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Quantum nonlocality, a form of nonclassicality, serves as a crucial resource in quantum information process-
ing. Nonlocality in quantum systems is exemplified by the perfect discrimination of orthogonal quantum states
through single joint measurements, which is unattainable using local operations and classical communication
(LOCC). Bandyopadhyay [S. Bandyopadhyay, Phys. Rev. Lett. 106, 210402 (2011)] established that, with
LOCC alone, at most N − 1 copies of N orthogonal quantum states are required for perfect discrimination.
Here, we present the experimental verification of orthogonal quantum state discrimination employing LOCC.
Our results demonstrate that up to three copies suffice for the perfect distinction of four orthogonal two-qubit
states via LOCC. The verified method of perfectly distinguishing orthogonal quantum state sets offers potential
applications in quantum information processes, including quantum secret sharing and quantum teleportation.
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I. INTRODUCTION

A central issue in quantum information theory is the ex-
ploration of the intrinsic relationship between quantum nonlo-
cality and quantum entanglement [1,2]. Quantum nonlocality
is evident when joint measurements on composite quantum
systems yield more information about a state than local oper-
ations and classical communication (LOCC) [3–5] alone can
provide. To further investigate this relationship, the local dis-
tinguishability of quantum states has garnered interest. Local
distinguishability concerns the ability of two or more spatially
separated observers to identify a quantum state within a set
of orthogonal quantum states using only LOCC. If observers
can perfectly distinguish these orthogonal states with just one
copy under LOCC constraints, the states are separable, and
no entanglement or nonlocality is present. However, if an
entangled state exists among these orthogonal states, perfect
distinguishability using a single copy and LOCC is unattain-
able. This implies a correlation between entanglement and
quantum nonlocality. Hence, studying the problem of achiev-
ing perfect distinguishability of orthogonal quantum states
with the minimum number of copies under LOCC constraints
will illuminate the intrinsic link between quantum nonlocality
and entanglement, advancing quantum information theory.

Ghosh et al. [6] initially explored the problem of achiev-
ing perfect distinguishability using LOCC, demonstrating that
four Bell states cannot be perfectly distinguished with only
one copy under LOCC. Walgate and Hardy [7] later proved
that, for four orthogonal quantum states, LOCC can only
achieve perfect distinguishability with one copy when all
states are separable. For a more general case, Bandyopadhyay
[8] and Walgate et al. [9] concluded that at most N − 1 copies
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are necessary to achieve perfect distinguishability of N or-
thogonal quantum states using LOCC. Banik et al. [10] further
examined the problem for two-qubit quantum states, noting
that for certain special sets of orthogonal states, only one or
two copies are required to achieve perfect distinguishability.

In this article, we experimentally confirmed the perfect
distinguishability of any set of four orthogonal two-qubit
quantum states using three copies. We also verified the per-
fect distinguishability of specific sets of orthogonal two-qubit
quantum states with only one or two copies. Our experimental
findings expose the correlation between quantum entangle-
ment and quantum nonlocality. The perfect distinguishability
method for orthogonal quantum state sets validated in our
experiment has potential applications in quantum information
processes such as quantum secret sharing and quantum tele-
portation.

II. THEORETICAL FRAMEWORK

Let us review the process of perfectly distinguishing
orthogonal pure states in composite quantum systems via
LOCC. For any set of N orthogonal pure states, it is possible to
perfectly distinguish them using at most N − 1 copies through
LOCC. Considering two-qubit states, for a group of four or-
thogonal states |�1〉, |�2〉, |�3〉, and |�4〉, no more than three
copies are required for perfect discrimination through LOCC.
In the following, we explain how to realize such quantum state
discrimination.

We first examine the prevalent scenario in which none
of the four quantum states are expressible as product states.
Under this circumstance, we randomly select two of the four
quantum states, without loss of generality, let us assume that
|�1〉 and |�2〉 are the selected states. We can always choose
suitable bases to expand them as

|�1〉 = a11|χ+〉|μ+〉 + a12|χ−〉|ω+〉,
|�2〉 = a21|χ+〉|μ−〉 + a22|χ−〉|ω−〉, (1)
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where |χ±〉, |μ±〉, and |ω±〉 are all single-qubit states satisfy-
ing 〈χ+|χ−〉 = 〈μ+|μ−〉 = 〈ω+|ω−〉 = 0, and a11, a12, a21,
and a22 are complex numbers satisfying |a11|2 + |a12|2 = 1
and |a21|2 + |a22|2 = 1. The first qubit of the first copy is
then measured in the basis (|χ+〉, |χ−〉). If the result is |χ+〉
(|χ−〉), the second qubit of the first copy is then measured in
the basis {|μ+〉, |μ−〉} ({|ω+〉, |ω−〉}). The measurement result
of the second qubit being |μ+〉 or |ω+〉 (|μ−〉 or |ω−〉) indi-
cates that the two-qubit quantum state being measured is not
|�2〉 (|�1〉). Regardless of the outcome, this LOCC reduces
the possible states of the two-qubit quantum state from four
to three. Similarly, performing LOCC on the second copy can
further reduce the possible states from three to two. Lastly, by
applying another LOCC on the third copy, the specific state of
the two-qubit quantum state can be determined.

