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Leggett-Garg inequalities in the quantum field theory of neutrino oscillations
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We investigate Leggett-Garg inequalities for neutrino oscillations in the quantum field theoretical setting. We
derive an exact flavor-mass uncertainty relation and prove that this uncertainty product yields an upper bound
to the violation of the inequalities. The relation between temporal nonclassicality and quantum uncertainty real-
izes the Lüders upper bound to the violation of the Leggett-Garg inequalities in quantum field theory, analogous
to the Tsirelson upper bound to the violation of the Bell inequalities. By studying the problem both in the exact
field-theoretical setting and in the limiting quantum mechanical approximation, we show that on average the
inequalities are violated more often and more strongly in quantum field theory than in quantum mechanics.
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I. INTRODUCTION

Neutrino physics covers a very broad spectrum of appli-
cations in different fields of scientific investigation [1–4]. In
particular, the mixed structure of elementary particles has
significant implications in the framework of quantum infor-
mation and quantum resource theory. Indeed, flavor mixing
is closely associated with the entanglement of single-particle
states and other nonlocal features, both bipartite and multipar-
tite [5–11].

In the framework of quantum field theory, flavor mixing
features important aspects which differentiates it from the
usual quantum mechanical scheme [3,4,12–17]. For example,
in the flavor Fock space approach we employ here, one can
consider the unitary inequivalence between the flavor and
mass Fock spaces which can be built from the respective
vacuum states [18–23], and the possible dynamical origin of
mixing, arising from D-branes or chirally symmetric models
[24,25]. Other important developments concern the relation
between neutrino physics and gravity. These include the study
of neutrinos in curved backgrounds, in astrophysical regimes
as well as in connection with the cornerstone principles of
general relativity, including general covariance and the equiv-
alence principle. For a comprehensive review of these topics,
see Ref. [26].

Following a seminal work on Leggett-Garg inequalities in
particle mixing [27], the quantum nature of neutrino oscil-
lations has been probed with the MINOS experiment data
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by observing the violation of a reduced Leggett-Garg type
inequality derived in the single-particle quantum mechanical
approximation of quantum field theory [28]. Leggett-Garg in-
equalities are a central object in fundamental quantum physics
and quantum information science, as they can be viewed as
the temporal analog of the Bell inequalities quantifying spatial
quantum nonlocality [29–33].

Among other possible applications [34–36], Leggett-Garg
type inequalities have been proposed as a tool to discriminate
between Dirac and Majorana fermions by studying neutrino
oscillations in matter within phenomenological models of dis-
sipative environments [37]. Moreover, different forms of the
inequalities have been discussed in the study of three-flavor
neutrino oscillations [38,39] and in the investigation of pos-
sible nonstandard neutrino interactions beyond the standard
model [40].

Despite the fundamental insight into temporal nonclas-
sicality that they could provide at the microscopic scale,
Leggett-Garg inequalities in elementary particle physics have
been mostly studied in the quantum mechanical approxima-
tion rather than in the exact framework of quantum field
theory. In this paper, we address Leggett-Garg inequalities
in the full generality of the quantum field theory of neutrino
mixing and oscillations [18–23], an ideal playground for the
analysis of temporal nonclassicality.

The first main achievement of the present work is that
Leggett-Garg temporal inequalities in neutrino physics are
intimately related to quantum uncertainty. We obtain this re-
sult by observing that in flavor oscillation processes there
exists a conserved charge besides the one associated with total
lepton number conservation, and that this quantity is the mass-
charge operator. From the noncommutativity of lepton and
mass charges and using the Robertson-Schrödinger prescrip-
tion, we obtain a flavor-mass uncertainty relation that mirrors

2469-9926/2023/108(3)/032210(7) 032210-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7790-4428
https://orcid.org/0000-0002-2273-0421
https://orcid.org/0000-0002-6738-5537
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.032210&domain=pdf&date_stamp=2023-09-14
https://doi.org/10.1103/PhysRevA.108.032210


MASSIMO BLASONE et al. PHYSICAL REVIEW A 108, 032210 (2023)

the Leggett-Garg inequality in Wigner form [41]. Indeed, the
Wigner form of the inequalities turns out to be more robust
than the standard ones under unsharp measurements [39,41],
and more suitable for the study of neutrino oscillations, be-
ing entirely expressed in terms of the observable oscillation
probabilities [39].

