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Effect of quantum jumps on non-Hermitian systems
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One possible realization of non-Hermitian systems is based on open quantum systems by omitting quantum
jumping terms in the master equation. This is a good approximation at short times where the effects of quantum
jumps can be ignored. However, the jumps can affect the long-time dynamics of the system, motivating us to
take the jumps into account in these studies. In this paper, by treating the quantum jumps as perturbations,
we examine the effect of the quantum jumps on the non-Hermitian system. For this purpose, we first derive
an effective Hamiltonian to describe the dynamics of the open quantum system based on the master equation,
then expand the eigenstates and eigenenergies up to the first and second order in the quantum jumps. Finally,
we apply our theory to a dissipative two-level system and dissipative fermionic superfluids. The effect of the
quantum jump on the dynamics and the nonequilibrium phase transition is demonstrated and discussed.
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I. INTRODUCTION

In recent years, non-Hermitian (NH) systems [1] have at-
tracted much attention [2] from both sides of theoretical and
experimental studies. Without the restriction of Hermiticity,
non-Hermitian Hamiltonians have been applied to reexamine
well-known quantum systems ranging from single-particle
to many-body systems [3–7]. Interesting features and novel
observations are found, including phase transitions [8], ex-
ceptional points (EPs) [9–12], quantum skin effect [13–15],
non-Bloch bulk-boundary correspondence [5,16], unidirec-
tional zero reflection [17,18], and so on.

Non-Hermitian systems differ from their Hermitian coun-
terparts in many aspects, such as the nonconservation of
probability, complex-valued eigenenergies, and biorthonor-
mal eigenstates [19]. In order to obtain an effective NH
Hamiltonian, many works suggest using open quantum sys-
tem [3,4,6,7,20,21] by neglecting quantum jumps, adding
reciprocal terms into Hermitian systems [5,14,22], or using
parametric-amplifier type interactions [23]. Among them, the
most popular scheme is the open system approach, which ne-
glects the quantum jumps in the Lindblad master equation and
is valid at the short-time limit defined by the loss rate 1/γ

[3,7,20,24]. It is worth addressing that the validity of ignoring
the jumps also depends on initial states of the dynamics.

The quantum jumps are associated with the terms in the
quantum master equation that act on both left and right sides
of the density matrix. From the viewpoint of measurement,
the environment can be treated as a device which continuously
measures the system and the quantum jumps cause an abrupt
change in the state of the system. According to the quantum
trajectory theory, the quantum jumps are the terms respon-
sible for the abrupt stochastic change of the wave function.
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The quantum jumps can also result in different properties of
the EPs. In fact, for Lindbladians with and without quantum
jumps [25,26], the EPs can be remarkably different. Con-
nections between the two types of EPs are established by
introducing a hybrid-Liouvillian superoperator, where “hy-
brid” denotes Liouvillians with different strengths of jumping
terms, which are capable of describing the passage from a
non-Hermitian Hamiltonian to a true Liouvillian including
quantum jumps [27].

Generally speaking, an analytical solution to the master
equation is difficult to obtain due to the huge size of the
Hilbert space. Several stochastic approaches, for instance,
Monte Carlo [28,29] and quantum trajectory [30], are put for-
ward. These approaches apply randomness and statistical laws
to simulate the occurrence of quantum jumps, which reduce
the complexity from H2

N to HN with HN being the size of the
Hilbert space of the Hamiltonian. However, their numerical
simulations are time consuming and lack analytical results.
To this extent, the non-Hermitian Hamiltonian is a convenient
approach to describe open systems. However, dropping the
quantum jump terms might lead to a wrong result. Therefore,
the examination on the validity of neglecting the quantum
jump terms is an urgent task.

In this paper, by using the effective Hamiltonian ap-
proach [31], we propose a method to approximately solve
the master equation. The effective Hamiltonian approach can
transform the Lindblad master equation into a Schrödinger-
like equation with an effective Hamiltonian, which describes
the dynamics of a composite system consisting of the system
and an auxiliary system. Thus the dynamics governed by the
master equation is transformed into an evolution of a pure
state governed by the effective Hamiltonian, and the pure
state can be mapped back to the density matrix of the system.
Here we develop the mapping rule with a biorthonormal basis.
By combining the effective Hamiltonian approach with NH-
perturbation theory [32,33], we formally derive a higher-order
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approximate solution to the master equation, and illustrate our
theory with examples.

This paper is organized as follows. In Sec. II, we introduce
the effective NH Hamiltonian approach and combine it with
the perturbation theory to derive a solution for the density
operator. We first assume that the quantum jump terms in the
master equation are negligible, then treat these terms as pertur-
bations. In Secs. III and IV we apply our method to a two-level
system with decoherence and a dissipative Bardeen-Cooper-
Schrieffer (BCS) system [34]. We calculate the approximate
density operator, energy, and the fidelity of the initial state
by the present theory. The results are discussed and the effect
of quantum jumps on the BCS state is analyzed. Finally, we
conclude in Sec. V.

II. FORMALISM

The Markov master equation (ME) is one of the most
fundamental descriptions for open systems in quantum theory
[35], which was derived with the weak-coupling assump-
tion and the Markov approximation. The master equation is
valid in many circumstances, and the solution to the equa-
tion obeys the basic rules of quantum mechanics such as
trace preserving, complete positivity, and Hermiticity. This
is the reason why a wide range of applications has been de-
veloped in various fields including quantum state preparation
[36], excitation transfer in light-harvesting systems, quantum
measurement [37], and quantum computation [38]. Due to the
complexity of the master equation, many methods have been
introduced to approximately solve the equation. For example,
in Ref. [39] the authors developed a short-time perturbative
expansion method, and Ref. [40] presented a perturbation
theory by treating the small loss as the perturbation. Reference
[41] decomposes the Liouvillian superoperator into two parts,
treating part of the dissipators as the dominant contribution
to the system, while the other parts of the dissipators were
treated as perturbations. Based on this, Ref. [42] considered
a practical model of damping Jaynes-Cumming lattices, in
which the interaction between the resonator mode and the
qubit was viewed as a perturbation. Reference [43] introduced
a perturbation theory for a time-dependent Lindbladian mas-
ter equation with the help of Dyson expansions and linear
response theory.