In this section, we examine the case where only one of
the four quantum states is a product state. Without loss of
generality, let |�1〉 represent this product state, which can be
expanded as

|�1〉 = |η+〉|ν+〉. (2)

The first qubit of the first copy is then measured in the basis
{|η+〉, |η−〉}. After that, the second qubit of the first copy is
then measured in the basis {|ν+〉, |ν−〉}. If the measurement
outcome is |η+〉|ν+〉, it indicates that the measured two-qubit
state is |�1〉, and the state discrimination task is accomplished.
However, if the measurement outcome differs from |η+〉|ν+〉,
it implies that the measured two-qubit state is not |�1〉, thus
narrowing down the possible states from four to three. In such
a scenario, the specific state of this two-qubit quantum sys-
tem can be determined by applying the previously described
method to perform corresponding LOCC on the second and
third copies.

In the cases discussed above, a maximum of three copies
is required to achieve state discrimination. We now consider
three scenarios where state discrimination can be accom-
plished with only one or two copies.

(i) If suitable bases are chosen to represent |�1〉 and |�2〉
as a sum of two terms, as demonstrated in Eq. (1), |�3〉 and
|�4〉 can also be expressed as a sum of two terms in the same
bases, for example:

|�3〉 = a31|χ+〉|μ+〉 + a32|χ−〉|ω+〉,
|�4〉 = a41|χ+〉|μ−〉 + a42|χ−〉|ω−〉, (3)

or

|�3〉 = a31|χ+〉|μ−〉 + a32|χ−〉|ω−〉,
|�4〉 = a41|χ+〉|μ+〉 + a42|χ−〉|ω+〉. (4)

In this case, although none of the four quantum states are
product states, perfect state discrimination can be achieved
with at most two copies. Assuming that |�3〉 and |�4〉 can
be expanded using Eq. (3), the first qubit of the first copy
is then measured in the basis {|χ+〉, |χ−〉}. If the result is
|χ+〉 (|χ−〉), the second qubit of the first copy is measured
in the basis {|μ+〉, |μ−〉} (|ω+〉, |ω−〉) subsequently. If the
measurement result of the second qubit is |μ+〉 or |ω+〉 (|μ−〉
or |ω−〉), it indicates that the measured two-qubit quantum
state is not |�2〉 or |�4〉 (|�1〉 or |�3〉). Regardless of the
outcome, this LOCC narrows down the possible states from

four to two. Subsequently, another LOCC is applied to the
second copy to determine the specific state of the two-qubit
quantum state.

(ii) The second case is when only two of the four quantum
states are product states. Without loss of generality, let us as-
sume that |�1〉 and |�2〉 are product states, which can always
be expanded in the following form:

|�1〉 = |η+〉|ν+〉, |�2〉 = |η−〉|ν−〉. (5)

The first qubit of the first copy is then measured in the basis
{|η+〉, |η−〉}. After that, the second qubit of the first copy is
then measured in the basis {|ν+〉, |ν−〉}. If the measurement
outcome is |η+〉|ν+〉 (|η−〉|ν−〉), then the two-qubit state being
measured is |�1〉 (|�2〉) and the state discrimination task
is completed. If the measurement outcome is |η+〉|ν−〉 or
|η−〉|ν+〉, then the two-qubit state being measured is not |�1〉
or |�2〉, and the number of possible states is reduced from
four to two. Subsequently, by performing another LOCC on
the second copy, the specific state of the two-qubit state can
be determined.

(iii) When all four quantum states are product states, per-
fect discrimination can be achieved using only one copy.

III. EXPERIMENTAL SETUP

First, we present an experiment designed to perfectly dis-
tinguish a group of orthogonal two-qubit states using three
copies. To validate this state discrimination scheme, we need
to first prepare an arbitrary two-qubit pure state. According to
the Schmidt decomposition theorem [11], such a state can be
expressed as α|φ〉|ϕ〉 + √

1 − α2|φ⊥〉|ϕ⊥〉, with 0 < α < 1,
and |φ〉, |ϕ〉, |φ⊥〉, and |ϕ⊥〉 denoting single quantum pure
states obeying 〈φ|φ⊥〉 = 〈ϕ|ϕ⊥〉 = 0. The apparatus utilized
to generate this class of two-qubit pure states is depicted in
Fig. 1. A continuous-wave 405-nm pump laser passes through
a 2-mm-thick β-barium borate (β-BBO) crystal, producing
an entangled photon pair, a and b, via spontaneous paramet-
ric down-conversion. The photons are then guided through
a walk-off compensation device comprising a 45◦ half-wave
plate and a 1-mm-thick β-BBO crystal, resulting in a maxi-
mally entangled two-photon state 1√