The second main achievement, a direct consequence of
the first one, is that the flavor-mass uncertainty product is
an upper bound to the violation of the Leggett-Garg inequal-
ity in neutrino oscillations. This represents an upper limit
to the violation of the temporal inequalities, the so-called
Lüders bound, yielding the temporal analog of the Tsirelson
upper bound to the violation of the spatial Bell inequalities
in the quantum field theoretical framework of neutrino mix-
ing. Finally, by comparing the different expressions, we show
that the Leggett-Garg inequalities are typically violated more
generically and more frequently in quantum field theory than
in quantum mechanics.

The paper is organized as follows: In Sec. II we intro-
duce the mass-charge operator and the flavor-mass uncertainty
relations. In Sec. III we compute WLGI for neutrino oscil-
lations and we compare the results in quantum field theory
and quantum mechanics. Finally in Sec. IV we present the
conclusions. In the Appendix, we give a brief introduction to
neutrino mixing and oscillations in QFT.

II. NEUTRINO MIXING AND FLAVOR-MASS
UNCERTAINTY

A. Flavor charges and mass-charge operator

Consider the Lagrangian density for two flavor Dirac neu-
trino fields:

L(x) = (ν̄e(x) ν̄μ(x))
(

i/∂ −
(

me meμ

mμ meμ

)) (
νe(x)
νμ(x)

)
, (1)

which is the free part of the weak interaction Lagrangian in
the flavor basis [42]. This expression can be diagonalized in
the mass basis [1](

νe(x)
νμ(x)

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1(x)
ν2(x)

)
, (2)

where tan 2θ = 2meμ/(mμ − me). The mass and flavor rep-
resentations are unitarily inequivalent representations of the
fermionic anticommutation relations [18–23], and in the fol-
lowing we will work in the flavor basis.

One can verify that the Lagrangian (1) is invariant under
the action of the group U(1) × U(1) [24]. Hence, the ensuing
conserved charges are

Q =
∑

σ=e,μ

∫
d3x : ν†

σ νσ :, (3)

QM =
∫

d3x :
(
ν†

e ν†
μ

) (
me meμ

mμ meμ

) (
νe

νμ

)
: . (4)

Here, Q is the generator of the global phase transformation
νσ → eiανσ associated with the total lepton number (indeed,
it commutes with the neutrino production-detection vertex
[2,42]), while QM is a mass-charge operator. The lepton
charge can be decomposed as

Q = Qe(t ) + Qμ(t ), (5)

where

Qσ (t ) =
∫

d3x : ν†
σ νσ :, σ = e, μ, (6)

are the flavor lepton charges [2,43].

B. Flavor-mass uncertainty relations

Based on the above, we can introduce an uncertainty re-
lation stemming from the noncommutativity of the flavor
charges Qσ with QM . Consider the Robertson-Schrödinger
uncertainty relation for Qσ and QM :

σ 2
Q σ 2

M � 1
4 |〈[Qσ (t ), QM]〉σ |2. (7)

The above inequality defines a flavor-mass uncertainty
relation.

Using Eq. (A16) one can expand the charges as

Qρ (t ) =
∑

r

∫
d3k

[
α

r†
k,ρ (t ) αr

k,ρ (t ) − β
r†
k,ρ (t ) βr

k,ρ (t )
]
, (8)

QM =
∑
r,ρ

mρ

∫
d3k

[
α

r†
k,ρ (t ) αr

k,ρ (t ) − β
r†
k,ρ (t ) βr

k,ρ (t )
]

+ meμ

∑
r,σ �=ρ

∫
d3k

{|Uk|
[
α

r†
k,σ (t ) αr

k,ρ (t )

− β
r†
k,σ (t ) βr

k,ρ (t )
] + εr |Vk|

[
α

r†
k,σ (t ) β

r†
−k,ρ (t )

− βr
−k,σ (t ) αr

k,ρ

]}
, (9)

where εr ≡ (−1)r , and the coefficients |Uk|, |Vk| are given by
the expressions (A8) and (A20).

