 − y)d
d−1∑
j=0

(
d − j

d
− x

1 − x

)
L(d− j−1)

d (x) f ( j)
d y j

= (1 − y)d
� jx�∑
j=0

(
d − j

d
− x

1 − x

)
f ( j)
d y j

=
(

1 − x

1 − x

)
L(� jx�)

d (y) − K (� jx�)
d (y)

=
(

1 − x

1 − x
− y

1 − y

)
L(� jx�)

d (y). (A38)

For y <
� jx�

� jx�+d−1 , or equivalently y
1−y < 1 − x

1−x , L(� jx�)
d (y) =

1, and otherwise L(� jx�)
d (y) = 0. Therefore, we arrive at

Eq. (A34). �

APPENDIX B: QUBIT STATE TRANSFORMATIONS
UNDER MMTP(d )

1. A motivating example

Here we consider the simplest example, where the tar-
get system S is a qubit with Hamiltonian HS = E |e〉〈e|
and initially in state [p0, 1 − p0], and the memory is a
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qubit with Hamiltonian HA = 0 and initially in state [ 1
2 , 1

2 ].
The proposal for attaining the ground population p(2) as in
Eq. (9) goes as follows. The initial state of SA can be ex-
pressed as a probability distribution on basis {|g0〉, |g1〉, |e0〉,
|e1〉}, i.e.,

p = 1
2 [p0, p0; 1 − p0, 1 − p0]. (B1)

The global MTP consist of two steps. In the first step, full
elementary thermalizations are implemented subsequently be-
tween |g0〉 and each of |e j〉 ( j = 1, 2), and the state becomes

p1 = T g0,e1T g0,e0

p = 1
2 [γ (1 − p0 + γ ), p0; 1 − γ , (1 − γ )(1 − p0 + γ )].

(B2)

Similarly, the second step consists of T g1,e0 and T g1,e1 in turn,
and the output state reads

p2 = T g1,e1T g1,e0 p1 = [a(1)
2 , a(2)

2 ; b(2)
1 , b(2)

2

]
, (B3)

with

a(1)
2 = 1

2γ (1 − p0 + γ ),

a(2)
2 = 1

2γ [1 + (2γ − 1)(p0 − γ )],

b(2)
1 = 1

2 (1 − γ )[p0 + 1 − γ ],

b(2)
2 = 1

2 (1 − γ )[1 + (2γ − 1)(p0 − γ )]. (B4)

Then, full thermalization is applied to the auxiliary system A,
leaving the target state in ρ (2) with p(2) = a(1)

2 + a(2)
2 , which

equals to Eq. (9).

2. Simulation of β-swap by MMTP(d )

We propose a proposal for simulating β-swap via
MMTP(d ). Our results show that, for d large enough, we can
use MMTP(d ) to approximate any qubit state transformation
enabled by TP. Our proposal consists of d2 elementary full
thermalizations and a full thermalization locally acting on A
as a last step. Precisely, the protocol goes as follows.

Initially, the state of SA is prepared as

ρ = [p0|g〉〈g| + (1 − p0)|e〉〈e|] ⊗ 1

d

d∑
l=1

|l〉〈l|. (B5)

On basis {|g1〉, . . . , |gd〉, |e1〉, . . . , |ed〉}, the probability dis-
tribution vector of the initial state is written as

p0d = [a(1)
0 , . . . , a(d )

0 ; b(0)
1 , . . . , b(0)

d

]
, (B6)

with

a(k)
0 = p0

d
, b(0)

j = 1 − p0

d
. (B7)

In the kth step (k = 1, . . . , d), full elementary thermalizations
are implemented subsequently between |gk〉 and each of |e j〉
( j = 1, . . . , d). Then we have

pk j =
{

T gk,e1 pk−1,d , j = 1,

T gk,e j pk, j−1, 2 � j � d,
(B8)

TP

MMTP
(2)

MTP

ETP

Initial State

Gibbs State

(1,0,0)