2
(|H〉a|V 〉b + |V 〉a|H〉b),

where H and V represent horizontal and vertical polarization,
respectively. Subsequently, photon b encounters an optical
device consisting of two beam displacers and two half-wave
plates (HWP1 and HWP2). This apparatus is responsible for
converting H (V ) to V (H ) and outputting with a specific
transmittance adjustable via HWP2 (HWP1). By fine-tuning
the angles of HWP1 and HWP2, the state α|H〉a|H〉b +√

1 − α2|V 〉a|V 〉b is achieved. Following this, photons a
and b pass through an optical assembly composed of two
quarter-wave plates and a half-wave plate, which enables the
implementation of any polarization-based single-qubit unitary
transformation. Consequently, the two-photon state can be
prepared in the desired state α|φ〉a|ϕ〉b + √

1 − α2|φ⊥〉a|ϕ⊥〉b

[12]. Photons a and b can then be measured in any polarization
basis using a detection system comprising a quarter-wave
plate, a half-wave plate, a PBS, and a single-photon detector.

IV. RESULTS

We now present a detailed account of our experimental
procedure. Initially, we randomly selected a set of orthogonal
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FIG. 1. Experimental setup for distinguishing two-qubit quantum states via LOCC. A continuous-wave laser with a wavelength of 405 nm
is incident on a 2-mm-thick β-BBO crystal, generating a pair of photons (a and b) through type-II spontaneous parametric down-conversion.
Following passage through the optical components in the yellow region, an arbitrary two-qubit quantum state is prepared. Subsequently,
photon a (b) is directed into the measurement apparatus consisting of QWP3, HWP4, and PBS1 (QWP6, HWP6, and PBS2) for projection
measurements. HWP, half-wave plate; QWP, quarter-wave plate; BD, beam displacer; PBS, polarization beam splitter; SPCM, single-photon
counting module.

quantum states, denoted as S1, with the following forms:

|�1〉 = 0.6114|HH〉 + (0.2147 + 0.3119i)|HV 〉 + (0.0076 − 0.2762i)|V H〉 + (−0.5862 + 0.2508i)|VV 〉,
|�2〉 = 0.3656|HH〉 + (0.0955 − 0.3878i)|HV 〉 + (−0.3359 − 0.5503i)|V H〉 + (0.2633 − 0.4709i)|VV 〉,
|�3〉 = 0.5710|HH〉 + (−0.0712 + 0.3908i)|HV 〉 + (−0.1185 + 0.4830i)|V H〉 + (0.5111 − 0.0871i)|VV 〉,
|�4〉 = 0.4081|HH〉 + (−0.3076 − 0.6668i)|HV 〉 + (0.4554 + 0.2309i)|V H〉 + (−0.0728 + 0.1682i)|VV 〉.

Calculations indicate that three copies of the quantum state are
required for perfect discrimination via LOCC in this case. In
the experiment, we randomly prepared one of these quantum
states, using |�1〉 as an example to demonstrate our specific
experimental procedure. As depicted in Fig. 2(a), we first
performed LOCC operation L1 on the initial copy of |�1〉 by
measuring photon a in the basis {|χ+

1 〉, |χ−
1 〉}. Depending on

the measurement outcome, we measured photon b in either the
basis {|μ+

1 〉, |μ−
1 〉} or {|ω+

1 〉, |ω−
1 〉} [13]. The vectors of these

bases are as follows:

|χ+
1 〉 =

(
0.3553

0.6538 − 0.6681i

)
, |χ−

1 〉 =
(

0.6538 + 0.6681i
−0.3553

)
,

|μ+
1 〉 =

( −0.6716
0.5904 + 0.4476i

)
, |μ−

1 〉 =
(

0.5904 − 0.4476i
0.6716

)
,

|ω+
1 〉 =

(
0.6703

0.6073 + 0.4264i

)
, |ω−

1 〉 =
(

0.6073 − 0.4264i
−0.6703

)
.

The LOCC operation L1 can eliminate one possible state be-
tween candidate options |�1〉 and |�2〉.