Furthermore, it is worth noting that σ 〈|QM |〉σ = mσ , where
〈· · · 〉σ = 〈νr

k,σ | · · · |νr
k,σ 〉. Bearing this in mind, computing the

variances, one finds

σ 2
Q = 〈

Q2
σ (t )

〉
σ

− 〈Qσ (t )〉2
σ = Qσ→σ (t )[1 − Qσ→σ (t )], (10)

σ 2
M = 〈

Q2
M

〉
σ

− 〈QM〉2
σ = m2

eμ. (11)

The field-theoretical flavor oscillation probability is the ex-
pectation value of the flavor charges with respect to a
reference flavor state [43], and its explicit form is reported
in Eq. (A24). The evaluation of the right-hand side of Eq. (7)
yields

|〈[Qσ (t ), QM]〉σ | = meμ C(t )

≡ meμ sin(2θ )|[|Uk|2 sin(2ω−
k t )

+ |Vk|2 sin(2ω+
k t )]|, (12)

and thus the quantum field-theoretical flavor-mass uncertainty
relation

FQFT ≡ Qσ→σ (t )[1 − Qσ→σ (t )] − 1
4C

2(t ) � 0. (13)

The ultrarelativistic limit is achieved when mi/|k| � 1 while
keeping δm2 = m2

2 − m2
1 �= 0; under these conditions, one

has |Uk| ≈ 1 and |Vk| ≈ 0, thus implying that the exact
field-theoretical expression FQFT reduces to the quantum me-
chanical approximation FQM:

FQM ≡ Pσ→σ (t )[1 − Pσ→σ (t )] − 1
4Pσ→ρ (2t ) � 0. (14)
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Within such approximation, neutrino flavor states (A21) are
just linear superpositions of (single-particle) definite-mass
states [1] [see Eq. (A5)], and the quantum mechanical oscilla-
tion probability (A12) is recovered. Therefore, in this regime,
Eq. (7) becomes

Pσ→ρ (t ) [1 − Pσ→ρ (t )] � 1
4Pσ→ρ (2t ), σ �= ρ. (15)

The flavor-mass uncertainty relation yields that the lower
bound on the transition probability product at a generic time t
is set by the flavor oscillation probability at time 2t .

In the following, we will show that this fact unambiguously
establishes the existence of time correlations for flavor neutri-
nos in terms of Leggett-Garg temporal inequalities and their
relation with the flavor-mass uncertainty principle derived
above.

III. LEGGETT-GARG INEQUALITIES IN QUANTUM
FIELD THEORY

Consider an observer performing measurements on a
dichotomic variable having outputs ±1 at different times
t0, t1, t2. Let O(t ) be an operator which quantifies such observ-
able (O|±〉 = m|±〉, with m = ±1). One can then introduce
temporal relations, analogs of the Bell inequalities, that are
known as the Leggett-Garg temporal inequalities [29]. Various
forms of the latter can be obtained, by working with the joint
probabilities P(mi, mj ) on the measurements performed at
three different times t0, t1, t2 [33,41].

In what follows, we investigate temporal inequalities in the
field theory framework for neutrino oscillations. We will es-
tablish that temporal inequalities are violated more frequently
and more generically in quantum field theory than in the quan-
tum mechanical approximation, thus showing that quantum
field theory is more nonlocal than quantum mechanics in the
time regime. Moreover, the flavor-mass uncertainty product
provides an upper bound to the violation of the Leggett-Garg
inequalities, thus realizing the Lüders temporal analog of the
Tsirelson upper limit on the violation of the Bell inequalities
[44–47]. Indeed, the quantum mechanical upper bound to the
standard Leggett-Garg inequality, typically referred to as the
Lüders bound [29,32,48–50], holds also for the Wigner form
of the Leggett-Garg inequality [41], with the temporal corre-
lation functions belonging to the standard set of inequalities
replaced by a probabilistic representation of macrorealism.

First, let us focus on O(t ) = Q3(t ) ≡ [Qe(t ) − Qμ(t )]
[i.e., the flavor charges defined in Eq. (6)]. One can
verify that Q3(t )|νr

k,e(t )〉 = |νr
k,e(t )〉 and Q3(t )|νr

k,μ(t )〉 =
−|νr

k,μ(t )〉. Hence, this operator is a dichotomic variable quan-
tifying the neutrino flavor. Without loss of generality, let us
assume that a muonic neutrino is produced at time t0 = 0.
After that, two measurements are performed at t1 = t and
t2 = 2t .

The Leggett-Garg temporal inequality in Wigner form [39]
reads

P(m1, m2) − P(m0, m1) − P(−m0, m2) � 0, (16)

where m0 = m1 = m2 = 1. After some algebra, in the exact
quantum field-theoretical formulation we obtain

WQFT ≡ Qe→e(t )Qμ→e(t ) − Qμ→e(2t ) � 0. (17)

FIG. 1. Violation of the Leggett-Garg inequality in Wigner form,
as a function of the dimensionless parameter k̃ ≡ |k|/√m1 m2, in
quantum field theory (red solid line) and in quantum mechanics
(blue dashed line), for sample values m1 = 2, m2 = 30, t = 1, and
θ = π/6. Horizontal dot-dashed green line: Lüders bound Wmax

QFT =
Wmax

QM = 0.25. All plotted quantities are dimensionless.