In the following, we will develop an approach to solve
the master equation based on the perturbation theory for non-
Hermitian systems; the difference is that the jumping terms in
the master equation are treated as the perturbation terms. Let
us start with the master equation in the Lindblad form [35,44]

ρ̇ =−i[H0, ρ]+
∑

m

κm

2
(2FmρF †

m −F †
m Fmρ−ρF †

m Fm), (1)

where H0 is the free Hamiltonian of the system, κm is the
decay rate for the mth decay channel, and Fm stands for
the eigenoperator of the system, usually named as Lindblad
operators. The reduced density matrix ρ remains completely
positive and trace preserving [45]. However, these break
down when the jumping terms are neglected and an effective
non-Hermitian Hamiltonian H = H0 − i/2

∑
m κmF †

m Fm is ob-
tained to describe the system. Suppose H is diagonalizable

and the eigenvectors satisfy

H |rn〉 = En|rn〉, H†|ln〉 = E∗
n |ln〉, (2)

where |rn〉 and |ln〉 are the right and left eigenvectors of H .
As the system is diagonalizable or nondefective, we can fol-
low the biorthonormal relation 〈lm|rn〉 = δmn, as well as the
completeness relation [19]∑

n

|rn〉〈ln| =
∑

n

|ln〉〈rn| = I. (3)

Since the biorthonormal eigenvectors are also complete
[19], we can use them to expand the density matrix. Following
Ref. [31], we can obtain an effective Hamiltonian as long as
the mapping between the composite system and the density
operator is specified. Here we generalize this theory taking
a different set of eigenstates as the basis. The details of the
generalization can be found in Appendix A. We should note
that once the relation is established the effective Hamiltonian
is unique:

H̃ = H − HA∗ + i
∑

m

κmFmF A∗
m , (4)

where the superscript A denotes the auxiliary system, whose
matrix representation satisfies

〈rm|O†|ln〉 = (A〈Ln|OA|Rm〉A)∗. (5)

Under the mapping rules, the density operator matrix ele-
ment is now defined as ρmn = 〈lm|ρ|ln〉 and the Schrödinger-
like state |ψρ〉 reads

|ψρ〉 =
N∑
mn

ρmn|rm〉|Rn〉A∗ → ρ =
∑
mn

ρmn|rm〉〈rn|, (6)

where the element of ρ is defined in basis {|rn〉} as ρmn =
〈lm|ρ|ln〉, which is slightly different from the earlier definition
ρmn = 〈lm|ρ|rn〉 [19]. The trace of the density matrix shall
be taken as Tr(ρ) = ∑

n〈ln|ρ|rn〉, and the average values of
a physical observable O could thus be calculated as 〈O〉 =
Tr(ρO) = ∑

n〈ln|ρO|rn〉. Both expansions are feasible, but
the matrix representation is slightly different. Actually, the
right and left eigenvectors can be connected via an invertible
matrix A, i.e., [46]

|rm〉 = A|m〉, |lm〉 = (A−1)†|m〉, (7)

where {|m〉} is a set of complete orthonormal bases (see Ap-
pendix B for more details).

The effective Hamiltonian H̃ in Eq. (4) can be regarded
as a composite system, whose Hilbert space is hence en-
larged from N to N2, and the jumping terms in the master
equation now describe the coupling between the system and
the ancilla (see Appendix A). When κm is small, the interac-
tion term Ṽ = i

∑
m κmFmF A

m can be treated as a perturbation.
Following the perturbation theory [33] for non-Hermitian sys-
tems [47–49], we find the first-order correction to the nth
energy and first-order correction to the nth eigenvector:

e(1)
n = 〈

ψ̃ (0)
n

∣∣Ṽ ∣∣ψ (0)
n

〉
,∣∣ψ (1)

n

〉 =
∑
k �=n

〈
ψ̃

(0)
k

∣∣Ṽ ∣∣ψ (0)
n

〉
e(0)

n − e(0)
k

∣∣ψ (0)
k

〉
, (8)
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where {|ψ (0)
n 〉} and {|ψ̃ (0)

n 〉} are the right and left eigenvectors
of the effective Hamiltonian without interaction terms, corre-
sponding to eigenenergy e(0)

n . Apparently the eigenvectors are
actually a direct product of the basis of the two systems. The
corresponding e(0)

n is also easy to calculate, because the two
subsystems are independent of each other.

Now we are in a position to discuss the dynamics of the
open quantum system. By using Eq. (A4) we can obtain the
state |ψρ (t )〉 at time t with an initial state |ψρ (0)〉 (given
by the corresponding initial density matrix). Straightforward
calculations show that

|ψρ (t )〉 = e−iH̃t |ψρ (0)〉 = e−iH̃t
∑

n

|ψn〉〈ψ̃n|ψρ (0)〉

=
∑

n

e−ient |ψn〉〈ψ̃n|ψρ (0)〉, (9)

leading to the state of the system at time t :

ρ(t ) =
∑

n

e−ient 〈ψ̃n|ψρ (0)〉ρn, (10)

where {|ψn〉} and {|ψ̃n〉} are the exact right and left eigen-
vectors of H̃ with corresponding eigenvalue en. |ψn〉 can be
expanded by the complete basis vector {|ri〉|Rj〉A∗} and ρn

can be obtained by the mapping role in Eq. (6). Namely,
|ψn〉 = ∑

i j di j |ri〉|Rj〉A∗ → ρn = ∑
i j di j |ri〉〈r j |.

