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Complete positivity, positivity, and long-time asymptotic behavior
in a two-level open quantum system
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We study the concepts of complete positivity and positivity in a two-level open quantum system whose dy-
namics are governed by a time-local quantum master equation. We establish necessary and sufficient conditions
on the time-dependent relaxation rates to ensure complete positivity and positivity of the dynamical map. We
discuss their relations with the non-Markovian behavior of the open system. We also analyze the long-time
asymptotic behavior of the dynamics as a function of the rates. We show under which conditions on the rates the
system tends to an equilibrium state. Different examples illustrate this general study.
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I. INTRODUCTION

Perfect isolation of a quantum system from its environment
is not possible in realistic physical processes. The interaction
with the environment is generally detrimental and leads to a
loss of information and quantum correlations [1–4]. In some
cases, this property can be captured by modeling empirically
the dynamics of the system by a time-local master equation in
Redfield form. This differential equation is characterized by
different relaxation rates and frequency transitions which may
be time dependent. In this paper, we are not interested in the
derivation of such functions, and we assume, on the basis of
experimental data and knowledge of the dynamical systems,
that these functions exist and are sufficiently smooth [5–8].
The dynamical evolution of this open system must satisfy spe-
cific properties such as complete positivity (CP) and positivity
(P) to ensure that the state remains physically valid at any
time. Complete positivity is due to the assumption of factor-
ized initial conditions between the system and the bath [9–11],
while positivity is required for defining the density operator of
the reduced system. CP is also necessary to preserve the posi-
tivity of the dynamics when the system is entangled with other
quantum degrees of freedom. For constant relaxation rates,
the impact of these dynamical constraints has been studied
extensively for both two-level and larger quantum systems.
The relaxation parameters must fulfill different inequalities
which can be established [12] by putting the dynamical sys-
tem in the Gorrini-Kossakovski-Lindblad-Sudarshan (GKLS)
form [13,14]. In this case, the process represents a semigroup,
and a sufficient and necessary condition for CP is that all the
GKLS diagonal decay rates γi are positive. This property can
be extended to time-dependent rates when γi(t ) � 0, giving
a sufficient condition of CP. However, in many situations,
this description is too restrictive, and memory effects due
to the non-Markovian (NM) behavior of the dynamics have
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to be taken into account [15–17]. The non-Markovianity is
characterized by the negativity of at least one of the coef-
ficients γi during a given time interval. Note that a large
number of quantitative measures was proposed recently to
detect this property on the basis of specific experimental data
[18–33]. For NM phenomenological master equations, CP and
P may be violated; the dynamical map then loses its physical
meaning. In this case, there is no straightforward way to
verify CP and P when the relaxation rates are known. In this
paper, we propose to study this general problem in the case
of a two-level quantum system. We establish necessary and
sufficient conditions on the decay rates to ensure CP and P
of the dynamics. The positivity of the Choi matrix [21,34] is
used for CP, while a direct computation is performed for the
positivity property. Studies on the CP of time-local quantum
master equations were performed in [35,36], but for specific
NM dynamics. Works were also carried out for other repre-
sentations of the dynamical equation [37–41], such as time
nonlocal integro-differential equations. In this paper, we also
find families of systems in which CP and P are equivalent,
and we exhibit examples for which the dynamical map is only
positive. We discuss the link between CP and NM, and we
introduce a simple family of dynamical systems, the quasi-
Markovian ones, which are, by construction, CP but can be
Markovian or NM. Standard examples illustrate this general
study. As a by-product, we finally investigate the long-time
asymptotic behavior of the dynamics with respect to the decay
rates. We establish under which conditions on the rates the
system tends towards the equilibrium state. These different
results are interesting from an experimental point of view
because they give physical constraints to respect in the con-
struction of an empirical quantum master equation.

This paper is organized as follows. The model system is
presented in Sec. II with its dynamics in Redfield and GKLS
forms. The CP and P of the dynamical map are studied,
respectively, in Secs. III and IV. Necessary and sufficient
conditions on the relaxation rates are established to ensure
that such properties are satisfied. Quasi-Markovian systems
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are introduced in Sec. V. The long-time asymptotic behavior
of the dynamical system is described in Sec. VI. Differ-
ent examples are investigated in Sec. VII. Conclusions and
prospective views are given in Sec. VIII. Proofs for the pos-
itivity and the quasi-Markovian behavior of the system are
respectively described in Appendixes A and B. Additional
results for the asymptotic behavior of the dynamics are shown
in Appendix C.

II. THE MODEL SYSTEM

We consider a two-level open quantum system whose
state is described at time t by a density operator ρ(t ), i.e.,
a positive-semidefinite Hermitian operator of unit trace. We
denote by H the two-dimensional Hilbert space of the system,
spanned by the canonical basis {|1〉, |2〉}, and by S (H) the set
of density operators. The quantum dynamical linear map �t

from S (H) to S (H) maps, by definition, the initial state ρ(0)
to state ρ(t ) as ρ(t ) = �t [ρ(0)], with �0 = I being the unit
map at time 0 [16]. The map �t needs to be not only positive
to ensure that ρ(t ) is a well-defined density operator but also
completely positive in the assumption of factorized initial
conditions between the system and the bath. We recall that
a positive map is a map which transforms positive operators
into positive operators. The map �t also preserves Hermiticity
and the trace of operators, so that it maps a density operator
of S (H) to another density operator of S (H). The property of
CP is defined in the tensor-product space H ⊗ Cn, where n is a
nonzero positive integer. We consider the map �t ⊗ In which
operates on this space, with In being the identity operator
on Cn. �t is said to be CP if �t ⊗ In is positive for all n.
A positive map �t corresponds to the case n = 1. It is then
obvious that CP implies P. A characterization of CP in terms
of Choi matrix is used in Sec. III.