Subsequently, we apply another LOCC operation, L2, to
the second copy of |�1〉 to exclude one possible state be-
tween the candidate options |�3〉 and |�4〉. In the experiment,
the probability of obtaining the result +1 (−1) after L2 is
q+

2 = 0.5964 ± 0.0128 (q−
2 = 0.4036 ± 0.0128), correspond-

ing to the exclusion of |�4〉 (|�3〉). When obtaining the result
+1 (−1), we apply LOCC operation L3 (L4) to the third
copy of |�1〉 to exclude one possible state between candi-
date options |�1〉 and |�3〉 (|�4〉). In the experiment, the
probability of obtaining the result +1 (−1) after L3 is q+

3 =
0.9779 ± 0.0038 (q−

3 = 0.0221 ± 0.0038), corresponding to

the exclusion of |�3〉 (|�1〉), and the probability of obtain-
ing the result +1 (−1) after L4 is q+

4 = 0.9819 ± 0.0042
(q−

4 = 0.0181 ± 0.0042), corresponding to the exclusion of
|�4〉 (|�1〉). The specific measurement bases for the three
LOCC operations L2, L3, and L4 are provided in the Appendix.
Here we note that the experiment was conducted 50 times to
ascertain the statistical error associated with the values q+

1 ,
q−

1 , q+
2 , q−

2 , q+
3 , q−

3 , q+
4 , and q−

4 .
By performing the corresponding LOCC operations on

three copies of the quantum state, we can ultimately determine
the state of the quantum system. Based on the four sets of
experimental results shown in Fig. 2(a), we can calculate
the probability of predicting the quantum state as |�1〉 to
be q+

1 (q+
2 q+

3 + q−
2 q+

4 ) = 0.9669 ± 0.0042. Similarly, we con-
ducted state discrimination experiments on cases where the
input quantum states were |�2〉, |�3〉, and |�4〉, with probabil-
ities of correctly predicting the quantum state being 0.9595 ±
0.0047, 0.9199 ± 0.0037, and 0.9439 ± 0.0034, respectively,
as shown in Fig. 2(b). Here we note that the quantum state
measurement in our experiment, which exclusively involves
single-qubit projection measurements, yields high accuracy
with a minimal contribution to overall errors. Conversely,
due to the prevalent usage of entangled states with inherently
imperfect preparation fidelity, these form the primary source
of experimental error.

In addition to completing the experiment for discriminat-
ing the quantum state set S1, we conducted experimental
verification of orthogonal quantum state discrimination for
several other cases. First, we randomly generated a set of
orthogonal quantum states, S2, containing one product state
and three entangled states. Unlike the discrimination of
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FIG. 2. Experimental results for two-qubit state discrimination using local operations and classical communication (LOCC). (a) Flowchart
illustrating the process to identify the input quantum state, |�1〉, with three copies prepared. The first copy undergoes LOCC operation L1; a
+1 result probability of 0.9871 ± 0.0032 significantly diminishes the likelihood of the input state being |�2〉. The second copy is subjected
to LOCC operation L2, with +1 and −1 result probabilities of 0.5964 ± 0.0128 and 0.4036 ± 0.0128, respectively. A +1 (−1) result from L2

eliminates the possibility of the input state being |�4〉(|�3〉). LOCC operations L3 (L4) on the third copy further discount |�3〉(|�4〉) with high
probability, confirming the input state as |�1〉. The pink bar chart depicts probability distributions for measurement outcomes after the LOCC
operation. (b) Predicted results for different input quantum states. For an input state of |�1〉 (|�2〉, |�3〉, |�4〉), the experimentally predicted
probability of identification as |�1〉 (|�2〉, |�3〉, |�4〉) is 0.9669 ± 0.0042 (0.9595 ± 0.0047, 0.9199 ± 0.0037, 0.9439 ± 0.0034).

S1, the number of copies required for S2 is not fixed. In
some instances, only one copy is needed, while in others,
three copies remain necessary for state discrimination. The
experimental results for S2 discrimination are shown in

Fig. 3(a), with the correct prediction probabilities for the
four measured quantum states being 0.96 ± 0.0062, 0.9521 ±
0.0067, 0.9514 ± 0.0066, and 0.9612 ± 0.0052, respectively.
We also randomly generated an orthogonal quantum state set,

FIG. 3. Experimental results for distinguishing two-qubit states under three specific conditions. (a) Predictions for input quantum states
with the quantum state set S2. S2 comprises one product state and three entangled states, distinguishable using up to three copies of the input
state. (b) Predictions for input quantum states with the quantum state set S3. S3 consists of four entangled states, distinguishable using two
copies of the input state. (c) Predictions for input quantum states with the quantum state set S4. S4 includes two product states and two entangled
states, distinguishable using up to two copies of the input state.
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S3, containing four entangled states which are all expand-
able in the form of Eqs. (1) and (3) [or Eq. (4)]. Unlike
the discrimination of S1, only two copies are needed for S3.
The experimental results for S3 discrimination are shown in
Fig. 3(b), with the correct prediction probabilities for the four
measured quantum states being 0.9709 ± 0.0053, 0.9276 ±
0.0076, 0.9214 ± 0.0073, and 0.9261 ± 0.0081, respectively.
Furthermore, we randomly generated an orthogonal quantum
state set, S4, containing two product states and two entangled
states. The number of copies required for S4 discrimination
is not fixed. In some cases, only one copy is needed, while
in others, two copies are required. The experimental results
for S4 discrimination are shown in Fig. 3(c), with the correct
prediction probabilities for the four measured quantum states
being 0.9622 ± 0.0075, 0.9732 ± 0.004, 0.9469 ± 0.006, and
0.9617 ± 0.0061, respectively. For the specific forms of the
quantum states in S2, S3, and S4, as well as the required LOCC
operations for their state discrimination, please refer to the
Appendix.