From this decomposition, we can find the decay feature of
the system [25], since it relates closely to the eigenvalues of
the effective Hamiltonian H̃ . In other words, the eigenenergies
characterize the decay rates of different eigenstates. H̃ has one
zero eigenenergy in general, which corresponds to the steady
state of the master equation. As time evolves, the coefficient
e−ient is vanishing for en �= 0, and the system reaches its steady
state in the long-time limit. Also, when en �= 0, we must have
Tr(ρn) = 0, whereas Tr(ρn) = 1 when en = 0. This property
protects the density operator to preserve its trace.

As aforementioned, most of the earlier studies focus on
the differences between the spectra of the Liouvillian with
and without quantum jumps. Here we shall emphasize that
both the eigenenergies and eigenvectors are important for the
dynamics. Take the model in Ref. [22] as an example, where
the authors proposed an implementation scheme in optical lat-
tices for the asymmetric hopping Hatano-Helson model. The
free Hamiltonian can be written as H0 = −J

∑
j (c

†
j+1c j +

c†
j c j+1), where J is the hopping strength of the lattice and

c j stands for the fermion annihilation operator at site j.
When the lattice suffers from the collective one-body loss,
the dynamics is described by a master equation with a Lind-
blad operator F = c j − ic j+1 with loss rate κ . Postselection
is used to guarantee that there are no quantum jumps at
any time and the system conserves particle numbers. After
neglecting the overall loss, we obtain an effective Hamil-
tonian H = ∑

j (JRc†
j+1c j + JLc†

j c j+1) with the asymmetric
hopping strengths JR = −J + κ/2, JL = −J − κ/2. By exact
diagonalization [50], we numerically solve the Liouvillian
spectrum of the system in both cases with and without quan-
tum jumps which are illustrated respectively. Here, both the
open boundary condition [Fig. 1(a)] and period boundary
condition [Fig. 1(b)] are considered. From the figures, we find
that the quantum jumps have no effect on the spectrum of the
Liouvillians. In other words, the Liouvillians with and without

-2.0 -1.5 -1.0 -0.5 0
-4

-2

0

2

4
(a) without jump

with jump

-4 -3 -2 -1 0
-4

-2

0

2

4
(b) without jump

with jump

FIG. 1. The Liouvillian spectrum of the Hatano-Nelson model
for (a) the open boundary condition and (b) the periodic boundary
condition. The red circles represent the Liouvillian without jumps,
while the black dots are for the full Liouvillian. We find that they
are perfectly overlapping. Although our numerical calculation is
restricted to having two particles at most, the observation holds for
more particles. In both figures, the parameters are chosen as J/κ = 1,
and the number of lattice sites is n = 10.

quantum jumps have the same spectrum. Mathematically, this
can be understood as that the quantum jumps contribute only
to the block-upper-triangular elements, while the Liouvillian
without quantum jumps is of block-diagonal form [51–53].

Despite the two Liouvillians holding the same spectrum,
the dynamics governed by them are totally different. To be
specific, in Fig. 2 we show the average particle number N as
a function of time t with initial state c†

1c†
2|0〉, where |0〉 is the

vacuum state of the fermion. The blue dash-dotted line and
red line in the figure are plotted for the system governed by
Liouvillians with and without quantum jumps, respectively.
It is obvious that the NH Hamiltonian commutes with the
particle number [H, N] = 0, so that the particle number is
conserved. On the other side, the particle number decreases
with time due to the quantum jumps. From these observations,
we find that the same Liouvillian spectrum might lead to
different dynamics because the eigenstates of the Liouvillians
are different. In the other words, start from an initial state ρ(0)
and evolve under a non-Hermitian Hamiltonian Heff , and after
a tiny time interval δt the density matrix ρ(δt ) becomes

ρ(δt ) = e−iHeff δtρ(0)eiH†
eff δt

Tr[e−iHeff δtρ(0)eiH†
eff δt ]

. (11)

Clearly, the eigenenergies and eigenvectors together deter-
mine the evolution of the system.

0 5 10 15
0

0.5

1.0

1.5

2.0

FIG. 2. The average particle number N as a function of time. The
blue dash-dotted line and red solid line stand for the Liouvillians with
and without quantum jumps.
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Note that we can also employ the perturbation expansion
Eq. (10) to calculate ρ(δt ) and a normalization is necessary
because ρn in Eq. (10) is not traceless in the present perturba-
tion theory.

Before closing this section, we would like to point out that
our scheme is different from approximations in the literature
on the following points. The first point is that we only treat
the jumping terms as perturbations—this means that with-
out perturbations the system is governed by a non-Hermitian
Hamiltonian, and we focus on whether some of the results
and phenomena in the various existing references are sustain-
able over time. And the second is that the definition of the
zeroth-order steady state may not be so intuitive, because the
zeroth-order equation in general does not satisfy −i(Hρ0 −
ρ0H†) = 0, where ρ0 = |r〉〈l| and {|r〉}, {|l〉} is a set of right
and left eigenvectors of the effective non-Hermitian Hamil-
tonian H . In our scheme the perturbation of the energy and
eigenvectors of the Hamiltonian in Eq. (4) is actually used for
the building of an evolution equation, as shown in Eq. (10).

III. APPLICATION 1: TWO-LEVEL SYSTEM

In this section, we illustrate our theory with a dissipa-
tive two-level atom. We consider three decoherence channels,
including the bit-flip and phase-flip channels, and their deco-
herence rates are γp, γx, and γz, respectively. The dynamics of
the system can be described by the following master equation:

ρ̇ = −i(Hρ − ρH†) + γpσ+ρσ− + γxσxρσx + γzσzρσz,

(12)

with H = ω
2 σz − i γp

2 σ+σ− − i γx

2 σ 2
x − i γz

2 σ 2
z , where

σx, σy, and σz are Pauli matrices, and σ± = (σx ± iσy)/2
are the rising and lowering operators.