A1

A2

B1

B2

FIG. 4. Comparison of the sets of states that can be reached via
TP, ETP, MTP,and MMTP(2) from a qutrit state. The Hamiltonian
of the qutrit reads HS = 0|g〉〈g| + E (|e1〉〈e1| + |e2〉〈e2|), and the
qutrit is initially in its ground state |g〉. This example shows that
via MMTP(2) one can realize state transformations that cannot be
achieved by ETP.

where

pk j = [
a(1)

d , . . . , a(k−1)
d , a(k)

j , a(k+1)
0 , · · · , a(d )

0 ; b(k)
1 , . . . ,

× b(k)
j , b(k−1)

j+1 , . . . , b(k−1)
d

]
. (B9)

Direct calculation leads to

a(k)
j = γ

(
a(k)

j−1 + b(k−1)
j

)
, b(k)

j = (1 − γ )
(
a(k)

j−1 + b(k−1)
j

)
.

(B10)

Therefore, we have

b(k)
j = 1 − γ

γ
a(k)

j , (B11)

and Eq. (B10) becomes

a(k)
j = γ a(k)

j−1 + (1 − γ )a(k−1)
j ,

a(k)
0 = p0

d
, a(0)

j = γ

1 − γ
b(0)

j = γ

1 − γ

1 − p0

d
. (B12)

Now we make the substitution

a(k)
j = 1

d
γ j (1 − γ )k−1s(k)

j , (B13)

and the above problem is equivalent to

s(k)
j = s(k)

j−1 + s(k−1)
j ,

s(k)
0 = p0(1 − γ )−k+1, s(0)

j = (1 − p0)γ − j+1. (B14)

This is in turn equivalent to

s(k)
j = (1 − γ )−k

[
(1 − p0)γ − j+1 − (γ − p0)

×
k−1∑
k′=0

f (k′ )
j (1 − γ )k′

]
, (B15)
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where f (k)
j :=∑ j

j′=1 f (k−1)
j′ , f (0)

j = 1, or equivalently, f (k)
j =

Ck
j+k−1. Here Cm

n := n!
m!(n−m)! . The proof goes as follows. For

k = 0, Eq. (B15) reduces to s(0)
j = (1 − p0)γ − j+1, which is

equivalent to Eq. (B14). It means that Eq. (B15) holds for the
case with k = 0 and j = 1, . . . , d . Now assume it holds for
the case with k − 1 and j = 1, . . . , d , and we will prove it

also holds for k. From Eq. (B14), we have s(k)
j − s(k)

j−1 = s(k−1)
j .

Taking the summation over all j gives

d∑
j′=1

[
s(k)

j − s(k)
j−1

] =
d∑

j′=1

s(k−1)
j . (B16)

It follows that

s(k)
j = s(k)

0 + (1 − γ )1−k

[
(1 − p0)

j∑
j′=1

γ 1− j′ − (γ − p0)
k−2∑
k′=0

j∑
j′=1

f (k′ )
j′ (1 − γ )k′

]

= s(k)
0 + (1 − γ )1−k

[
(1 − p0)

1 − γ − j

1 − γ −1
− (γ − p0)

k−1∑
k′=1

f (k′ )
j′ (1 − γ )k′−1

]

= (1 − γ )−k

[
(1 − p0)γ − j+1 − (γ − p0)

k−1∑
k′=0

f (k′ )
j (1 − γ )k′

]
. (B17)

In the last line, we used Eq. (B14).
After the d2 elementary full thermalizations, the state be-

comes

pdd = [a(1)
d , . . . , a(d )

d ; b(d )
1 , . . . , b(d )

d

]
. (B18)

It follows from Eq. (B15) that

a(k)
d = 1

d

γ

1 − γ
(1 − p0) − γ − p0

d (1 − γ )
γ d

k−1∑
k′=0

f (k′ )
d (1 − γ )k′

.