The existence of the inverse of �t , �−1
t , at all times t � 0

allows us to write the dynamical evolution of the system as
a time-local quantum master equation [21]. This assumption
is the starting point of our study. Note that the invertibility
of �t allows us to define a dynamical map �t,s from time
s to t , t � s � 0, as �t,s = �t�

−1
s . Note that the map �t,s

does not need to be CP or P. The dynamical map is said to be
CP divisible (P divisible) if �t,s is CP (P) for all t and s. It
can then be shown that CP-divisible maps are also Markovian
[16,31,32]. In this study, we emphasize that we investigate
under which conditions �t is CP or P, which is different from
CP or P divisibility.

In the case of a two-level quantum system, denoting by
(ρ11, ρ12, ρ21, ρ22) the matrix elements of ρ in the canonical
basis, the time evolution can be written in Redfield form [12]
as

d

dt

⎛
⎜⎜⎝

ρ11

ρ12

ρ21

ρ22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−γ21 0 0 γ12

0 iω − � 0 0
0 0 −iω − � 0

γ21 0 0 −γ12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ρ11

ρ12

ρ21

ρ22

⎞
⎟⎟⎠,

(1)

where ω is the frequency transition of the two-level system
and γ12 and γ21 are, respectively, the relaxation rates of the
populations from level 2 to 1 and from 1 to 2. The parameter

� describes the dephasing of the coherences. Units such that
h̄ = 1 are used throughout the paper. Note that, by construc-
tion, the trace of the density operator is equal to 1 at any time
t if Tr[ρ(0)] = 1. The frequency transition and the different
decay rates are assumed to be sufficiently smooth functions of
time. The differential system (1) can be put in the GKLS-like
form [13,14,21] as

d

dt
ρ(t ) = −i[H, ρ(t )]

+
3∑

j=1

γ j (t )

(
Ljρ(t )L†

j − 1

2
{L†

j L j, ρ(t )}
)

, (2)

with γ1 = γ12, γ2 = γ21, γ3 = � − γ+
2

, γ+ = γ21 + γ12, γ− =
γ12 − γ21,

L1 =
(

0 1
0 0

)
, L2 =

(
0 0
1 0

)
, L3 = 1√

2

(
1 0
0 −1

)
,

and

H = ω

2

(−1 0
0 1

)
,

which governs the unitary part of the dynamics. Equation (2)
is said to be in the GKLS form when the different parameters
and operators do not depend on time. The process is then
described by a semigroup, and a sufficient and necessary con-
dition for CP is that all the rates γi are positive. For two-level

quantum systems, standard constraints are thus � � γ+
2

and

γ12 � 0, γ21 � 0, i.e.,

2� � γ+ � 0, −γ+ � γ− � +γ+ (3)

In the general case, the rates γi(t ) may depend on time.
A necessary and sufficient condition of CP divisibility for
time-dependent rates is given by γi(t ) � 0. The correspond-
ing quantum processes are Markovian and CP, but they do
not capture all the possible physical dynamics such as non-
Markovian behaviors for which at least one of the rates γi

is negative during some time interval. In this case, a general
characterization of CP or P has not yet been established, and
one of the objectives of this study is to formulate such condi-
tions for two-level open quantum systems. More precisely, the
goal is to find constraints on the time-dependent decay rates
generalizing the ones for the GKLS equation such that CP or
P is verified.

We first recall results for the time evolution of the system
(1), which can be integrated exactly in the coherence-vector
coordinates (x, y, z) [42], defined for a two-level system as
x = 2Re[ρ21], y = 2Im[ρ21], and z = ρ11 − ρ22. We denote
by (x0, y0, z0) the initial values of the coherence-vector coor-
dinates at t = 0. The dynamical system can then be expressed
as

d

dt

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝−� ω 0

−ω −� 0
0 0 −γ+

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ +

⎛
⎝ 0

0
γ−

⎞
⎠.
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Introducing the coefficients �̃= ∫ t
0 �(τ )dτ , γ̃+= ∫ t

0 γ+(τ )dτ ,
and ω̃ = ∫ t

0 ω(τ )dτ , straightforward computations lead to

x(t ) = e−�̃[x0 cos(ω̃) + y0 sin(ω̃)],

y(t ) = e−�̃[−x0 sin(ω̃) + y0 cos(ω̃)],

z(t ) = s(t ) + z0e−γ̃+ ,

where s is the particular solution of the differential equa-
tion satisfied by z, with s(0) = 0. This solution can be
expressed explicitly as a function of the decay rates as

s(t ) = e−γ̃+(t )
∫ t

0
[eγ̃+(τ )γ−(τ )dτ ].

Finally, we deduce that the dynamical map �t can be written
as

⎛
⎜⎜⎝

ρ11(t )
ρ12(t )
ρ21(t )
ρ22(t )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2 (1 − s) + e−γ̃+

2 0 0 1
2 (1 − s) − e−γ̃+

2
0 e−�̃−iω̃ 0 0
0 0 e−�̃+iω̃ 0

1
2 (1 + s) − e−γ̃+

2 0 0 1
2 (1 + s) + e−γ̃+

2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

ρ11(0)
ρ12(0)
ρ21(0)
ρ22(0)

⎞
⎟⎟⎠.

We denote by �i j (t ) the matrix elements of the map �t .

III. COMPLETE POSITIVITY OF THE DYNAMICAL MAP

Before we establish the conditions for CP of the quantum
dynamics, standard mathematical results are briefly described.

We consider the map ϕ from Mn(C) to itself, where Mn(C)
is the set of n × n matrices with entries in C. ϕ is said to be
positive if

a � 0 ⇒ ϕ(a) � 0,

with a ∈ Mn(C). We recall that a � 0, i.e., a is a positive-
semidefinite matrix, if for every complex vector z we have
z†az � 0. Note that this condition implies that a is a Hermitian
matrix and that its eigenvalues are non-negative. A natural
extension of the map ϕ is Im ⊗ ϕ from Mm(C) ⊗ Mn(C) →
Mm(C) ⊗ Mn(C). Mm(C) ⊗ Mn(C) is identified as m × m
matrices with entries in Mn(C), and the map Im ⊗ ϕ is defined
as ⎛

⎜⎝
a11 · · · a1m
...