Based on the effective Hamiltonian approach, we introduce
an ancillary two-level system with σ A denoting its Pauli ma-
trix, with the basis spanned by the eigenvectors of σz and σ A

z ,
with spin-up state |0〉 for the system and |0〉A for the ancilla,
while the spin-down states are |1〉 and |1〉A. We can first write
out the matrix representation of H :

H =
[

ω
2 − i γp

2 − i γx

2 − i γz

2 0

0 −ω
2 − i γx

2 − i γz

2

]
, (13)

where the order of the basis is {|0〉, |1〉} and they diagonalize
the Hamiltonian H . Apparently, A〈0|HA|0〉A = (〈0|H†|0〉)∗ =
ω
2 − i γp

2 − i γx

2 − i γz

2 , A〈0|HA|1〉A = (〈1|H†|0〉)∗=A〈1|HA|0〉A

= (〈0|H†|1〉)∗ = 0, and A〈1|HA|1〉A = (〈1|H†|1〉)∗ = −ω
2 −

i γx

2 − i γz

2 . Thus HA∗ takes

HA∗ =
[

ω
2 + i γp

2 + i γx

2 + i γz

2 0

0 −ω
2 + i γx

2 + i γz

2

]
, (14)

under its basis {|0〉A, |1〉A}.
With the above consideration, we can obtain the matrix rep-

resentation of the free Hamiltonian of the composite system
H − HA∗, which will be treated as the zeroth-order Hamilto-
nian:

H − HA∗ =

⎡⎢⎢⎢⎢⎣
−i(γp + γx + γz ) 0 0 0

0 ω − i
( γp

2 + γx + γz
)

0 0

0 0 −ω − i
( γp

2 + γx + γz
)

0

0 0 0 −i(γx + γz )

⎤⎥⎥⎥⎥⎦,

and the order of the basis is {|0〉|0〉A, |0〉|1〉A, |1〉|0〉A, |1〉|1〉A}.
Similarly, the quantum jumps, i.e., the third terms in Eq. (4),
which describe the coupling between the two systems, read⎡⎢⎢⎢⎣

iγz 0 0 iγx

0 −iγz iγx 0

0 iγx −iγz 0

iγp + iγx 0 0 iγz

⎤⎥⎥⎥⎦,

and we will treat this coupling as a perturbation. By the per-
turbation theory given in Eq. (8), the first- and second-order
corrections to the eigenenergies and the right eigenvectors can
be given by

E (0)
1 = −i(γp + γx + γz ), E (0)

2 = ω − i

(
γp

2
+ γx + γz

)
,

E (0)
3 = −ω − i

(
γp

2
+ γx + γz

)
, E (0)

4 = −i(γx + γz ),

E (1)
1 = iγz, E (1)

2 = −iγz, E (1)
3 = −iγz, E (1)

4 = iγz,

E (2)
1 = −iγx(γp + γx )

γp
, E (2)

2 = − γ 2
x

2ω
,

E (2)
3 = γ 2

x

2ω
, E (2)

4 = iγx(γp + γx )

γp
,

∣∣ψ (1)
1

〉 = − (γp + γx )

γp

∣∣ψ (0)
4

〉
,

∣∣ψ (1)
2

〉 = iγx

2ω

∣∣ψ (0)
3

〉
,

∣∣ψ (1)
3

〉 = − iγx

2ω

∣∣ψ (0)
2

〉
,

∣∣ψ (1)
4

〉 = γx

γp

∣∣ψ (0)
1

〉
,∣∣ψ (2)

1

〉 = ∣∣ψ (2)
2

〉 = ∣∣ψ (2)
3

〉 = ∣∣ψ (2)
4

〉 = 0. (15)

To show the validity of the perturbation theory, we present
in Fig. 3 the comparison between the numerical results given
by ME, NH, and the perturbation theory. We find that the NH
approximation is close to the numerical result in the short-
time limit, but it gradually deviates and finally reaches its
steady state, which is totally different from the steady state
of the master equation. The results given by the perturbation
theory are in good agreement with those given by the master
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ME
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FIG. 3. The average of σz at different times t . The results are
given by the master equation without any approximation (Per, black
dashed line), by the non-Hermitian Hamiltonian (NH, green dash-
dotted line), and by the perturbation theory (ME, red solid line). The
parameters chosen are γp = 0.1ω, γx = 0.01ω, γz = 0.5ω.

equation (or the Liouvillian). Thus we can claim that the
perturbation theory based on the non-Hermitian Hamiltonian
might be a good method to deal with non-Hermitian systems.
Of course this example is easy to solve exactly as the Hilbert
space is small. In the next section, we will present a many-
body system to exemplify the perturbation theory.

IV. APPLICATION 2: EFFECT OF QUANTUM JUMPS
ON THE NON-HERMITIAN BCS STATES

In recent years, open many-body systems have become
active in various fields from quantum optics to condensed mat-
ter. However the master equation of many-body open systems
is difficult to solve [5,54]. Here we apply our perturbation
theory to such systems, taking the NH BCS model as an
example [20].

Due to inelastic collisions, the atoms in the BCS system
suffer from two-body loss and atoms will leave the system
with time; such a system can be described by an effective
Markovian master equation [24]. In the case that the quantum
jumps could be neglected, the earlier study [20] showed that
when the interaction strength is not so strong, the superfluid
suffers a breakdown and restoration transition occurs as the
dissipation increases, whereas in the strong-dissipation limit
the superfluid phase would never be broken. This gives rise
to a question: what happens if the quantum jumps cannot be
neglected?

