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Impossibility of bosonic autonomous entanglement engines in the weak-coupling limit
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Entanglement is a fundamental feature of quantum physics and a key resource for quantum communication,
computing, and sensing. Entangled states are fragile and maintaining coherence is a central challenge in
quantum information processing. Nevertheless, entanglement can be generated and stabilized through dissipative
processes. In fact, entanglement has been shown to exist in the steady state of certain interacting quantum
systems subject solely to incoherent coupling to thermal baths. This has been demonstrated in a range of bi- and
multipartite settings using systems of finite dimension. Here we focus on the steady state of infinite-dimensional

bosonic systems. Specifically, we consider any set of bosonic modes undergoing excitation-number-preserving
interactions of arbitrary strength and divided between an arbitrary number of parties that each couple weakly to
thermal baths at different temperatures. We show that a unique steady state is always separable.
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I. INTRODUCTION

Entanglement is a central feature of quantum physics and a
key resource for many quantum-information-processing tasks
[1], such as quantum communication, computing, and sensing
[2-5]. The generation and stabilization of entangled states
is a challenging task. As entanglement is generally fragile
with respect to loss and noise [1], and considerable effort
is usually required to isolate the system of interest from the
environment. Nevertheless, it has been shown that coupling to
an environment can be used to aid entanglement generation
[6-13]. Steady-state entanglement can also be generated by
dissipation and external driving [14—17]. In fact, dissipative
steady-state entanglement generation is even possible without
any source of coherence or external control, a setting referred
to as autonomous. This has been demonstrated in a number of
different contexts for finite-dimensional systems [18-29].

Much less is known for infinite-dimensional systems, al-
though they are widely employed in practice in experiments
with quantum optical, optomechanical, and superconducting
setups. In particular, the class of so-called Gaussian states
and operations in bosonic systems are ubiquitous as they are
relatively simple to realize and their theory is well understood
[30]. Gaussian processes, e.g., squeezing and linear interfer-
ometers, are used extensively in continuous-variable quantum
information processing and quantum optics in general. How-
ever, it turns out that non-Gaussian resources are necessary
in order to perform various important quantum-information-
processing tasks including, for example, entanglement distil-
lation [31-33], quantum error correction [34], and universal
quantum computation [35,36]. It is therefore of interest to
determine the combinations of Gaussian and non-Gaussian
resources that can generate steady-state entanglement. In the
present work, we demonstrate that autonomous, steady-state
entanglement in bosonic systems with passive Gaussian inter-
actions is not possible.

We consider a multimode bosonic system undergoing
quadratic, excitation-preserving interactions (i.e., passive
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Gaussian interactions or linear interferometers) of arbitrary
strength, divided between an arbitrary number of parties. The
modes of different parties couple weakly to thermal baths at
different temperatures, with the energy distribution in each
bath following either Bose-Einstein or Fermi-Dirac statistics
(both bosonic and spin baths are allowed). The system-bath
interactions are also quadratic but not necessarily excitation
number preserving. We show that in such a setting, no entan-
glement can ever be present in the steady state between the
parties of the system.

The paper is organized as follows. In Sec. II we intro-
duce the model of our thermal machines. We then present a
separability criterion in Sec. III that will be satisfied by the
steady states. The master equations that describe the dynamics
of our machines are derived in Sec. IV. We focus on two
situations: a global approach, which is appropriate when the
interactions between subsystems are strong relative to the
system-bath couplings; and a local approximation, which de-
scribes a situation where the interactions between subsystems
are weak relative to the system-bath couplings. We then show
that the steady state is separable in both situations. Finally, we
conclude in Sec. V.

II. BOSONIC AUTONOMOUS THERMAL MACHINE

We consider a collection of bosonic modes undergoing
excitation-preserving interactions of arbitrary strength and
distributed between an arbitrary number of parties that each
couple weakly to thermal baths at different temperatures
(Fig. 1). The total system S consists of d bosonic modes with
associated creation and annihilation operators that satisfy the
canonical commutation relations [a;, &,T(] =8, [aj, a] =0,
and [&;, &z] = 0. The corresponding quadrature operators for
each mode are defined as

N 1 At ~ ~ i AT N
4j=—=;+a;), p;=—=a;—a, M
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FIG. 1. Sketch of the quantum thermal machine. The system
consists of d bosonic modes distributed between N subsystems. The
system modes are coupled via excitation-number-preserving interac-
tions. The subsystems are separately coupled to either bosonic or spin
baths. Bosonic baths exchange both energy and particles with the
system while the spin baths exchange only energy. The system-bath
coupling is taken to be weak, while the intersystem couplings can be
of arbitrary strength.

and fulfill the commutation relations [§;, px] = i8;x, where
we use units with # = 1 throughout.