In the ultrarelativistic regime, the limiting quantum mechani-
cal approximation to Eq. (17) reads

WQM ≡ Pe→e(t )Pμ→e(t ) − Pμ→e(2t ) � 0, (18)

which coincides with the standard form used for the investi-
gation of temporal correlations in neutrino physics [39].

In Fig. 1, we report WQFT and WQM as functions of |k|,
for given values of the masses and of the time t (which
here plays the rôle of the baseline). As expected, WQFT and
WQM coincide in the ultraviolet and in the infrared limits,
with a significant deviation occurring in the intermediate
regime |k| ≈ √

m1 m2. The pronounced nonclassical behavior
of quantum field theory is consistent with the general result
of Refs. [51,52] obtained for the Bell inequalities in quan-
tum field theory. The quantum field theoretical violation of
the Leggett-Garg inequality appears more generic than the
quantum mechanical one, meaning that it is realized for a
wider class of states and a larger set of physical parameters.
For instance, from Fig. 1 one can observe that there are many
more momentum intervals over which the violation occurs at
the field theory level (17), but does not occur at the quantum
mechanical level (18).

Next, we investigate the relation between the temporal
inequalities and the flavor-mass uncertainty (15). By using
Eq. (A12), one can immediately observe that the inequality
in Eq. (15) is saturated for θ = 0, θ = π/2 (no mixing) and
θ = π/4 (maximal mixing). In Fig. 2 we report the behavior
of WQFT, FQFT, WQM, and FQM. In all cases, the uncertainty
product is an upper bound to the violation of the Leggett-
Garg inequality, both in quantum field theory and in quantum
mechanics. In the quantum mechanical regime the bound is a
trivial consequence of the fact that, denoting F − W ≡ , we
have

QM = 3
4 Pσ→ρ (2t ) � 0. (19)

For θ = π/4, FQM is identically vanishing and the tempo-
ral inequalities are never violated, since WQM � 0. Indeed,
for this value of the mixing angle neutrino states are
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FIG. 2. (a) Behavior of WQFT (blue solid line) and of FQFT

(red dashed line) as functions of the dimensionless parameter k̃ ≡
|k|/√m1 m2, for sample values m1 = 2, m2 = 30, t = 1, and θ =
π/8. (b) Behavior of WQM (blue solid line) and of FQM (red dashed
line) for the same sample values. In both panels the horizontal dot-
dashed green line is the Lüders bound Wmax

QFT = Wmax
QM = 0.25. All

plotted quantities are dimensionless.

near-classical coherent states that minimize the flavor-mass
uncertainty product.

Turning to quantum field theory, consider the quantity

4 QFT = sin2(2θ )[sin2(ω−
k t ) |Uk|2(4 − |Uk|2)

+ sin2(ω+
k t ) |Vk|2(4 − |Vk|2)

− 2|Vk|2 |Uk|2 sin(ω+
k t ) sin(ω−

k t )]. (20)

Recalling that |Uk|2 + |Vk|2 = 1 for any k, we obtain

sin2(2θ ){ |Vk|2 |Uk|2[sin(ω−
k t ) − sin(ω+

k t )]2

+ 3|Vk|2 sin2(ω+
k t ) + 3 |Uk|2 sin2(ω−

k t )} � 0. (21)

Therefore, FQFT is always an upper bound to WQFT.
It is straightforward to verify that both FQFT and FQM fea-

ture a global maximum equal to 1/4 in correspondence of the
mixing angle θ = π/8. Such value realizes the Lüders bound
both in the quantum mechanical and in the quantum field
theoretical setting, fixing the maximum allowed quantum vio-
lation of the Leggett-Garg inequality Wmax

QFT = Wmax
QM = 0.25.