To answer this question concretely, we consider the one-
dimensional model in Ref. [20]. Here HS = ∑

kσ ξkc†
kσ

ckσ

describes the free Hamiltonian of the lattice, where ξk =
εk − μ, εk stands for the energy dispersion and μ is
the chemical potential. The interaction Hamiltonian HI =
−U0

∑
i c†

i↑c†
i↓ci↓ci↑ (take h̄ = 1). ciσ (ckσ ) denote the anni-

hilation operators of a spin-σ ∈ {↑,↓} fermion at site i (with
momentum k). Consider that the system undergoes inelastic
collisions; the dynamics of the system is governed by

ρ̇ = −i(Heffρ − ρH†
eff ) + κ

∑
i

LiρL†
i , (16)

where κ is the loss rate and Li = ci↓ci↑, and Heff =∑
kσ ξkc†

kσ
ckσ − ∑

kk′ U1/Nc†
k↑c†

−k↓c−k′↓ck′↑. Here N is the

number of lattice sites and U1 = U0 + iκ/2 is the complex
interaction strength.

In order to diagonalize the Hamiltonian, the mean-field
(MF) approximation is applied [20], where the quasiparticles
obey neither Fermi nor Bose statistics, since a NH Hamil-
tonian cannot be diagonalized by unitary transformations.
Under the MF approximation, Hamiltonian Heff reduces to

HMF =
∑

k

Ek(γ̄k↑γk↑ + γ̄−k↓γ−k↓) −
∑

k

Ek, (17)

with Ek =
√

ξ 2
k + �2

0 , where �0 = −U1/N
∑

k〈c−k↓ck↑〉 is
the order parameter (gap function) of the superfluid. In the
β → 0 limit, the order parameter can be established with the
NH path-integral approach [20] or self-consistency method
[55], which is given by the NH gap equation

N

U1
=

∑
k

1

2
√

ξ 2
k + �2

0

, (18)

when �0 takes zero; such phase is denoted as a “normal state,”
where the gap equation has only a trivial solution. For most
cases �0 is a complex number.

The quasiparticle operators in Eq. (17) can be written as

γ̄k↑ = ukc†
k↑ − vkc−k↓, γ̄−k↓ = vkck↑ + ukc†

−k↓, (19)

γk↑ = ukck↑ − vkc†
−k↓, γ−k↓ = vkc†

k↑ + ukc−k↓, (20)

with uk =
√

Ek+ξk
2Ek

, vk =
√

Ek−ξk
2Ek

. In the above derivation, the

symmetry H∗
MF = H†

MF has been used, which could be found
from the matrix representation in terms of Fock states. In fact,
under such representation, the non-Hermiticity of the system
is attributed to the complex diagonal elements, which implies
that the left eigenvector |Ln〉 of the Hamiltonian is exactly the
complex conjugation of the right one |Rn〉 [20].

In the following discussion, we will focus on the ground
state of the system. To clarify the discussion, we write down
the right and left ground state:

|r0〉 = |BCS〉R =
∏

k

(uk + vkc†
k↑c†

−k↓)|0〉,

|l0〉 = |BCS〉L =
∏

k

(u∗
k + v∗

kc†
k↑c†

−k↓)|0〉, (21)

where |0〉 is the vacuum state of the fermions. It is easy
to find that H γ̄kσ |BCS〉R = Ekγ̄kσ |BCS〉R, H†γ

†
kσ

|BCS〉L =
E∗

k γ
†
kσ

|BCS〉L. Here H is Hamiltonian HMF except the con-
stant −∑

k Ek is neglected. In this way, all left and right
eigenvectors {|ln〉}, {|rn〉} of the effective Hamiltonian H can
be constructed.

In the Hermitian case, the superfluidity of the system arises
from the nonzero gap function, since the energy spectrum will
always have a gap in order to excite quasiparticles, even if
ξk takes zero [55]. However, for NH systems, such defined
superfluid may be metastable, distinguished by the sign of the
real part of the condensation energy Ec:

Ec = N

U1
�2

0 −
∑

k

(√
ξ 2

k + �2
0 − |ξk|

)
, (22)
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FIG. 4. Numerical solution of (a, c) nonzero superfluid gap �0

and (b, d) condensation energy Ec, calculated by Eqs. (18) and (22),
respectively, as a function that changes with loss rate κ . Parame-
ters are chosen as (a, b) N = 10, κ = 0.1J , U0/J = 1.8 and (c, d)
U0/J = 2. The former system is metastable at most parameters, with
stable superfluidity only in the weak dissipation limit. The latter one
is always stable for strong attractive interaction U0.

where in fact Ec represents the difference in the ground-state
energy between the superfluid and normal states. For positive
Re(Ec), the system is metastable, while a negative Re(Ec)
leads to a stable superfluid solution [20]. Figures 4(a)–4(d)
show real and imaginary parts of the gap function �0 and the
condensation energy Ec when U1 = 1.8J and 2J , respectively.
Apparently, the NH gap equations have nontrivial solutions;
for small U0, the system is stable only at the small dissipation
limit. As attractive interaction strength U0 gets stronger, the
system remains stable.