V. SUMMARY

In summary, we have experimentally verified the state dis-
crimination of two-qubit orthogonal quantum state sets using
LOCC under various conditions, including the general case
requiring three copies and cases requiring only one or two
copies. As an easily implemented quantum operation, LOCC
holds widespread application within the domain of quantum
information. In its varied uses, Lim et al. [14] deployed
LOCC to perform approximate partial transpose for entangle-
ment determination in quantum states, while He et al. [15]
utilized LOCC to achieve conversion between entanglement
and coherence. Similarly, Laing et al. [16] effectively em-
ployed LOCC for the flawless discrimination of two distinct
quantum processes. LOCC, serving as a restrictive form of

measurement, tends to offer less information relative to global
measurements. This disparity often underscores the nonclas-
sicality of the quantum system under inspection. Perfect
discrimination of orthogonal quantum states can be achieved
using a single copy via global measurements. Conversely,
LOCC typically necessitates multiple copies, with the requi-
site number correlating with the entanglement attributes of the
quantum states set. In our experiment, we confirm that when
utilizing only LOCC operations, the count of copies required
for perfect discrimination of a set of two-qubit orthogonal
states is indeed intimately associated with their entanglement
properties. Our research on employing LOCC to discrimi-
nate orthogonal quantum states contributes to understanding
the relationship between quantum nonlocality and quantum
entanglement and has potential applications in quantum in-
formation processing, including quantum communication and
quantum secret sharing.
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APPENDIX: CONCRETE REPRESENTATION OF QUANTUM STATE SETS AND LOCC OPERATIONS
FOR STATE DISCRIMINATION

In the main text, we have presented the specific form of the quantum state set S1. A total of six LOCC operations, L1 through
L6, can be utilized to distinguish states in S1. The operations L1 and L2 can eliminate one possible state between candidate pairs
|�1〉 and |�2〉, and |�3〉 and |�4〉, respectively. Similarly, L3, L4, L5, and L6 can eliminate one possible state between candidate
pairs |�1〉 and |�3〉, |�1〉 and |�4〉, |�2〉 and |�3〉, and |�2〉 and |�4〉, respectively. The specific forms of the basis vectors
corresponding to L2, L3, L4, L5, and L6 are provided below.

The basis vector corresponding to L2 is

|χ+
2 〉 =

(
0.91

0.4029 − 0.0979i

)
, |χ−

2 〉 =
(

0.4029 + 0.0979i
−0.91

)
,

|μ+
2 〉 =

(
0.7565

0.4650 + 0.4599i

)
, |μ−

2 〉 =
(

0.465 − 0.4599i
−0.7565

)
,

|ω+
2 〉 =

(
0.7576

−0.5787 − 0.3019i

)
, |ω−

3 〉 =
(−0.5787 + 0.3019i

−0.7576

)
.

The basis vector corresponding to L3 is

|χ+
3 〉 =

(
0.6675

0.7144 − 0.2099i

)
, |χ−

3 〉 =
⎛
⎝0.7144 + 0.2099i

−0.6675

⎞
⎠,

|μ+
3 〉 =

(
0.7713

−0.6109 + 0.1788i

)
, |μ−

3 〉 =
(−0.6109 − 0.1788i

−0.7713

)
,

|ω+
3 〉 =

(
0.5807

0.8090 − 0.091i

)
, |ω−

3 〉 =
(

0.8090 + 0.0910i
−0.5807

)
.
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The basis vector corresponding to L4 is

|χ+
4 〉 =

(
0.0562

−0.9474 + 0.3152i

)
, |χ−

4 〉 =
(−0.9474 − 0.3152i

−0.0562

)
,

|μ+
4 〉 =

(
0.3801

−0.257 − 0.8885i

)
, |μ−

4 〉 =
(−0.257 + 0.8885i

−0.3801

)
,

|ω+
4 〉 =

(
0.8623

0.2396 + 0.446i

)
, |ω−

4 〉 =
(

0.2396 − 0.446i
−0.8623

)
.