The Hamiltonian of the system Hy is taken to be a general
stable (Hs > 0), quadratic, and excitation-number-preserving
Hamiltonian

Hs =" Mala;, )

iJ
where H;; is a Hermitian matrix. There are N subsystems and
baths, with the nth subsystem denoted by S, and coupling to

the nth bath E,. The total environment is described by the
continuous noninteracting Hamiltonian

N N
Br=Y A5 =Y / Q@ @@ dg, ()
n=1 n=1

and we assume that the bath spectra are non-negative with
€,(q) = 0. In general, each bath may be bosonic or consist of
spins. For the bosonic baths, the bath creation and annihilation
operators satisfy the canonical commutation relations

[4(K), &5(0)] = 8umd(k — q), “4)

[24(K), En(@)] = [2}(K), &},(9)] = 0, ®)

while spins in different spin baths commute and spins within
the same bath obey the anticommutation relations

{e,(k), & (@)} = 8(k — q), (6)

{ea(k), &u(q)} = {2(k), (@)} = 0. (7

Finally, the system-bath interaction is a quadratic Hamiltonian
of the form Hgp = 22121 V,, with
Vo= / g/(@)@} +nja))é(9)dg +He.  (3)
jeSy
Here the j sum is taken over the modes of subsystem S,,

the complex coefficients g;(g) quantify the strength of each
interaction, and the parameters n; € {0, 1} allow for both

excitation-number-conserving (7; = 0) and “position-like”
(n; = 1) coupling to the environment.

The bosonic baths exchange energy and particles with the
system, and are thus characterized by an inverse temperature
B, = 1/kgT, and chemical potential u,. On the other hand,
the spin baths only exchange energy with the system. We
assume that the environment is initially in the thermal state

re=Q tr[e— e, —ral)Br]’ ®

N o o= He, 1N,
n=1

where N, = f 6‘,’1 (9)¢,(q) dq is the number operator of the nth
bath and the chemical potential should only be included for
bosonic baths. In this case, the two-point correlation functions
satisfy

(@5 )2em(@)) = pal€nk)) Sum 8k — q), (10)
(En)en(@) =0, (k)2 (@) =0, (1)
where (-) is the expectation value in the state pr and
Pal€) = [&, + 7P (12)
is the Fermi-Dirac distribution for spin baths (§, = 1) or the
Bose-Einstein distribution for bosonic baths (§, = —1).

III. A CRITERION FOR SEPARABILITY

Our goal is to derive the steady state of the system in the
model above. Before proceeding, however, we first consider
a criterion for separability. As the steady state is found to be
Gaussian (see Sec. IV C), separability can be determined from
the covariance matrix. By definition, a Gaussian state p has a
Wigner function of the form

1 1
Qr)! /det =

Here x = (q1, p1,---,94, Pd) € R2? are canonical phase-
space coordinates, X is a vector of first moments X; = tr[%; ]
with X = (41, p1, -- -, 4a, Pa), and the covariance matrix X is
a real, symmetric, and positive-definite matrix with elements

W(x) = e SO B —8). (13)

1
Y= E(ffjffk + X%) — (%) (%), (14)

where (-) = tr[-p]. The covariance matrix of a valid quantum
state satisfies the Robertson-Schrédinger uncertainty relation

2+ég>o, (15)

where €2 is the symplectic matrix

4o 1
Q=6 <_1 0). (16)
j=1

As shown by Werner and Wolf [37], a bipartite Gaussian
state of systems A and B with covariance matrix Xp is separa-
ble if and only if there exist valid covariance matrices ¥4 and
¥ for systems A and B such that 45 > X4 @ X5. We would
like to apply this result to our steady states. However, it turns
out that the steady-state covariance matrices derived below
in Sec. IV are more conveniently expressed in coordinates
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different to (g1, p1,--.,q4, pa)- Specifically, in the com-
plex coordinates (q1 + ip1, ..., qa +1pa, q1 = ip1s .., qa —
ipa)/~/2 they have the simple block structure

, f(o* 0O
o (7 9) -

where oj = %(&;&k —}—&k&;) — (&j)(&k) and the prime de-
notes the complex form. The transformation to complex
coordinates is achieved by first applying the permutation

P that maps (g1, p1,-..,44, pa) 10 (q1, ..., 44, P1, .-, Pa)
and then the unitary matrix
1 (I, il )
U=— N B (18)
\/E(Id —lld

where I; is the d x d identity matrix. Thus, the similarity
transformation U P yields &' = UPZPTU".