In order to analyze the jump involved circumstance,
suppose the system is initially prepared in a NH steady state
ρ0, satisfying ρ̇0 = −i(Heffρ0 − ρ0H†

eff ) = 0 and Tr(ρ0) = 1.
Clearly we can choose ρ0 = N |r0〉〈r0| as an initial state that
meets the requirement [56]. Here N is the normalization
coefficient that satisfies Tr(ρ0) = ∑

n〈ln|ρ0|rn〉 = 1. Now

we apply the perturbation theory into the NH BCS system.
Consider that our system has only two-body loss; we then
restrict the Hilbert space enclosing at most two quasiparticles.
The corresponding eigenenergies are [the constant in Eq. (17)
is omitted] {0, 0 − 2E∗

k1
, 0 − 2E∗

k2
. . . , 2Ek1 − 0, 2Ek1 −

2E∗
k1

. . . , . . . , 2Ekn − 0, 2Ekn − 2E∗
k1

. . . , 2Ekn − 2E∗
k1

}. In
this Hilbert space, the matrix representation of the quantum
jumps Lk0 takes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk0vk0 0 · · · u2
k0

· · · 0

0 uk0vk0 · · · 0 · · · 0
...

...
. . .

... · · · 0

−v2
k0

0 · · · −uk0vk0 · · · 0
...

...
...

...
. . . 0

0 0 · · · 0 . . . uk0vk0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where the order of the basis is arranged as
{|r0〉, γ̄k1↑γ̄−k1↓|r0〉, . . . , γ̄kn↑γ̄−kn↓|r0〉}{〈l0|, 〈l0|γ †

−k1↓γ
†
k1↑,

. . . , 〈l0|γ †
−kn↓γ

†
kn↑}. Notice that the diagonal elements

with a minus sign result from the contribution of
γ̄k0↑γ̄−k0↓|r0〉, 〈l0|γ †

−k0↓γ
†
k0↑.

By the definition given in Eq. (4), the first two terms
H − HA∗ can be taken as the zeroth-order Hamiltonian and
the third term i

∑
m κmFmF A∗

m is the perturbation. Collecting
the results in Ref. [20], we find that the zeroth energy of the
ground state is

E (0)
0 = −2

∑
k

Im(Ek), (24)

and by the non-Hermitian perturbation theory the first-order
correction to the energy of the ground state is given by

E (1)
0 = −κ

∑
k

|uk|2|vk|2. (25)

Here we want to emphasize that the complex constant
eigenenergy of the system can be safely ignored, similar to
Hermitian systems in which constants cannot affect their dy-
namical features. This can be interpreted as a gauge shift H →
H + cI , where I is the identity operator and c is a complex c
number. In other words, the dynamics under H and H + cI is
the same [57]. By our theory, the first-order corrections to the
left and right ground states are (unnormalized)

∣∣r (1)
0

〉 =
∑

k

−iκukvkv
∗2
k

2E∗
k

|r0〉γ †
k↑γ

†
−k↓|l0〉 +

∑
k

iκu∗
kv

∗
kv

2
k

2Ek
γ̄k↑γ̄−k↓|r0〉|l0〉 −

∑
k

κ|vk|4
4Im(Ek)

γ̄k↑γ̄−k↓|r0〉γ †
k↑γ

†
−k↓|l0〉,

∣∣l (1)
0

〉 =
∑

k

−iκu∗
kv

∗
kv

2
k

2Ek
|l0〉γ̄k↑γ̄−k↓|r0〉 +

∑
k

iκu∗2
k ukvk

2E∗
k

γ
†
k↑γ

†
−k↓|l0〉|r0〉 −

∑
k

κ|vk|4
4Im(Ek)

γ
†
k↑γ

†
−k↓|l0〉γ̄k↑γ̄−k↓|r0〉. (26)

The normalization condition is |N0|2(〈l (0)
0 | + 〈l (1)

0 |)
(|r (0)

0 〉 + |r (1)
0 〉) = 1, where N0 is the normalization constant

of the right ground state. Simple algebra yields |N0|2 =
1/(

∑
k

κ2|uk|4|vk|4
4E∗2

k
+ ∑

k
κ2|uk|4|vk|4

4E2
k

+ ∑
k

κ2|uk|4|vk|4
16Im(Ek )2 + 1). The

first-order corrections to the other eigenvectors can be
computed in the same way. These eigenvectors form a new
biorthonormal and complete basis, and the whole dynamic
can be predicted by Eq. (10). The calculation is tedious
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FIG. 5. (a) The average energy Eaver = 〈HS〉 and (b) the fidelity
of the initial state governed by the perturbation method (blue solid
line), master equation (red circles), and non-Hermitian Hamiltonian
(green solid line), respectively. Here we take εk = −2J cos k, where
J is the hopping amplitude and the loss rate κ is set to be 0.1J
and μ = 0. The interaction strength is set to be U0 = 1.8J , and
the number of lattice sites N = 10. The order parameter �0/J =
0.0786 + 0.0777i [obtained by solving Eq. (18)], and the system is
assumed to stay in the superfluid state (metastable).

and expression is involved, so we do not present them
here.

In Fig. 5(a), we plot the average energy of the system
at time t . The results are given by first-order perturbation
(blue solid line) and by numerical simulations with the master
equation (red circles). For the purpose of comparison, the
results given by the non-Hermitian Hamiltonian (green solid
line) are also shown. We can find that the results given
by perturbation theory match well with that by the master
equation even for long-time evolution. The other interest-
ing observation is that the energy has a large degree of
deviation from the prediction based on the non-Hermitian
Hamiltonian. Recall that energy by non-Hermitian evolution
is always unchanged because the initial state (i.e., the ground
state) is a steady state of the system. This feature can be
understood by examining the fidelity of the ground state

F = |Tr(ρ0ρ)|/
√

Tr(ρ2
0 )Tr(ρ2) [58]. As shown in Fig. 5(b), at

Jt = 100 the system is almost all excited to the excited states,
resulting in a low fidelity between the initial states. This result
suggests that the quantum jumps play an important role in
this system, and the state |r0〉 is unstable under the effect of
quantum jumps.