(B19)

Then full thermalization is implemented locally on A, and
the state of the qubit becomes [p(d ), 1 − p(d )] with p(d ) ≡∑d

k=1 a(k)
d . Direct calculations lead to

p(d ) = γ

1 − γ
(1 − p0) − γ − p0

1 − γ
I (d−1)
d (1 − γ ), (B20)

where the function I (d−1)
d (x) with x ∈ (0, 1) is defined in

Appendix A. It decreases with d and for finite d we have
I (d−1)
d (1 − γ ) ∈ ( 2γ−1

γ
, γ ]. From Lemma 3 in Appendix A, we

have

p(d ) = 1 − p0e−βE − (γ − p0)δd (γ ), (B21)

where δd (γ ) < o[(4γ (1 − γ ))d d−3/2]. Therefore, β-swap can
be simulated by our protocol with error exponentially decreas-
ing with the dimension of the assisted memory.

APPENDIX C: THREE-DIMENSIONAL TARGET SYSTEM
AND THE COMPARISON BETWEEN MMTP(d ) AND ETP

When the dimension of the target system is more than
2, ETP is a strict subset of TP. Therefore, it is of interest
to investigate the comparison between MMTP(d ) and ETP,
especially when d is not large.

Consider a three-dimensional system with Hamiltonian
HS = 0|g〉〈g| + E (|e1〉〈e1| + |e2〉〈e2|) and initially in the
ground state |g〉. The occupation probability vector of the
initial state reads [1,0,0].

The boundaries of states that can be obtained from |g〉 via
TP, ETP, as well as MTP, are plotted in Fig. 4. Now we show
that with the assistance of a qubit memory, MTP can achieve
state transformation that cannot be achieved by ETP.

The vertices can be obtained as vertex As(s = 1, 2) :
TMT g2,es2T g2,es1T g1,es2T g1,es1 and vertex Bs (s = 1, 2) :
TMT g2,es̄2T g2,es̄1T g1,es̄2T g1,es̄1T g2,es2T g2,es1T g1,es2T g1,es1. Other
states on the boundary can be obtained by elementary
thermalizations from the vertices. The states inside can be
obtained by thermalization from boundary states.

APPENDIX D: DETAILS of THE MEMORY-ASSISTED PROTOCOL FOR WORK EXTRACTION

The protocol is summarized in the following scheme:

[0, 0, 1, 0] ⊗
[ d times︷ ︸︸ ︷

1

d
, . . . ,

1

d

]
=
[

0, . . . , 0; 0, . . . , 0;
1

d
, . . . ,

1

d
; 0, . . . , 0

]
I�−→ [

0, . . . , 0; a(1)
d , . . . , a(d )

d ; b(d )
1 , . . . , b(d )

d ; 0, . . . , 0
]

II�−→ [
0, . . . , 0; a(1)

d , . . . , a(d )
d ; ε1, . . . , εd ; c(d )

1 , . . . , c(d )
d

]
.

Step I consists of d subroutines. In the jth subroutine, full elementary thermalizations are consequently implemented between
|e0 j〉 and each of |g1k〉 with k = 1, . . . , d . This is equivalent to simulated β-swap between |e0〉SW and |g1〉SW . By putting
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Eqs. (B11), (B13), and (B15) together, we obtain

b(d )
j = 1

d

[
1 − γ

j
δ

d−1∑
k=0

f (k)
j (1 − γδ )k

]
. (D1)

Further, because

j−1∑
j′=0

f (k)
j′+1γ

j′
δ − f (k+1)

j γ
j

δ = f (k+1)
1 +

j−1∑
j′=1

(
f (k+1)

j′+1 − f (k+1)
j′

)
γ

j′
δ − f (k+1)

j γ
j

δ =
j−1∑
j′=0

f (k+1)
j′+1 γ

j′
δ −

j−1∑
j′=0

f (k+1)
j′+1 γ

j′+1
δ

= (1 − γδ )
j−1∑
j′=0

f (k+1)
j′+1 γ

j′
δ , (D2)

we arrive at

b(d )
j = 1

d

[(
1 − γ

j
δ

)− γ
j

δ

d−1∑
k=1

f (k)
j (1 − γδ )k

]
= 1 − γδ

d

[
j−1∑
j′=0

f (0)
j′+1γ

j′
δ − f (1)

j γ
j

δ − γ
j

δ

d−1∑
k=2

f (k)
j (1 − γδ )k−1

]

= (1 − γδ )2

d

[
j−1∑
j′=0

f (1)
j′+1γ

j′
δ − f (2)

j γ
j

δ − γ
j

δ

d−1∑
k=3

f (k)
j (1 − γδ )k−2

]
= ..., = (1 − γδ )d−1

d

[
j−1∑
j′=0

f (d−2)
j′+1 γ

j′
δ − f (d−1)

j γ
j

δ

]

= (1 − γδ )d

d

j−1∑
j′=0

f (d−1)
j′+1 γ

j′
δ . (D3)

Notice that b(d )
j is increasing in j.