This result has been achieved by means of the flavor-mass
uncertainty relations, which provide an upper bound for the
Wigner form (16) in both the relativistic and the nonrelativis-
tic regimes. From Fig. 3 we observe that strong violations of
the Leggett-Garg inequality in Wigner form occur in quantum

FIG. 3. (a) Behavior of WQFT (blue solid line) and of FQFT

(red dashed line) as functions of the dimensionless parameter k̃ ≡
|k|/√m1 m2, for sample values m1 = 2, m2 = 30, t = 1 and θ =
π/4. (b) Behavior of WQM (blue solid line) and of FQM (red
dashed line) for the same sample values. All plotted quantities are
dimensionless.

field theory even when, as in the case of maximal flavor mix-
ing θ = π/4, there is no violation in the quantum mechanical
limit, thereby certifying the higher degree of temporal non-
classicality of quantum field theory with respect to quantum
mechanics.

Such stronger violation of the Leggett-Garg inequalities
in quantum field theory with respect to quantum mechanics
perfectly mirrors the case of the spatial Bell inequalities;
for the latter case, Summers and Werner proved, in the full
generality of algebraic quantum field theory [51,52], that Bell
inequalities are always maximally violated in quantum field
theory, even for the vacuum state, thus showing that quantum
fluctuations of the vacuum cannot be reproduced with local
hidden variable theories.

In neutrino oscillations, the flavor vacuum |0〉eμ [18] is a
nontrivial entangled state of neutrino-antineutrino pairs, and
this feature provides the source of both the pronounced non-
local behavior of flavor mixing in the temporal regime and the
discrepancy between WQFT and WQM for |k| ≈ √

m1m2.

IV. DISCUSSION AND OUTLOOK

We have investigated the Leggett-Garg inequalities in the
quantum field theory of neutrino oscillations. In analogy and
in agreement with the general result holding for the Bell
inequalities, we have found that the temporal inequalities
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exhibit a violation that is more nonclassical in quantum field
theory than in quantum mechanics.

We have derived a flavor-mass uncertainty relation out of
the mass-charge operator and the lepton charges. Such an un-
certainty relation provides an upper bound to the violation of
the Leggett-Garg inequalities at all energy scales, establishing
a temporal analog of the Tsirelson bound for Bell inequalities
in the case of neutrino oscillations.

It would be interesting to consider extensions to three-
flavor mixing with CP violation and to nonstandard neutrino
interactions [40], in order to probe signatures of new physics
beyond the standard model phenomenology and to assess the
possibility of applying the present formalism in different set-
tings. For instance, we may think of the axion-photon mixing
[53–57] and apply the same considerations developed in the
present work to quantum optical frameworks.
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APPENDIX: NEUTRINO OSCILLATIONS: QUANTUM
MECHANICS VERSUS QUANTUM FIELD THEORY

In a quantum field-theoretical setting, the starting point in
the investigation of oscillation phenomena is provided by the
mixing transformation

νσ (x) =
∑

j

Uσ jν j (x), (A1)

where νσ are the flavor fields (i.e., the ones involved in the
weak interaction), ν j are the mass fields (which describe
neutrinos with definite masses), and U is the unitary mixing
matrix.

It is commonly believed that a flavor Fock space can be
built in the ultrarelativistic limit mj/|k| → 0, where mj are the
neutrino masses [16]. Under these circumstances, annihilation
operators are defined as

α̃r
k,σ =

∑
j

U ∗
σ j α

r
k, j, (A2)

where αr
k, j are the annihilation operator of fields with definite

mass

ν j (x) =
∑

r

∫
d3k

(2π )
3
2

[
ur

k, j (t ) αr
k, j + vr

−k, j (t ) β
r†
−k, j

]
eik·x,

(A3)

with ur
k, j (t ) = ur

k, je
−iωk, j , vr

−k, j (t ) = vr
−k, je

iωk, j , ωk, j =√
|k|2 + m2

j . Similar relations hold for βr
k, j . Flavor states can

thus be constructed as∣∣νr
k,σ

〉
P

≡ α̃
r†
k,σ |0〉, (A4)

where |0〉 is the vacuum state, which is annihilated by αr
k, j and

βr
k, j (mass vacuum). These states are none other than the flavor

states originally introduced by Pontecorvo and collaborators
[1], ∣∣νr

k,σ

〉
P

=
∑

j

U ∗
σ j

∣∣νr
k, j

〉
. (A5)

In the relativistic limit, these are eigenstates of flavor charges
(6) at fixed time,

lim
mi/|k|→0

Qσ (0)
∣∣νr

k,σ

〉
P

= ∣∣νr
k,σ

〉
P
. (A6)

However, this is not true at all energy scales. To see this, let
us explicitly consider the two-flavor case; the mixing transfor-
mation takes the form (2). We can then evaluate the oscillation
formula as the expectation value of the flavor charge on a
reference neutrino state [43]