From the other point of view, the non-Hermitian BCS
model does not conserve the number of fermions and thus the
Liouvillians without and with quantum jumps cannot be writ-
ten into a block-diagonal and block-upper-triangular form,
respectively. This leads to different spectra for the Liouvillians
with and without quantum jumps [51,52]. This observation is
quite different from that of the non-Hermitian Hatano-Nelson
model. From the viewpoint of the quasiparticle, the quasi-
particle number is conserved because [HMF,

∑
kσ γ̄kσ γkσ ] =

0. However, in the basis spanned by the quasiparticles, the
jumping terms

∑
k κc−k↓ck↑ still cannot be written as a

block-upper-triangular form, which is in agreement with the
aforementioned analysis.

In Fig. 6, we perform a comparison between the results of
the master equation and by the first-order perturbation with
different loss rate κ . We observe that the bigger the loss rate
is, the more intensity the excitation will be at the beginning.

0 0.05 0.10 0.15 0.20
-12.0

-11.0

-10.0

-9.0

av
er

FIG. 6. The average energy Eaver as a function of loss rate κ

at different times t . We calculate this energy by both the master
equation (solid lines) and the perturbation theory (dotted lines).
The purple solid line, red dashed line, blue dotted line, green
dash-dotted line, and cyan solid line are for different times Jt =
10, 20, 30, 40, 50, respectively. Parameter U0 = 1.8J and the number
of lattice sites is 10.

Moreover, even when κ is small, after a long time, the average
energy of the system suffers an abrupt change. As κ increase,
the whole dynamic is totally different from NH ones [the same
property as the green solid line in Fig. 5(a)].

Figures 7(a) and 7(b) show the time evolution of the
average energy with different system sizes. The results are
calculated with both the master equation and the perturbation
theory. The fact that the two results (one from the master
equation and another from the perturbation theory) match well
even for a system of large size suggests the validity of our
theory, which is also essential in many-body systems.

Finally, we consider the condensation energy Ec of the
effective model that changes with the interaction strength U0,
with a fixed loss rate κ = 0.1J , as shown in Fig. 8. As U0

increases from 1.8J [as in Fig. 4(b)] to 2J [as in Fig. 4(d)],
the real part of Ec crosses the zero point, which leads to
the transition of the superfluidity from the metastable (red
area) to the stable region (green area). A similar result is also
addressed in Ref. [20]. However, at Jt = 50, when quantum
jumps are introduced, there is no significant variation in the
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0
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FIG. 7. The time evolution of average energy Eaver for different
N . U0 = 1.8J and the loss rate κ = 0.05J were set for these plots.
(a) Results from the master equation. (b) Corresponding results from
the perturbation theory. The blue solid line, red dashed line, black
dash-dotted line, and cyan dotted line represent N = 10, 20, 30, 40,
respectively.
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FIG. 8. Left axis: Condensation energy Ec as a function of U0/J ,
κ/J = 0.1; as U0/J increases, the superfluid undergoes a phase tran-
sition, from metastable area (red) to stable area (green). Right axis:
Fidelity of the ground state at time Jt = 50; the red solid line rep-
resents ME simulation, while the red dots stand for the perturbation;
there is no significant difference in system dynamics.

fidelity F from the ground state. It illustrates that in the study
of NH systems, the presence of quantum jump events may
challenge certain properties of NH systems, which warrants
further investigation. Our proposed method can serve as a
solid foundation for such research and verification.

V. CONCLUSION

Based on the effective Hamiltonian approach, we devel-
oped a perturbation theory to study open quantum systems
governed by the Lindblad master equation. Treating the quan-
tum jumps as perturbations, we derived a set of corrections
up to the first and second order in the jumps to the eigenen-
ergies and corresponding eigenfunctions. This development
is not trivial since our perturbation theory is based on the
non-Hermitian Hamiltonian and then the basis of the Hilbert
space behaves differently from its Hermitian counterpart. We
applied our theory to two examples, a decoherence two-level
system and the non-Hermitian BCS model. The results show
that the present theory is in good agreement with the results
obtained by solving the master equation. Also, the present
theory saves computing time and in most cases analytical
expressions can be found. We believe that the present theory
opens a door to study the non-Hermitian physics and paves a
way to check the validity of the description of open systems
by non-Hermitian Hamiltonians.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN APPROACH

In this Appendix, we will introduce the effective Hamil-
tonian approach, which was proposed to exactly solve the
master equation of open quantum systems.

According to the master equation Eq. (1), the differential
equation of matrix element ρmn = 〈lm|ρ|ln〉 can be written as

iρ̇mn = 〈lm|(Hρ − ρH† + iκFρF †)|ln〉, (A1)

where H = H0 − iκ/2F †F is the effective non-Hermitian
Hamiltonian. Here for simplicity we assume that there is only
one Lindblad operator in the master equation Eq. (1).

We introduce an auxiliary system A (the ancilla, which is
the same as the system), and then extend the N-dimensional
Hilbert space to an N2-dimensional Hilbert space. The Hilbert
space of the composite system (the open quantum system plus
the ancilla) can be expanded by a set of biorthonormal bases
{|lm〉 ⊗ |Ln〉A∗, |rm〉 ⊗ |Rn〉A∗}, where |Rn〉A and |Ln〉A are the
right and left basis for the ancilla Hilbert space. At this time, a
density matrix ρ of the open quantum system can be mapped
into a pure bipartite state in N2-dimensional Hilbert space, i.e.,

|ψρ (t )〉 =
N∑
mn

ρmn(t )|rm〉|Rn〉A∗. (A2)

Taking the time derivative on the pure state |ψρ (t )〉 yields

i∂t |ψρ (t )〉=
N∑
mn

(〈lm|(Hρ − ρH† + iκFρF †)|ln〉)|rm〉|Rn〉A∗.