Step II also consists of d subroutines. In the following, we will label the action of step II as T̂ , and thus,[
b(d )

1 , . . . , b(d )
d ; 0, . . . , 0

] T̂�−→ [
ε1, . . . , εd ; c(d )

1 , . . . , c(d )
d

]
. (D4)

Each subroutine of T̂ is realized as T̂ (k) ≡ T e0k,e1d . . . T e0k,e11. In order to decide the order of T̂ (k) in T̂ , we first consider the
following problem.

Let Heff = 0|α〉〈α| + W
∑d

j=1 |β j〉〈β j| be the effective Hamiltonian on a (d + 1)-dimensional subspace spanned by
{|α〉; |β1〉, . . . , |βd〉}, and let Teff = T α,βd . . . T α,β2T α,β1 be a Markovian thermal process acting on this subspace. We define
the parameters dk and c(k)

j ( j, k = 1, . . . , d) as

[1; 0, . . . , 0]
Teff�−→ [

d1; c(1)
1 , . . . , c(1)

d

]
, (D5)

[
0; c(k−1)

1 , . . . , c(k−1)
d

] Teff�−→ [
dk ; c(k)

1 , . . . , c(k)
d

]
, k = 2, . . . , d. (D6)

Then dk is calculated as follows. Because

[1;

d times︷ ︸︸ ︷
0, . . . , 0],

T α,β1�−→ [γW ; 1 − γW ,

d−1 times︷ ︸︸ ︷
0, . . . , 0],

T α,β2�−→ [
γ 2

W
; 1 − γW , γW (1 − γW ),

d−2 times︷ ︸︸ ︷
0, . . . , 0

]
, �−→ . . .

T α,βd�−→ [
γ d

W
; 1 − γW , γW (1 − γW ), . . . , (1 − γW )γ d−1

W

]
,

from Eq. (D5), we have d1 = γ d
W

, c(1)
j = (1 − γW )γ j−1

W
. Similarly, from Eq. (D6), we have

dk+1 = γ d
W

c(k)
1 + γ d−1

W
c(k)

2 + . . . + γW c(k)
d , (D7)

c(k+1)
j = (1 − γW )

(
γ j−1

W
c(k)

1 + γ j−2
W

c(k)
2 + . . . + c(k)

j

)
. (D8)

Now let c(k)
j = (1 − γW )kγ j−1

W
χ k

j , and we have χ k+1
j =∑ j

j′=1 χ k
j′ , and c(1)

j = (1 − γW )γ j−1
W

= (1 − γW )γ j−1
W

χ1
j . Hence, χ k

j =
f (k−1)

j , c(k)
j = (1 − γW )kγ j−1

W
f (k−1)

j . In turn, we get dk+1 =∑d
j=1 γ d+1− j

W
c(k)

j = γ d
W

(1 − γW )k f k
d . Therefore, we arrive at

dk = γ d
W

(1 − γW )k−1 f (k−1)
d . (D9)

Now consider a 2d subspace spanned by {|α1〉, . . . , |αd〉; |β1〉, . . . , |βd〉}, and let �x = [x1, x2, . . . , xd ; 0, . . . , 0] be a probability
distribution in this subspace. (Notice that we do not require

∑d
j=1 x j = 1.) Here |α j〉 and |βk〉 are energy eigenstates with energy
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Eα and Eβ , respectively, which satisfy Eβ − Eα = W . We label T = T (d ) . . . T (1), where T (k) = T αk,βd . . . T αk,β1, and calculate
the output probability distribution after the action of T on �x.