From the steady-state covariance matrix (17), we observe
that (@;ax) — (a;){ax) = 0, and so the corresponding Gaus-
sian steady state is not squeezed. Separability of the steady
state then follows from the fact that every entangled Gaussian
state is squeezed, see, e.g., Ref. [38]. For completeness, we
provide a proof that any X’ of the form (17) corresponds
to a X that satisfies the separability condition across any
bipartition. In complex coordinates, the physicality condition
(15) becomes X’ + %K > 0, where

(L. 0
K_<0 —Id>’ (19)

as may be seen by applying the transformation UP. Since
¥’ in (17) comes from a valid steady state, it follows that
o — %Id > 0. Taking the complex conjugate, we also have

o* — %Id > 0. These two results then imply that ¥’ > %12[1.
Transforming back to the real coordinates we obtain ¥ >
%Izd, as the eigenvalues are preserved under the transforma-
tion. For any bipartition of the total system we have that
Ly = Iy @ Ig, with I and I identity matrices corresponding
to subsystems A and B, and %I is always a valid covariance
matrix (the covariance matrix of the vacuum state). Hence,
a Gaussian state with covariance matrix of the form (17) is
separable across every bipartition.

IV. OPEN-SYSTEM DYNAMICS AND STEADY STATES

In this section we derive master equations for the open-
system dynamics of the setup in Fig. 1. It is shown that the
steady state is a Gaussian state with a covariance matrix of
the form (17), and is therefore separable by the argument of
Sec. III. We consider weak system-bath couplings and large
baths, and assume that the initial composite state of the system
and baths factorizes. In this case, one can apply a perturba-
tive approach in the system-bath coupling to derive a master
equation for the time evolution of the system. A time-local
(Markovian) description of the system evolution, which does
not depend on the entire history of the system state, is obtained
provided that correlations in the baths decay much faster than
variations of the state of the system p(¢) in the interaction
picture (denoted by a tilde).

Following the standard procedure, one finds (see, e.g.,
Refs. [39,40] for an in-depth derivation)

i~(t)
dtp

—_ f dutes (Ase (0, [Hse (6 — ), p(0) @ pell).
0
20)

Substituting in the expressions for Hgp and pr leads to

d o %0 o
TPO=3" > /0 du (g [B], ()Brape]

n=1 jkeS,

x AL — wpAD) — AALE —wpr))
+ e [Bju(u)B], pe)(A (t — w)p (A1)
—Al(®A;(t — wp(t)) + Hee), 1)

where we have introduced the system operators A i) =
aj(t)+n jfz; (t) to simplify the equation, and in the interac-
Efion picture the bath operators B n=/ 85(q)én(q) dgq have the
orm

Bju(u) = f €5(@)e(qe " " dg. (22)

It is also convenient to define the one-sided Fourier transforms
of the bath correlation functions,

V() = / e (B}, (0B pple™ " du,  (23)
0

o0
CiP@) = [ telbyB] pele s, 24
’ 0

and split them into their Hermitian and anti-Hermitian parts
i 1 . (nl
CP (@) = 3y (@) + sl (). (29)

The following expressions will also be useful when we con-
sider separability of the steady state,

i [, 1By ] = / DL @D, (er(q)) dg, (26)

trg[B,(w)B], prl = / g5 (@)g(qe

x [1—=&,pu(en(g))]dg. 27

In order to make further progress with the evolution equa-
tion (21), we need to deal with the u dependence appearing
in the interaction-picture creation and annihilation operators.
We consider two situations separately and derive a master
equation for each case. First we take the global approach,
in which the baths interact with the eigenmodes of the total
system Hamiltonian. This is appropriate when the interaction
between subsystems is strong relative to the system-bath inter-
actions and results in a so-called global master equation [41].
Second, we make a local approximation, where each bath
interacts locally with the eigenmodes of the subsystem to
which it couples. This is appropriate when the interaction
between subsystems is weaker than the system-bath couplings
(or comparable, see Ref. [41]), and results in a local master
equation. Note that the validity regimes of the local and global
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master equations have some overlap [41], and hence treating
both enables us to apply our separability result in the entire
range from very weak to strong intersystem interactions. In
both cases we apply the full secular approximation to obtain a
physical (completely positive trace-preserving) master equa-
tion. The condition for this approximation to be valid differs
between the local and global approaches, and therefore the
details are provided separately below.