...
...

am1 · · · amm

⎞
⎟⎠ �→

⎛
⎜⎝

ϕ(a11) · · · ϕ(a1m)
...

...
...

ϕ(am1) · · · ϕ(amm)

⎞
⎟⎠,

where ai j ∈ Mn(C). By definition, ϕ is CP if Im ⊗ ϕ is positive
for all m. This property can be written explicitly as follows:

m∑
i, j

ei j ⊗ ai j � 0 ⇒
m∑
i, j

ei j ⊗ ϕ(ai j ) � 0,

with ei j being the matrix with 1 in the ith row and jth column
and 0 elsewhere. We then introduce the Choi matrix Cϕ of ϕ

as

Cϕ =
n∑

i, j

ei j ⊗ ϕ(ei j ).

It can be shown that ϕ is CP if and only if Cϕ is positive [34].
In the quantum setting, the Choi matrix of �t is given by

[21]

C�t =
∑
i, j

|i〉〈 j| ⊗ �t (|i〉〈 j|).

Note that the Choi matrix can also be constructed from the
maximally entangled state between two Hilbert spaces.

Using �t (|i〉〈 j|) =
∑

k,	
|k〉〈k|�t (|i〉〈 j|)|	〉〈	|, we de-

duce that

C�t =
∑
i, j

∑
k,	

|i, k〉〈k|�t (|i〉〈 j|)|	〉〈 j, 	|.

For a two-level quantum system, the matrix elements of the
Choi matrix can be written as

Cαβ

�t
= 〈α1|�t [|α2〉〈β2|]|β1〉,

with (α1, α2, β1, β2) ∈ {1, 2}. We introduce the operators
eα = |α1〉〈α2| and eβ = |β1〉〈β2| and the basis e1 = |1〉〈1|,
e2 = |1〉〈2|, e3 = |2〉〈1|, and e4 = |2〉〈2|. In this basis, we
then get

C�t =

⎛
⎜⎜⎝

�11 0 0 �22

0 �14 0 0
0 0 �41 0

�33 0 0 �44

⎞
⎟⎟⎠.

The expected properties of the Choi matrix can be verified;
that is, C�t is Hermitian, and Tr[C�t ] = 2 [21]. The character-
istic polynomial of the matrix is p(X ) = (�14 − X )(�41 − X )
[(�11 − X )(�44 − X ) − �22�33] = (�14 − X )(�41 − X )
[X 2 − (�11 + �44)X + �11�44 − �22�33]. We have
�11 + �44 = 1 + e−γ̃+ , �11�44 = 1

4 [(1 + e−γ̃+ )2 − s2], and

�22�33 = e−2�̃ . The eigenvalues of C�t are �14, �41,
and 1

2 [�11 + �44 ±
√

(�11 − �44)2 + 4�22�33]. The Choi
matrix is positive if all the eigenvalues are positive. We then
deduce that the necessary and sufficient conditions of CP can
be expressed for all times t � 0 as

−(1 − e−γ̃+ ) � s � 1 − e−γ̃+ , (4)

s2 � (1 + e−γ̃+ )2 − 4e−2�̃ . (5)

Note that Eq. (4) implies that γ̃+(t ) � 0 for t � 0, while
Eq. (5) leads to �̃(t ) � 0. Indeed, we have 0 � (1 + e−γ̃+ )2 −
4e−2�̃ , i.e., e−2�̃ � 1

4 (1 + e−γ̃+ )2 � 1. The CP conditions are
then equivalent to

γ̃+(t ) � 0, �̃(t ) � 0, ∀ t � 0,

s2 � (1 − e−γ̃+ )2 if γ̃+ � 2�̃, (6)

s2 � (1 + e−γ̃+ )2 − 4e−2�̃ if γ̃+ � 2�̃. (7)
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Indeed, it is straightforward to see that if γ̃+(t ) � 2�̃(t ), then
(6) ⇒ (7) at time t , whereas (7) ⇒ (6) at time t in the
case γ̃+(t ) � 2�̃(t ). Contrary to the criteria of Markovianity
and non-Markovianity, we also observe that these constraints
depend on the time integral of the relaxation rates.

IV. POSITIVITY OF THE DYNAMICAL MAP

We study in this section under which conditions �t is
a positive map. By definition, we already know that CP is
a stronger condition than P. It is, nevertheless, instructive
to prove this result in the case studied. We then establish
necessary and sufficient conditions for P that can be directly
compared to those of CP. Using such conditions, we describe a
family of dynamical maps for which CP and P are equivalent,
and we give examples where the map is only positive. We
recall that a positive map transforms a positive operator into
a positive operator. Starting from a density operator ρ0 at
time 0, the question is thus to find under which conditions
the state at time t is also a well-defined density operator.
In the coherence-vector coordinates, this corresponds to the
condition x(t )2 + y(t )2 + z(t )2 � 1 at any time t , knowing
that x0(t )2 + y0(t )2 + z0(t )2 � 1.

Theorem 1. A CP map �t is positive.
Proof. We have

x(t )2 + y(t )2 + z(t )2 = e−2�̃(t )(x2
0 + y2

0

) + z(t )2

� e−2�̃(t )
(
1 − z2

0

) + z(t )2.

The equality is reached when x2
0 + y2

0 + z2
0 = 1. Thus, the

system is positive if and only if e−2�̃ (1 − z2
0 ) + z2 � 1. If

γ̃+ � 2�̃, then we have

e−2�̃
(
1 − z2

0

) + z2 � e−γ̃+
(
1 − z2

0

) + z2.