The basis vector corresponding to L5 is

|χ+
5 〉 =

(
0.9678

0.1172 + 0.2228i

)
, |χ−

5 〉 =
(

0.1172 − 0.2228i
−0.9678

)
,

|μ+
5 〉 =

( −0.3654
0.0152 + 0.9307i

)
, |μ−

5 〉 =
(

0.0152 − 0.9307i
0.3654

)
,

|ω+
5 〉 =

(
0.8416

0.3403 + 0.4194i

)
, |ω−

5 〉 =
(

0.3403 − 0.4194i
−0.8416

)
.

The basis vector corresponding to L6 is

|χ+
6 〉 =

(
0.6882

0.5599 − 0.4614i

)
, |χ−

6 〉 =
(

0.5599 + 0.4614i
−0.6882

)
,

|μ+
6 〉 =

(
0.687

0.7107 + 0.1514i

)
, |μ−

6 〉 =
(

0.7107 − 0.1514i
−0.687

)
,

|ω+
6 〉 =

(
0.8396

−0.432 + 0.3294i

)
, |ω−

6 〉 =
(−0.432 − 0.3294i

−0.8396

)
.

We also present the specific form of quantum state set S2:

|�1〉 = (−0.3482 − 0.8107i)|HH〉 + (0.2477 − 0.1119i)|HV 〉 + (−0.2530 − 0.2662i)|V H〉 + (0.0805 − 0.0794i)|VV 〉,
|�2〉 = (−0.0360 + 0.0128i)|HH〉 + (0.0588 + 0.6239i)|HV 〉 + (−0.4351 − 0.0453i)|V H〉 + (−0.5783 + 0.2830i)|VV 〉,
|�3〉 = (−0.3149 − 0.2942i)|HH〉 + (−0.2409 + 0.5446i)|HV 〉 + (0.5160 + 0.4122i)|V H〉 + (0.1535 − 0.0043i)|VV 〉,
|�4〉 = (−0.1094 + 0.1496i)|HH〉 + (−0.3480 + 0.2402i)|HV 〉 + (−0.2503 − 0.4184i)|V H〉 + (0.6388 + 0.3756i)|VV 〉.

There are four LOCC operations, L7 through L10, that can be employed to distinguish states in S2. The operation L7 determines
if the quantum state is |�1〉 or not, while L8, L9, and L10 can eliminate one possible state between candidate pairs |�2〉 and |�3〉,
|�2〉 and |�4〉, and |�3〉 and |�4〉, respectively. The specific forms of the basis vectors corresponding to L7, L8, L9, and L10 are
as follows.

The basis vector corresponding to L7 is

|χ+
7 〉 =

(
0.6844 − 0.6196i
0.1777 − 0.3407i

)
, |χ−

7 〉 =
(

0.1777 + 0.3407i
−0.6844 − 0.6196i

)
,

|μ+
7 〉 =

(−0.6771 − 0.6745i
0.2038 − 0.2124i

)
, |μ−

7 〉 =
(

0.2038 + 0.2124i
0.6771 − 0.6745i

)
.

The basis vector corresponding to L8 is

|χ+
8 〉 =

(
0.5439

0.55 + 0.6338i

)
, |χ−

8 〉 =
(

0.55 − 0.6338i
−0.5439

)
,

|μ+
8 〉 =

( −0.4065
−0.6889 + 0.6001i

)
, |μ−

8 〉 =
(−0.6889 − 0.6001i

0.4065

)
,

|ω+
8 〉 =

(
0.6698

−0.1246 + 0.732i

)
, |ω−

8 〉 =
(−0.1246 − 0.732i

−0.6698

)
.
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The basis vector corresponding to L9 is

|χ+
9 〉 =

( −0.6217
0.2321 + 0.7481i

)
, |χ−

9 〉 =
(

0.2321 − 0.7481i
0.6217

)
,

|μ+
9 〉 =

( −0.9409
−0.2578 + 0.2198i

)
, |μ−

9 〉 =
(−0.2578 − 0.2198i

0.9409

)
,

|ω+
9 〉 =

⎛
⎝ −0.3126

−0.7837 + 0.5368i

⎞
⎠, |ω−

9 〉 =
(−0.7837 − 0.5368i

0.3126

)
.

The basis vector corresponding to L10 is

|χ+
10〉 =

(
0.3085

0.489 − 0.8159i

)
, |χ−

10〉 =
(

0.489 + 0.8159i
−0.3085

)
,

|μ+
10〉 =

(
0.8878

0.4334 − 0.1547i

)
, |μ−

10〉 =
(

0.4334 + 0.1547i
−0.8878

)
,

|ω+
10〉 =

( −0.7146
0.3756 + 0.5901i

)
, |ω−

10〉 =
(

0.3756 − 0.5901i
0.7146

)
.