The operator T (1) acts on the subspace spanned by {|α1〉; |β1〉, . . . , |βd〉}. In this subspace, the action of T (1) is effectively
the action of Teff , so the state transforms as

x1[1; 0, . . . , 0]
T (1)�−→ x1

[
d1; c(1)

1 , . . . , c(1)
d

]
. (D10)

Similarly, T (2) acts on the subspace spanned by {|α2〉; |β1〉, . . . , |βd〉}, and also effectively equivalent to Teff . The input state of
T (2) in this subspace reads [

x2; x1c(1)
1 , . . . , x1c(1)

d

] = x2[1; 0, . . . , 0] + x1
[
0; c(1)

1 , . . . , c(1)
d

]
. (D11)

It follows that [
x2; x1c(1)

1 , . . . , x1c(1)
d

] T (2)�−→ x2
[
d1; c(1)

1 , . . . , c(1)
d

]+ x1
[
d2; c(2)

1 , . . . , c(2)
d

]
. (D12)

Analogously, T (k) acts on the subspace spanned by {|αk〉; |β1〉, . . . , |βd〉}. The input state of T (k) in this subspace reads

xk[1; 0, . . . , 0] + xk−1
[
0; c(1)

1 , . . . , c(1)
d

]+ · · · + x1
[
0; c(k−1)

1 , . . . , c(k−1)
d

]
. (D13)

After the action of T (k), the above state becomes

xk
[
d1; c(1)

1 , . . . , c(1)
d

]+ xk−1
[
d1; c(1)

1 , . . . , c(1)
d

]+ · · · + x1
[
dk; c(k)

1 , . . . , c(k)
d

]
. (D14)

Therefore, the population on |αk〉 after the action of T (k) reads

εk = d1xk + d2xk−1 + . . . + dkx1, (D15)

which preserves during the actions of subsequent operations T (k′ ) with k′ > k. Finally, the total population on |α1〉, . . . , |αd〉
reads

ε (d ) =
d∑

k=1

εk = d1xd + . . . +
d+1−i∑

k=1

dkxi + . . . +
d∑

k=1

dkx1, =
d∑

i=1

(
d+1−i∑

k=1

dk

)
xi. (D16)

Because dk � 0, ε (d ) is minimized when xi is increasing in i. Therefore, we choose b(d )
j = x j in the original problem as in

Eq. (D4), and the optimal order of T̂ (k) is T̂ = T̂ (d ) . . . T̂ (2)T̂ (1).
Finally, the error of work extraction under our memory-assisted protocol is calculated as

ε (d ) =
d∑

j=1

d− j+1∑
k=1

dkb(d )
j =

d∑
j=1

d− j+1∑
k=1

γ d
W

(1 − γW )k−1 f (k−1)
d

(1 − γδ )d

d

j−1∑
j′=0

f (d−1)
j′+1 γ

j′
δ

= [γW (1 − γδ )]d

d

d∑
j=1

d− j∑
k=0

(1 − γW )k f (k)
d

j−1∑
j′=0

f (d−1)
j′+1 γ

j′
δ (D17)

where f (d−1)
j′+1 = Cd−1

j′+d−1 = C j′
j′+d−1 = f ( j′ )

d , and we have the following summation exchange:

d∑
j=1

d− j∑
k=0

j−1∑
j′=0

→
d−1∑
j′=0

d∑
j= j′+1

d− j∑
k=0

→
d−1∑
j′=0

d− j′−1∑
k=0

d−k∑
j= j′+1

(D18)

All the terms in the summation are independent of j, so the last summation
∑d−k

j= j′+1 is equivalent to multiplying each term by
(d − k − j′). Hence,

ε (d ) = (1 − γδ )d

d

d−1∑
j′=0

f ( j′ )
d γ

j′
δ γ d

W

d− j′−1∑
k=0

(d − k − j′) f (k)
d (1 − γW )k

= (1 − γδ )d

d

d−1∑
j′=0

(d − j′) f ( j′ )
d (γδγW ) j′ γ n− j′

W

d − j′

d− j′−1∑
k=0

(d − j′ − k) f (k)
d (1 − γW )k = Id (γδ, 1 − γW ). (D19)

Here Id (x, y) is the function defined in Eq. (A34). This completes the proof of Theorem 4.
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