Using Eq. (6), we get −(1 − e−γ̃+ ) � s(t ) � 1 − e−γ̃+ , which
leads to

−[1 − (1 + z0)e−γ̃+ ] � z(t ) � 1 − (1 − z0)e−γ̃+ .

Since

[1 − (1 − z0)e−γ̃+(t )]2 − [1 − (1 + z0)e−γ̃+(t )]2

= 4e−γ̃+(t )(1 − e−γ̃+(t ) )z0,

we deduce that the maximum of z2 is [1 − (1 − z0)e−γ̃+(t )]2

if z0 � 0 and [1 − (1 + z0)e−γ̃+(t )]2 if z0 � 0. Let us assume
that z0 � 0; the case with z0 � 0 can be done along the same
lines. We have

e−2�̃
(
1 − z2

0

) + z2 � e−γ̃+
(
1 − z2

0

) + z2

� e−γ̃+
(
1 − z2

0

) + [1 − (1 − z0)e−γ̃+ ]2

� −e−γ̃+ (1 − e−γ̃+ )(z0 − 1)2 + 1

� 1,

leading to x(t )2 + y(t )2 + z(t )2 � 1 for any t � 0.

Consider now that γ̃+ � 2�̃. From Eq. (7), we have

s2 � (1 + e−γ̌+ )2 − 4e−2�̌ � (1 + e−2�̌ )2 − 4e−2�̌

= (1 − e−2�̌ )2.

Since �̃ � 0, we get

−(1 − e−2�̃ ) � s(t ) � 1 − e−2�̃ .

The proof is thus the same as in the first case, replacing 2�̃

by γ̃+. �
Like for CP, necessary and sufficient conditions for P can

be established. The dynamical map �t is P if and only if

γ̃+(t ) � 0, �̃(t ) � 0, ∀ t � 0,

s2 � (1 − e−γ̃+ )2 if γ̃+ � 2�̃, (8)

s2 � (1 − e−2�̃ )(1 − e−2(γ̃+−�̃) ) if γ̃+ � 2�̃. (9)

These conditions are proved in Appendix A. Since criteria
(6) and (8) are the same, it is straightforward to show that if
0 � γ̃+ � 2�̃, then CP is equivalent to P. A family of maps for
which the two properties are not equivalent can be found using
conditions (7) and (9). For instance, if �̃(t ) = 0, γ̃+(t ) > 0,
and γ−(t ) = 0, then the dynamic is P but not CP. Indeed,
since γ− = 0, we have s = 0, and condition (9) is satisfied.
On the contrary, it is not CP because condition (7), s2 �
(1 + e−γ̃+ )2 − 4e−2�̃ , writes 0 � (1 + e−γ̃+ )2 − 4 and is not
satisfied.

V. QUASI-MARKOVIAN SYSTEMS

As already mentioned, a Markovian system for which the
decay rates γi(t ) of the GKLS equation are positive for any
time t is CP. An interesting issue is to find similar conditions
for non-Markovian systems since any NM dynamic is not CP.
The first answer was given in Sec. III with some explicit con-
ditions for CP in a two-level open quantum system. However,
this solution is not completely satisfactory in the sense that
such conditions are not easy to check quickly or to interpret
physically. We propose in this paragraph a different family
of dynamical systems called quasi-Markovian (QM) systems
which is larger than the Markovian one and for which the
dynamical map is CP. The conditions of QM systems are
directly inspired from those of a Markovian system, except
that a time-local condition is replaced by a time-integral one.
A two-level quantum system is said to be QM if the following
inequalities are verified for all t � 0:

−|γ+| � γ− � +|γ+|, �̃ � 1
2 γ̃+ � 0.

Using Eq. (3), we find that the Markovian systems are QM. It
can then be shown that the dynamical map of a QM system is
CP. Indeed, as shown in Appendix B, a QM system fulfills

−(1 − e−γ̃+ ) � s(t ) � 1 − e−γ̃+ . (10)

We deduce that s2 � (1 − e−γ̃+ )2 = (1 + e−γ̃+ )2 − 4e−γ̃+ , and
then from Eq. (6) we obtain the CP.

This result is interesting because it allows us to find easily
CP maps which are also NM. This is the case, for instance,
if the function �(t ) takes negative values while satisfying
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FIG. 1. Schematic representation of the different characteristics
of the dynamical map for which M ⇒ QM ⇒ CP ⇒ P. The differ-
ent gray areas correspond to larger and larger sets of dynamical maps
ranging from Markovian maps to positive ones.

�̃ � γ̃+/2 for all t � 0. Different examples will be given in
Sec. VII. The different properties of the dynamical map are
summarized in Fig. 1.

VI. LONG-TIME ASYMPTOTIC BEHAVIOR

We characterized in the preceding sections the system
dynamics. Another key point is to describe the long-time
asymptotic behavior of the density matrix. In particular, the
goal is to establish under which conditions on the decay rates
the system tends to an equilibrium state. This problem is
quite simple in the Markovian regime with constant coeffi-
cients, but it is much more complex for time-dependent rates
and non-Markovian dynamics. We introduce below a class of
functions which ensure the existence of this asymptotic state,
and we describe in which cases this state can be explicitly
found. This analysis is interesting in the design of a quantum
master equation since it helps us to select the right family of
time-dependent relaxation rates to consider.

Different results can be established for the differential
equation (DE): ż = Az + B, where A and B are two time-
dependent functions converging to A0 and B0, respectively,
when t → +∞. The different proofs are given in Appendix C.

Proposition 1. If A0 �= 0, then any bounded solution z of
DE converges to −B0

A0
.