Additionally, we provide the specific form of quantum state set S3:

|�1〉 = (0.2531 + 0.0829i)|HH〉 + (0.2118 − 0.3579i)|HV 〉 + (−0.6450 − 0.1866i)|V H〉 + (−0.1600 − 0.5288i)|VV 〉,
|�2〉 = (0.1894 − 0.1384i)|HH〉 + (−0.0295 + 0.8368i)|HV 〉 + (−0.3469 − 0.1790i)|V H〉 + (−0.2951 + 0.0665i)|VV 〉,
|�3〉 = (−0.1492 + 0.6445i)|HH〉 + (−0.2058 − 0.0001i)|HV 〉 + (−0.4998 + 0.1049i)|V H〉 + (0.2465 + 0.4453i)|VV 〉,
|�4〉 = (0.3916 − 0.5319i)|HH〉 + (−0.1582 − 0.2421i)|HV 〉 + (−0.2119 − 0.3017i)|V H〉 + (0.3657 + 0.4587i)|VV 〉.

Three LOCC operations, L11, L12, and L13, can be used to distinguish states in S3. The operation L11 determines if the quantum
state belongs to the subset composed of |�1〉 and |�2〉 or to the subset composed of |�3〉 and |�4〉. Moreover, L12 and L13 can
eliminate one possible state between candidate pairs |�1〉 and |�2〉, and |�3〉 and |�4〉, respectively. The specific forms of the
basis vectors corresponding to L11, L12, and L13 are provided below.

The basis vector corresponding to L11 is

|χ+
11〉 =

(
0.9264

0.356 + 0.1226i

)
, |χ−

11〉 =
(

0.356 − 0.1226i
−0.9264

)
,

|μ+
11〉 =

(
0.1776

−0.9828 + 0.0498i

)
, |μ−

11〉 =
(−0.9828 − 0.0498i

−0.1776

)
,

|ω+
11〉 =

(
0.8353

0.4424 + 0.3265i

)
, |ω−

11〉 =
(

0.4424 − 0.3265i
−0.8353

)
.

The basis vector corresponding to L12 is

|χ+
12〉 =

(
0.8954

−0.2898 + 0.3381i

)
, |χ−

12〉 =
(−0.2898 − 0.3381i

−0.8954

)
,

|μ+
12〉 =

(
0.9685

−0.0762 − 0.2372i

)
, |μ−

12〉 =
(−0.0762 + 0.2372i

−0.9685

)
,

|ω+
12〉 =

(
0.6135

0.5387 + 0.5774i

)
, |ω−

12〉 =
(

0.5387 − 0.5774i
−0.6135

)
.

The basis vector corresponding to L13 is

|χ+
13〉 =

(
0.5708

0.1661 + 0.8041i

)
, |χ−

13〉 =
(

0.1661 − 0.8041i
−0.5708

)
,

|μ+
13〉 =

( −0.9321
0.1807 + 0.3141i

)
, |μ−

13〉 =
(

0.1807 − 0.3141i
0.9321

)
,

|ω+
13〉 =

(
0.5076

0.5351 + 0.6753i

)
, |ω−

13〉 =
(

0.5351 − 0.6753i
−0.5076

)
.
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Finally, we introduce the specific form of quantum state set S4:

|1〉 = (0.4418 + 0.3212i)|HH〉 + (0.3314 + 0.1857i)|HV 〉 + (−0.4274 − 0.4393i)|V H〉 + (−0.3311 − 0.2685i)|VV 〉,
|2〉 = (−0.2979 − 0.3049i)|HH〉 + (0.4769 + 0.3849i)|HV 〉 + (−0.2156 − 0.3128i)|V H〉 + (0.3607 + 0.4102i)|VV 〉,
|3〉 = (−0.0545 − 0.4274i)|HH〉 + (−0.4533 − 0.3738i)|HV 〉 + (−0.3053 − 0.5610i)|V H〉 + (0.1483 − 0.1981i)|VV 〉,
|4〉 = (0.4394 + 0.3759i)|HH〉 + (−0.3601 + 0.0721i)|HV 〉 + (−0.2584 + 0.0731i)|V H〉 + (0.5663 + 0.3715i)|VV 〉.

Two LOCC operations, L14 and L15, can be applied to distinguish states in S4. The operation L14 determines if the quantum
state is |1〉 or not, while L15 can eliminate one possible state between candidate pair |3〉 and |4〉. The specific forms of the
basis vectors corresponding to L14 and L15 are as follows.

The basis vector corresponding to L14 is

|χ+
14〉 =

(−0.4236 + 0.5130i
0.5661 − 0.4866i

)
, |χ−

14〉 =
(

0.5661 + 0.4866i
0.4236 + 0.5130i

)
,

|μ+
14〉 =

(−0.5578 − 0.6023i
−0.4345 − 0.3704i

)
, |μ−

14〉 =
(−0.4345 + 0.3704i

0.5578 − 0.6023i

)
.