P̃e→μ(t ) ≡ P

〈
νr

k,e

∣∣Qμ(t )
∣∣νr

k,e

〉
P

= sin2(2θ )

2
{1 − |Uk| cos[(ωk,1 − ωk,2)t]}, (A7)

where |Uk| ≡ ur†
k,1ur

k,2:

|Uk| = Ak

(
1 + |k|2

(ωk,1 + m1)(ωk,2 + m2)

)
, (A8)

Ak =
√(

ωk,1 + m1

2ωk,1

)(
ωk,2 + m2

2ωk,2

)
. (A9)

In the ultrarelativistic limit, |Uk| → 1, and we recover the
standard oscillation formula

Pe→μ(t ) = sin2(2θ ) sin2

(
ωk,1 − ωk,2

2
t

)
. (A10)

In particular, we observe that

P̃e→μ(0) = sin2(2θ )

2
(1 − |Uk|), (A11)

which is physically inconsistent, because it entails that flavor
is undefined even at t = 0. Note that, in terms of Pon-
tecorvo states, the description of neutrino oscillations in the
ultra-relativistic limit is equivalent to a quantum mechanical
approach with the Hamiltonian given by

H =
∑
j,k,r

ωk, j

∣∣νr
k, j

〉〈
νr

k, j

∣∣, (A12)

with which the quantum mechanical oscillation probability
can be computed, yielding

Pσ→ρ (t ) =
∣∣∣P

〈
νr

k,ρ

∣∣ei H t
∣∣νr

k,σ

〉
P

∣∣∣2
, (A13)

thus recovering the result (A10).
In order to solve such inconsistencies, notice that Eq. (2)

can be equivalently rewritten as [18]

νσ (x) = G−1
θ (t ) ν j (x) Gθ (t ), (A14)
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with (σ, j) = (e, 1), (μ, 2), and Gθ (t ) given by

Gθ (t ) = exp

{
θ

∫
d3x [ν†

1 (x)ν2(x) − ν
†
2 (x)ν1(x)]

}
. (A15)

From (A3) and (A14) it follows that flavor fields can be
expanded as

νσ (x) =
∑

r

∫
d3k

(2π )
3
2

[
ur

k, j α
r
k,σ (t ) + vr

−k, j β
r†
−k,σ (t )

]
eik·x,

(A16)

with (σ, j) = (e, 1), (μ, 2), and where the flavor ladder oper-
ators are given by(

αr
k,σ (t )

βr
−k,σ (t )

)
= G−1

θ (t )

(
αr

k, j (t )
βr

−k, j (t )

)
Gθ (t ). (A17)

In the Heisenberg picture, the flavor vacuum is

|0〉e,μ = G−1
θ (0) |0〉1,2, (A18)

where |0〉1,2 denotes the mass vacuum [cf. Eq. (A4)] for the
two-flavor case. One can easily verify that |0〉e,μ is annihilated
by the flavor operators defined in Eq. (A17). Moreover, one
can prove that

lim
V →∞ 1,2〈0|0〉e,μ = lim

V →∞
e

V
(2π )3

∫
d3k ln(1−sin2 θ |Vk|2 )2 = 0, (A19)

where

|Vk| = Ak

( |k|
ωk,1 + m1

− |k|
ωk,2 + m2

)
, (A20)

meaning that flavor and massive fields belong to unitarily
inequivalent representations of the anticommutation relations.

Now, exact flavor eigenstates can be explicitly constructed
as ∣∣νr

k,σ

〉 = α
r†
k,σ |0〉e,μ, (A21)

where flavor operators are taken at reference time t = 0. One
can prove that

Qσ (0)
∣∣νr

k,σ

〉 = ∣∣νr
k,σ

〉
. (A22)

The corresponding oscillation formula can be found by taking
the expectation value of the flavor charges [43]

Qσ→ρ (t ) = 〈Qρ (t )〉σ . (A23)

Explicitly

Qσ→ρ (t ) = sin2(2θ )[|Uk|2 sin2(ω−
k t ) + |Vk|2 sin2(ω+

k t )],

Qσ→σ (t ) = 1 − Qσ→ρ (t ), σ �= ρ, (A24)

where ω±
k ≡ (ωk,2 ± ωk,1)/2. Note that

Qσ→ρ (t ) ≈ Pσ→ρ (t ) when mi/|k| → 0, ω−
k �= 0. (A25)

We thus recover the usual phenomenological results in the
ultrarelativistic limit.
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