The case A0 = 0 is different. Indeed, nonconvergent
bounded solutions of the specific DE can be found. An exam-
ple is given by z(t ) = sin(

√
t ). We have ż(t ) = 1

2
√

t
cos(

√
t ) =

1
2
√

t
sin(

√
t ) + 1√

2t
cos(

√
t + π

4 ). We deduce that z is a solu-
tion of the differential equation ż = Az + B with A, B → 0,
but z is a nonconvergent bounded function. The nonconver-
gent behavior is due to the slow oscillations of z(t ) = sin(

√
t ).

This justifies the following definition.
Definition 1. A function f is said to be slowly oscillating

if, for all τ > 0, f (t + τ ) − f (t ) goes to zero when t → +∞.
This means that such a function looks more and more

like its time-shifted version as t tends to infinity. It can be
shown that if z is a bounded solution of the DE with A and
B converging to zero, then z is a slowly oscillating function.
Since a slowly oscillating function is not necessary conver-

gent, additional conditions on A and B are required to ensure
the convergence of z.

Definition 2. A function f goes to zero not too slowly if
an α > 0 exists such that limt→+∞ t1+α f (t ) = 0, i.e., f (t ) ∈
o( 1

t1+α ).
The following result can then be proved.
Proposition 2. Let z be a bounded solution of the DE, where

A and B are two functions going not too slowly to zero. Then
z is a convergent function.

Note that z can have any real limit. Consider, for instance,
the differential equation ż = 1

t2 z + 1
t2 . The solution can be

expressed as

z(t ) = Ke− 1
t − 1, K ∈ R.

These functions converge, and the limit is K − 1.
Finally, we come back to the dynamical system satisfied by

the coherence vector

ẋ = −�x + ωy,

ẏ = −�y − ωx,

ż = γ− − γ+z.

We denote by γ 0
−, γ 0

+, and �0 the limits of the different
decay rates when t → +∞. Physically, the equilibrium state
is usually defined as the coherence vector of coordinates
(0, 0, γ 0

−/γ 0
+) when γ 0

+ �= 0. We consider a CP dynamical map
for which x(t )2 + y(t )2 + z(t )2 � 1 for all t � 0. It is straight-
forward to see that x, y, and z are bounded functions. Using
Eq. (6), we know that γ̃+ � 0 and �̃ � 0, and we deduce that
γ 0

+ � 0 and �0 � 0. The different results in this section can
then be used.

When γ 0
+ > 0 and �0 > 0, we have from Proposition 1 that

the coherence vector goes to (0, 0, γ 0
−/γ 0

+) when t → +∞. In
the case with γ 0

± = 0 or �0 = 0, from Proposition 2, different
limits (if they exist) can be obtained according to the functions
γ+(t ), γ−(t ), and �(t ). The convergence is ensured if the three
functions are not too slowly oscillating functions.

VII. NUMERICAL EXAMPLES

We first consider the general case of a qubit with multiple
decoherence channels [16,31,43]. The master equation can be
written as

ρ̇ =
∑

i

γi

2
(σiρσi − ρ),

where σi are the Pauli matrices and i = x, y, z. This equa-
tion can be expressed in terms of the coherence-vector
coordinates as follows:

ẋ = −(γy + γz )x,

ẏ = −(γx + γz )y,

ż = −(γx + γy)z.

This model system can be viewed as an empirical model
describing the dynamics of a qubit in a complex environ-
ment. The rates γi(t ) can be associated with transverse and
longitudinal rates generalizing the standard 1/T1 and 1/T2

constant rates used to describe a dissipative spin-1/2 particle
in magnetic resonance [44]. We assume that γx = γy to satisfy

032212-5



G. THÉRET AND D. SUGNY PHYSICAL REVIEW A 108, 032212 (2023)

the conditions of this study, but a similar analysis could be
done for different decay rates. We introduce the coefficients
γ̃+ = ∫ t

0 [γx + γy]dτ and �̃ = ∫ t
0 [γx + γz]dτ . Since γ− = 0,

we deduce that s = 0. The only condition to satisfy is thus
1 + e−γ̃+ � 2e−�̃ . As a specific example, we consider the case
of eternal non-Markovianity [21,45], for which γx = γy = 1
and γz = − tanh t . Note that this system is NM for all times t
since γz(t ) < 0. We get γ+ = 2, γ− = 0, and � = 1 − tanh t ,
which lead to

γ̃+ = 2t, �̃ = ln

(
et

cosh t

)
.

We can verify that �̃ <
γ̃+
2 at any time t > 0, so the system

is never quasi-Markovian. The CP can be verified from our
criterion. We have s(t ) = 0, and relation (7) has to be fulfilled
as

(1 + e−γ̃+ )2 − 4e−2�̃ = 1 + e−4t + 2e−2t − 4e−2t cosh2 t

� (1 − e−2t )2.

Another standard example is a two-level system coupled to a
lossy cavity [1,16]. This system corresponds, e.g., to a single
two-level atom interacting with an electromagnetic field hav-
ing a Lorentzian spectral density, which mimics a lossy cavity.
The dynamics of the coherence vector are given by

ẋ = −γ

2
x + S

2
y,

ẏ = −γ

2
y − S

2
x,

ż = γ − γ z,

where γ and S are two time-dependent functions. We deduce
that

γ− = γ+ = γ , � = γ

2
.

This system is QM because −|γ | � γ � |γ |. We also verify
the CP criterion. The particular solution is s(t ) = 1 − e−γ̃ . It
is then straightforward to show that

s2 = (1 − e−γ̃ )2,

i.e., condition (6).
As a final example, we consider a model system depending

on a parameter, and we study the dynamical properties as a
function of this parameter. Note that this example does not
itself correspond to a physical system, but it is interesting to
study to highlight the transition between the different behav-
iors. We consider the functions γ+ = 1 and γ− = α(1 + e−t )
with 0 � α � 1. For the rate �, we choose any function such
that �̃ � t/2. Since γ− is a strictly decreasing function from
2α to α, the system is QM if and only if α ∈ [0, 1

2 ]. The system
is Markovian when � � 0, but non-Markovian examples can
be found. For α < 1, the system is non-Markovian at short
times and eternally non-Markovian if α = 1. The differential
system for the z coordinate is

ż = −z + α(1 + e−t ),

and the solutions can be expressed as

z(t ) = α[1 − (1 − t )e−t ] + Ae−t ,

with a constant A. We deduce that s(t ) = α[1 − (1 − t )e−t ].
This function is increasing from 0 to α(1 + e−2) in the interval
[0, 2] and then decreasing to α in [2,+∞[. We consider now
the CP conditions. Only condition (6) has to be verified. We
have

1 − e−γ̃+ ± s � 0 ⇐⇒ 1 ± α − e−t [1 ± α(1 − t )] � 0.