The basis vector corresponding to L15 is

|χ+
15〉 =

(
0.9968

−0.0658 + 0.0454i

)
, |χ−

15〉 =
(−0.0658 − 0.0454i

−0.9968

)
,

|μ+
15〉 =

(
0.5373

0.6162 − 0.5758i

)
, |μ−

15〉 =
(

0.6162 + 0.5758i
−0.5373

)
,

|ω+
15〉 =

(
0.9478

0.1788 + 0.2639i

)
, |ω−

15〉 =
(

0.1788 − 0.2639i
−0.9478

)
.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[2] R. Gallego, L. Erik Würflinger, A. Acín, and M. Navascués,
Operational Framework for Nonlocality, Phys. Rev. Lett. 109,
070401 (2012).

[3] L. Z. Li, S. G. Zheng, H. Z. Situ, and D. W. Qiu, Capability
of local operations and classical communication to distinguish
bipartite unitary operations, Phys. Rev. A 96, 052327 (2017).

[4] J. Bae, Discrimination of two-qubit unitaries via local opera-
tions and classical communication, Sci. Rep. 5, 18270 (2015).

[5] Z.-C. Zhang, K.-Q. Feng, F. Gao, and Q.-Y. Wen, Distinguish-
ing maximally entangled states by one-way local operations and
classical communication, Phys. Rev. A 91, 012329 (2015).

[6] S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen, Distin-
guishability of Bell States, Phys. Rev. Lett. 87, 277902 (2001).

[7] J. Walgate and L. Hardy, Nonlocality, Asymmetry, and Distin-
guishing Bipartite States, Phys. Rev. Lett. 89, 147901 (2002).

[8] S. Bandyopadhyay, More Nonlocality with Less Purity, Phys.
Rev. Lett. 106, 210402 (2011).

[9] J. Walgate, A. J. Short, L. Hardy, and V. Vedral. Local Distin-
guishability of Multipartite Orthogonal Quantum States, Phys.
Rev. Lett. 85, 4972 (2000).

[10] M. Banik, T. Guha, M. Alimuddin, G. Kar, S. Halder, and
S. S. Bhattacharya, Multicopy Adaptive Local Discrimination:
Strongest Possible Two-Qubit Nonlocal Bases, Phys. Rev. Lett.
126, 210505 (2021).

[11] M. A. Nielsen and I. L. Chuang, Quantum Information and
Quantum Computation (Cambridge University, Cambridge,
England, 2002).

[12] We have prepared a total of 16 different two-qubit quantum
states in the experiment, with their fidelities ranging from
0.9529 ± 0.0024 to 0.9855 ± 0.0026.

[13] For the sake of experimental convenience, we have employed
the method described in Liang et al. [16] and Lim et al. [14]
to implement one-way LOCC equivalently. This approach in-
volves simultaneous projection measurements on two photons.
Photon a is measured in the basis of |χ+

1 〉 and |χ−
1 〉, while

photon b has two sets of measurement bases: |μ+
1 〉 and |μ−

1 〉, as
well as |ω+

1 〉 and |ω−
1 〉. Subsequently, based on the obtained re-

sults, we reconstruct the same measurement outcomes as those
achieved by LOCC.

[14] H. T. Lim, Y. S. Kim, Y. S. Ra, J. Bae, and Y. H. Kim, Ex-
perimental Realization of an Approximate Partial Transpose
for Photonic Two-Qubit Systems, Phys. Rev. Lett. 107, 160401
(2011).

[15] R.-D. He, K.-D. Wu, G.-Y. Xiang, C.-F. Li, and G.-
C. Guo, Experimental quantification of dynamical coher-
ence via entangling two qubits, Opt. Express 30(7), 10346
(2022).

[16] A. Laing, T. Rudolph, and Jeremy L. O’Brien, Experimental
Quantum Process Discrimination, Phys. Rev. Lett. 102, 160502
(2009).

032215-8

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.109.070401
https://doi.org/10.1103/PhysRevA.96.052327
https://doi.org/10.1038/srep18270
https://doi.org/10.1103/PhysRevA.91.012329
https://doi.org/10.1103/PhysRevLett.87.277902
https://doi.org/10.1103/PhysRevLett.89.147901
https://doi.org/10.1103/PhysRevLett.106.210402
https://doi.org/10.1103/PhysRevLett.85.4972
https://doi.org/10.1103/PhysRevLett.126.210505
https://doi.org/10.1103/PhysRevLett.107.160401
https://doi.org/10.1364/OE.453504
https://doi.org/10.1103/PhysRevLett.102.160502