(A3)

For an arbitrary system operator O, we can define a
corresponding operator OA of the ancilla, which satisfies
〈rm|O†|ln〉 = (A〈Ln|OA|Rm〉A)∗. Inserting the complete rela-
tion Eq. (3) into Eq. (A3), it is not difficult to obtain∑

mn

〈lm|Hρ|ln〉|rm〉|Rn〉A∗ = H ⊗ IA|ψρ (t )〉,
∑
mn

〈lm|ρH†|ln〉|rm〉|Rn〉A∗ = I ⊗ (HA)∗|ψρ (t )〉,
∑
mn

〈lm|FρF †|ln〉|rm〉|Rn〉A∗ = F ⊗ (F A)∗|ψρ (t )〉.

Thus, the dynamical equation for the composite system can
be rewritten as

i∂t |ψρ (t )〉 = H̃ |ψρ (t )〉, (A4)

with the effective Hamiltonian H̃ = H ⊗ I − I ⊗ (HA)∗ +
iκF ⊗ (F A)∗. Therefore, the master equation is equivalent to
the evolution of a pure state of the composite system. The
jumping terms in the master equation describe the interactions
between the open quantum system and the ancilla. Further, if
we choose the basis of the ancilla with the same representa-
tion as the system, the effective Hamiltonian returns to the
Liouvillian superoperator (a −i factor is neglected) [25]:

H̃ =
(

H0 − iκF †F

2

)
⊗ I − I ⊗

(
HTR

0 + iκF TRF ∗

2

)
+ iκF ⊗ F ∗, (A5)

where TR denotes transpose operation.
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APPENDIX B: SHORT DERIVATION OF THE
EQUIVALENCE OF BIORTHOGONAL BASES

Consider an arbitrary non-Hermitian system with a diago-
nalizable and nondegenerate Hamiltonian HNH, whose right
and left biorthonormal bases are {|rn〉}, {|ln〉} and satisfy
biorthonormal relation 〈ln|rm〉 = δmn. In the following, we
divide our discussion into two cases, i.e., the real spectrum
and the complex spectrum [59].

Now we first prove that HNH with a real spectrum {En}
can be written as HNH = A−1HHA, where HH is a Hermitian
Hamiltonian and A is a nonunitary operator. According to the
completeness relation

∑
n |rn〉〈ln| = ∑

n |ln〉〈rn| = I , the left
eigenvector |ln〉 can be expressed as an expansion of the right
eigenvectors, i.e.,

|ln〉 =
∑

n′
Mnn′ |rn′ 〉, (B1)

taking a Hermitian conjugate operation on the above equa-
tion and acting |rn′ 〉 on the result from the right-hand side;
employing biorthonormal relation 〈ln|rm〉 = δmn yields

〈ln|rn′ 〉 =
∑

n′′
M∗

nn′′ 〈rn′′ |rn′ 〉 = δnn′ . (B2)

From Eq. (B2), it is easy to obtain M∗X = I , where Xmn =
〈rm|rn〉 and I is the identity matrix. Thus

(M−1)∗mn = 〈rm|rn〉, (B3)

(M−1)mn = 〈rn|rm〉. (B4)

Combing Eqs. (B3) and (B4), it is straightforward to find
that (M−1)∗nm = (M−1)mn always holds for arbitrary m, n. Re-
call the definition of the Hermitian matrix; M−1 is a Hermitian
matrix, which implies that M is Hermitian. In other words, the
left eigenvectors {|ln〉} can be obtained from the right eigen-
vectors {|rn〉} via a Hermitian transformation. Considering an
arbitrary set of complete orthonormal bases {|n〉}, we have
(M−1)mn = 〈rn|rm〉 = ∑

n′ 〈rn|n′〉〈n′|rm〉. By defining a matrix

A, whose matrix elements satisfy Amn = 〈n|rm〉, or 〈rm|n〉 =
(A)∗mn = (A†)nm, it is easy to prove that M−1 = (A∗AT )T and
thus

M = A†−1A−1, (B5)

and by using this definition we can determine the relationship
between the basis vectors, because

|m〉 =
∑

n

|ln〉〈rn|m〉 =
∑

n

(A†)mn|ln〉, (B6)

whose matrix form is written

|n〉 = A†|ln〉. (B7)

Apparently we will have |ln〉 = A†−1|n〉 and |rn〉 = A|n〉. As a
result, we obtain Eq. (7) from Eqs. (B5) and (B1). The proof
presented above is applicable to the complex spectrum HNH as
well, as it does not rely on the eigenvalues. Based on the char-
acteristic equations HNH|rn〉 = En|rn〉 and HNH|ln〉 = En|ln〉,
we can derive the following equations: A−1HNHA|n〉 = En|n〉
and A†H†

NHA†−1|n〉 = En|n〉. Take HH = A−1HNHA = H†
H ; it

can be proven that HNH becomes a Hermitian operator HH

under a nonunitary transformation, and vice versa.
Additionally, for a non-Hermitian HNH with a complex

energy spectrum {En}, we can always find two Hermitian
Hamiltonians H1 = H†

1 and H2 = H†
2 which satisfy HNH =

H1 + iH2. We still have two cases such as HNH1 : [H1, H2]=0
and HNH2 : [H1, H2] �=0. For the former situation, despite the
fact that the HNH is non-Hermitian, H1 and H2 share com-
mon orthonormal basis {|n〉}. For the latter case, it can be
proved that HNH2 is of an equivalence relation with HNH1.
According to Eq. (B5), we have |ln〉 = M|rn〉 and A†|ln〉 =
A−1|rn〉 = |n〉. {|n〉} is a set of orthonormal bases which relate
to a non-Hermitian Hamiltonian HNH1. Therefore, it yields
A−1HNH2A|n〉 = En|n〉 and A†H†

NH2A†−1|n〉 = E∗
n |n〉, which

indicates that HNH1 = A−1HNH2A and HNH2 are linked through
a nonunitary transformation.
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