The derivative of the function f±(t ) = 1 ± α − e−t [1 ±
α(1 − t )] has the same sign as ∓t ± 2 + 1/α. We have
f±(0) = 0. The function f+ is strictly increasing in ] −
∞, 2 + 1/α] and strictly decreasing in [2 + 1/α,+∞[ with
a limit equal to 1 + α. We deduce that f+ � 0 in [0,+∞[.
The function f− is strictly decreasing in ] − ∞, 2 − 1/α]
and strictly increasing in [2 − 1/α,+∞[ with a limit equal
to 1 − α � 0. The minimum is 1 − α(1 + e−2+1/α ). Since
2 − 1/α � 0 if and only if α � 1/2, the minimum of f− is
zero when α � 1/2 and is negative and equal to 1 − α(1 +
e−2+1/α ) otherwise. In conclusion, the dynamical map is CP
in the QM case with a global maximum for s. However, for a
NM system, the system is no longer positive. The coherence
vector goes out from the sphere of radius 1 for specific initial
conditions. Indeed, for A < 0.8, the coordinate z(t ) belongs
to the interval [−1, 1], but this property is not verified when
A � ±1. The different trajectories for the two behaviors are
represented in Fig. 2.

-1

-0.5

0

0.5

1

0 2 4 6

-1

-0.5

0

0.5

1

(a)

(b)

FIG. 2. Plot of the trajectories z(t ) for a parameter A going from
−1 to 1 (from bottom to top). The parameter α is set to 0.5 and 0.7
in (a) and (b), respectively. Quantities plotted are dimensionless.
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VIII. CONCLUSION

We investigated the concepts of CP and P in a two-level
open quantum system whose dynamics are governed by a
time-local master equation. Assuming that the decay rates
can be represented by smooth time-dependent functions, we
established different criteria for the CP and P of the dynamical
map. A subtlety of such conditions is that they are nonlocal in
time, in the sense that the criteria are established for the time
integral of the decay rates. This is a major difference from
the different measures of non-Markovianity which are local
and involve these rates only at a given time. This observation
partly explains the difficulty in establishing simple and gen-
eral conditions of CP in non-Markovian systems, while such
criteria exist for Markovian ones. In the second part of this
study, we simplified this question by introducing the concept
of quasi-Markovianity, which corresponds to a larger class of
systems than the Markovian systems but does not include all
possible non-Markovian dynamics. Interestingly, these sys-
tems are characterized by local and nonlocal conditions on
decay rates. QM allows one to design quite easily examples
which are both NM and CP. The question of generalizing
quasi-Markovian systems to a larger class of non-Markovian
systems would be interesting to study. Finally, we showed
under which conditions on the relaxation rates a two-level
quantum system characterized by a CP dynamical map tends
asymptotically to its equilibrium state.

This study also paves the way for other promising issues.
An interesting question is the link between the conditions
obtained in this study for CP and fundamental thermodynamic
principles used for deriving a time-local master equation as
described, e.g., in [46,47]. Another problem consists of inves-
tigating controlled open dynamics with relaxation rates which
may depend on the control parameters [48–51]. A similar
analysis could establish conditions on the decay rates allowing
us to preserve the CP of the dynamical map against control
variations. The impact of an external control on NM was
already investigated in a series of works [44,52–55].
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APPENDIX A: NECESSARY AND SUFFICIENT
CONDITIONS FOR THE POSITIVITY OF THE

DYNAMICAL MAP

We prove in this Appendix the necessary and sufficient
conditions (8) and (9) on the positivity of the dynamical map.

We consider the initial conditions x0 = y0 = 0 and
z0 = ±1. We get

0 � (s(t ) ± e−γ̃+(t ) )2 � 1,

which leads to 0 � s2(t ) + e−2γ̃+(t ) � 1. We deduce that
e−2γ̃+(t ) � 1 and γ̃+(t ) � 0.

From the conditions x2
0 + y2

0 = 1 and z0 = 0, we arrive at
e−2�̃(t ) + s2(t ) � 1 and e−2�̃(t ) � 1, i.e., �̃(t ) � 0.

The next step consists of showing that the inequality
x(t )2 + y(t )2 + z(t )2 � 1 can be rewritten as

e−2�̃(t )
(
1 − z2

0

) + [s(t ) + z0e−γ̃+(t )]2 − 1 � 0

or

z2
0(e−2γ̃+(t ) − e−2�̃(t ) ) + 2z0s(t )e−γ̃+(t ) + s(t )2 − 1 + e−2�̃(t )

� 0,

with the condition x2
0 + y2

0 + z2
0 = 1. We introduce the func-

tion Q(z0) = z2
0(e−2γ̃+(t ) − e−2�̃(t ) ) + 2z0s(t )e−γ̃+(t ) + s(t )2 −

1 + e−2�̃(t ).
Case with γ̃+ � �̃. A necessary and sufficient condition for

P is Q(−1) � 0 and Q(1) � 0 (the coefficient of the higher-
degree term is positive). We obtain

−1 − e−γ̃+(t ) � s(t ) � 1 − e−γ̃+(t ),

−1 + e−γ̃+(t ) � s(t ) � 1 + e−γ̃+(t ).

Using γ̃+(t ) � 0, we get −1 + e−γ̃+(t ) � s(t ) � 1 − e−γ̃+(t ),
or s2 � (1 − e−γ̃+ )2, i.e., condition (8) when γ̃+ � �̃.

Case with �̃ < γ̃+. The coefficient of the higher-degree
term of the polynomial Q is negative. We denote by z̃0 the
coordinate giving the maximum of Q(z0). Since

z̃0 = s(t )e−γ̃+(t )

e−2�̃(t ) − e−2γ̃+(t )
,

we deduce that the positivity is equivalent to

Q(z̃0) � 0 if − 1 � z̃0 � +1,

Q(+1) � 0 if z̃0 � +1,

Q(−1) � 0 if z̃0 � −1.

We then consider two subcases.
Assume that 2�̃ < γ̃+. When z̃0 � +1, we have s(t ) �

eγ̃+(t )(e−2�̃(t ) − e−2γ̃+(t ) ) � 0. The condition Q(+1) � 0 leads
to s � 1 − e−γ̃+(t ). Therefore, we get

eγ̃+(t )(e−2�̃(t ) − e−2γ̃+(t ) ) � 1 − e−γ̃+(t ),

eγ̃+(t )−2�̃(t ) � 1,

γ̃+(t ) − 2�̃(t ) � 0,

which is a contradiction. When z̃0 � −1, we have s(t ) �
−eγ̃+(t )(e−2�̃(t ) − e−2γ̃+(t ) ) � 0, and the condition Q(−1) � 0
gives s � −1 + e−γ̌+(t ). We deduce that

−eγ̃+(t )(e−2�̃(t ) − e−2γ̃+(t ) ) � −1 + e−γ̃+(t ),

eγ̃+(t )−2�̃(t ) � 1,

γ̃+(t ) − 2�̃(t ) � 0,

which is a contradiction. Finally, when 2�̃ < γ̃+, the neces-
sary and sufficient condition is Q(z̃0) � 0, which gives

s2 � (1 − e−2�̃(t ) )(1 − e−2[γ̃+(t )−�̃(t )] ),

i.e., condition (9).
Assume now that �̃ < γ̃+ � 2�̃. There is no obstruction,

and the necessary conditions are sufficient. The second condi-
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tion, Eq. (9), implies condition (8). We have

(1 − e−2�̃ )(1 − e−2(γ̃+−�̃) ) − (1 − e−γ̃+ )2

� (1 − e−γ̃+ )(1 − e−2(γ̃+−�̃) ) − (1 − e−γ̌+ )2

� (1 − e−γ̃+ )(e−γ̃+ − e−2(γ̃+−�̃) )

� e−γ̃+ (1 − e−γ̃+ )(1 − e2�̃−γ̃+ ) � 0,

which gives the result.

APPENDIX B: PROPERTIES OF QUASI-MARKOVIAN
SYSTEMS

We show in this Appendix different results used to prove
Eq. (10).

Lemma 1. Let γ− and γ+ be two continuous functions
such that for all t � 0, −|γ+(t )| � γ−(t ) � +|γ+(t )| and
γ̃+(t )� 0. Let z be a solution of ż(t ) = −γ+(t )z(t ) + γ−(t )
satisfying −1 < z0 < +1. Then for all t � 0 we have −1 <

z(t ) < +1.
Proof. Assume a positive time for which z is equal to 1

exists. Let t0 be the smallest of these times, z(t0) = 1 [the
case with z(t0) = −1 can be done along the same lines]. Since
−1 < z0 < +1, we get t0 > 0. Moreover, we necessarily have
ż(t ) > 0 for any t < t0 close enough to t0 since the function
z increases toward +1 before reaching it. We now show that
ż(t ) � 0 around t0. Since −|γ+(t )| � γ−(t ) � +|γ+(t )|, we
have

−|γ+(t )|[1 + z(t )] � ż(t ) � +|γ+(t )|[1 − z(t )].

It follows that if some t0 such that z(t0) = 1 exists, then
ż(t0) � 0 likewise, if there is some t0 such that z(t0) = −1,
then ż(t0) � 0]. As we assume that γ± is continuous, the
function z(t ) is continuously differentiable. Hence, there is
a neighborhood about t0 such that ż(t ) � 0 [or ż(t ) � 0 if
z(t0) = −1]. This is a contradiction. We conclude that z(t ) <

+1 for all t � 0 (and likewise z(t ) > −1). �
Lemma 2. Let γ− and γ+ be two continuous functions such

that, for all t � 0, γ̃+ � 0 and −|γ+| � γ− � +|γ+|. Let z
be a solution of the differential equation ż(t ) = −γ+(t )z(t ) +
γ−(t ) satisfying −1 � z0 � +1. Then for all t � 0 we have

−[1 − (1 + z0)e−γ̃+(t )] � z(t ) � 1 − (1 − z0)e−γ̃+(t ).

In particular,

−(1 − e−γ̃+(t ) ) � s(t ) � 1 − e−γ̃+(t ).

Proof. Suppose that −1 < z(0) < +1. Then, according to
Lemma 1, for all t � 0 we have −1 < z(t ) < +1.

From the differential equation and the conditions satisfied
by γ± we find that, for all t � 0,

−|γ+(t )|[1 + z(t )] � ż(t ) � +|γ+(t )|[1 − z(t )].

We obtain the following inequalities: −ż
1−z � −|γ+| and ż

1+z �
−|γ+|. Integrating from 0 to t , we get

ln

(
1 ± z

1 ± z0

)
� −

∫ t

0
|γ+(u)|du = −|γ̃+|.

Hence, 1 ± z � (1 ± z0)e−γ̃+ . This leads to the result when
z0 �= ±1.

Suppose now that z0 = ±1. Then z can be written as
z(t ) = s(t ) ± e−γ̃+ , with s(0) = 0. From the above property,
we arrive at −(1 − e−γ̃+(t ) ) � s(t ) � 1 − e−γ̃+(t ), which gives
the result when z0 = ±1. �

APPENDIX C: ASYMPTOTIC BEHAVIOR
OF THE DYNAMICS

We prove Propositions 1 and 2 in Sec. VI. We first consider
a preliminary result.

Lemma 3. Let z be a bounded solution of the DE. If ż
converges to a finite limit, then this limit is zero.

Proof. We denote by 	 the limit of ż. Assume that 	 > 0.
For all ε > 0 that are small enough, there exists an interval
[M; +∞[ such that ż(t ) � ε. We consider a given value of
ε (for instance, ε = 	/2). By integrating over the interval
[M; +∞[, we obtain

z(t ) − z(M ) =
∫ t

M
ż(u)du � ε(t − M ).

We deduce that z goes to +∞ and therefore is not bounded.
So 	 � 0. In the same way, we show that 	 < 0 implies that z
converges to −∞. Finally, we get 	 = 0. �

We can then show Proposition 1.
Proof. We first consider the case with A0 > 0 and B0 = 0.

For any ε > 0, there exists an M > 0 such that ∀ t � M,
|A(t ) − A0| < ε and |B(t )| < ε. We choose ε < A0/2. As-
sume that there exists a t0 � M such that z(t0) > ε

A0−ε
> 0;

then

ż(t0) = A(t0)z(t0) + B(t0) > (A0 − ε)
ε

A0 − ε
− ε = 0.

Let [t0, t] be the maximal closed interval in which z is strictly
increasing. We have ż(t ) = 0. We deduce that z(t ) > z(t0) and

ż(t ) = A(t )z(t ) + B(t ) > (A0 − ε)
ε

A0 − ε
− ε = 0,

which leads to a contradiction unless t = +∞. Since z is
strictly increasing in [t0,+∞[ and z is bounded, we deduce
that z converges.

Assume that there exists a t0 � M such that z(t0) <

− ε
A0+ε

< 0. In the same way, we find that z is a strictly
bounded decreasing function in [t0,+∞[ and therefore a con-
vergent function.

There remains the case for which for all ε > 0; there exists
an M > 0 with ∀ t � M, |A(t ) − A0| < ε and

− ε

A0 + ε
� z(t ) � ε

A0 − ε
,

We deduce that z converges to zero. A similar argument can
be used for A0 < 0.

Now if z converges, we know from the DE that ż converges.
According to Lemma 3, ż converges to zero, and so does z
since A0 �= 0.

Let us now assume that B0 �= 0. We consider the change in
variables u(t ) = z(t ) − z0(t ), where z0 is a bounded solution
of the differential equation ż0 = A0z0 + B0. We find

u̇(t ) = ż(t ) − ż0(t ) = A(t )z(t ) + B(t ) − A0z0(t ) − B0

= A(t )[u(t ) + z0(t )] + B(t ) − A0z0(t ) − B0

= A(t )u(t ) + [A(t ) − A0]z0(t ) + B(t ) − B0

= A(t )u(t ) + D(t ),
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with A(t ) → A0. Note that z0 = CeA0t − B0
A0

, where C is an
arbitrary constant. Hence, if A0 < 0, then z0 is bounded, and
D(t ) → 0. We then know from the preceding B0 = 0 case
that u(t ) converges to zero. This means that z converges
to −B0

A0
. �

Note that if A0 > 0, bounded solutions might not exist. The
proof above shows that when A0 > 0 and when A(t ) converges
to A0 faster than e−A0t , then D(t ) → 0; hence, u(t ) → 0,
which means that the nonzero solutions z diverge like eA0t

(they are very similar to the solutions of ż0 = A0z0 + B0).
We consider now Proposition 2, and we first show a pre-

liminary result.
Lemma 4. Let z be a bounded solution of the DE with A and

B converging to zero. Then z is a slowly oscillating function.
Proof. Let τ ∈ R and (xn) be a sequence going to +∞. For

all n, there exists a cn ∈ [xn, xn + τ ] if τ > 0 (or [xn + τ, xn]
if τ < 0) such that

|z(xn + τ ) − z(xn)| = |ż(cn)||τ | = |A(cn)z(cn) + B(cn)||τ |,
which converges to zero since cn → ∞ and z is bounded. �

We then prove Proposition 2.
Proof. There exists an α > 0 such that A(t ), B(t ) ∈ o( 1

t1+α )
(we can choose the same α for both functions by taking the
smallest one). In other words, for all ε > 0, there exists a T >

0 such that, for all t � T , we have |A(t )| < ε
t1+α and |B(t )| <

ε
t1+α .

Let ε > 0 and T > 0 as above. For any x < t < y larger
than T we have

|z(y) − z(x)| =
∣∣∣∣
∫ y

x
ż(t )dt

∣∣∣∣
�

∫ y

x
|ż(t )|dt =

∫ y

x
|A(t )z(t ) + B(t )|dt

�
∫ y

x
[|A(t )||z(t )| + |B(t )|]dt

� ε

∫ y

x

1

t1+α
[|z(t )| + 1]dt

� εM
∫ y

x

1

t1+α
dt � εM

∫ ∞

1

1

t1+α
dt

� εM/α,

where M > |z(t )| + 1. The function z is bounded, and it has
at least one accumulation point. Let 	 and 	′ be two accu-
mulation points; that is, two sequences (xn) and (yn) going
to +∞ such that z(xn) → 	 and z(yn) → 	′ exist. For large
enough n, xn and yn are larger than T , and thus, for all
ε > 0, there exists an N ∈ N such that n � N implies that
|z(yn) − z(xn)| � εM/α. In the limit n → +∞, we find that
for all ε > 0 we have |	′ − 	| � εM/α, which leads to 	 = 	′.
Since z has a unique accumulation point, z is a convergent
function. �
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