A. Global master equation

Let us first derive a global master equation. To this end, we
follow Ref. [42] and make use of the Bogoliubov transforma-
tion. The system Hamiltonian (2) can be written in the form
Hs = a"Ha, where a7 = @], ..., &2) and # is a Hermitian
matrix that can be diagonalized with a unitary matrix U. The
transformation & = Ub then brings the system Hamiltonian
into the form

I:IS :Za)jl;j.l;j, (28)
J

where w; > 0 are the eigenvalues of #, and the new creation

and annihilation operators b I BL satisfy the usual bosonic
canonical commutation relations.

Starting from (21) and applying a full-secular approxima-
tion yields a Markovian master equation for the system state
po(t) (in the Schrodinger picture) that is completely positive
and trace preserving,

d R R D
—p()= —ilfs + Hs. pO1+ D Y

dt r=1 u,veA,;
x [T ()D&, bY) + TE (@)D (b, b,)][(1)].
(29)

Here we have introduced the superoperator D(X,-, X ;) that,
given the two operators X}, X j, acts on a quantum state p as

DX, X)[p] = XipX[| — 31X/ X;, p}. (30)

The system has D different energy eigenspaces labeled by A,
where Aj is the set of normal modes associated with the Ath
eigenspace corresponding to eigenvalue w;,, and

N

[ (@) = Z Z v @)U, €2y
n=11i,jes,
N

TP =Y > v (@)UuU}, (32)
n=11i,jes,

where the yig.”’k)(a)) are defined in (25). The unitary part of the
dynamics is generated by the system Hamiltonian

D

Ay =>">" wb}b, (33)

r=1 ueh;

and the so-called Lamb-shift Hamiltonian

D
Ais =YY" puwl@)blb,, (34)

A=1 u,vel,

where

N
ot = 3 3 [ 547 @)

n=11i,jeS,
+ (50 (—0) + s (=) nin JURUjw, — (39)

and the sg"k)(w) are also defined in (25). The Lamb-shift

Hamiltonian commutes with Hs and so produces a shift in the
energy levels of H.

The full-secular approximation, which was required to
arrive at the master equation (29), is valid provided that
the differences v of the normal-mode eigenvalues satisfy
min,x, |V — V| > 1/15, where 7z is the largest correlation
time of any of the baths. Furthermore, this approximation
has removed all terms from the master equation that could
generate squeezing, i.e., only passive terms remain.

B. Local master equation

Now suppose that the N subsystems are weakly interact-
ing with each other. In this case the local approach may be
justified, where the coupling between the subsystems is ne-
glected when calculating the effects of the environment. We
thus begin by writing the system Hamiltonian in the form
Hg = Zn H, + Hc, where H, is the local Hamiltonian for
subsystem S, and H¢ accounts for the coupling between the
different subsystems. Each H, is excitation number conserv-
ing and, as before, can be put into diagonal form

M,
B, =" w;b} by, (36)
j=1
with a Bogoliubov transformation
M,
a; =y Ulib,;. (37)
j=1

Here M), is the number of modes in subsystem S,, w,; > 0
are the eigenvalues of H,, b, ; are the Bogoliubov operators
associated with subsystem S,,, and i € S,,. The components U}
can be viewed as the elements of a unitary matrix U" after a
relabeling of the i index.

These transformations do not diagonalize Hy and will typi-
cally result in a complicated coupling term H¢. However, this
does not complicate the derivation, as the coupling between
the subsystems is ignored when calculating the influence of
the environment. With this in mind, starting from (21) and
applying a full-secular approximation yields a Markovian
master equation that is again completely positive and trace
preserving,

l N D,
_p(t) == —llHS +Hl S‘,p(t) + E
dl

n=1 r=1

x Z [T&D(w,) DB}, bY,)

u,ven;

+ T2 (@)D B ) [P, (38)

Here D, is the number of energy eigenspaces associated with
the subsystem S,,, and n;, is the set of normal modes associated
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with the Ath eigenspace corresponding to the eigenvalue w,;.
Furthermore,

rew) =" " Uy Uy, (39)
i,jeS,

FL(Z:)Z)(Q)) — Z yi(jn,Z)(w)UiZU;Lv*, (40)
i,jeS,

where the yi(j"’k)(a)) are defined in (25).

While the mode transformations simplify each local
subsystem Hamiltonian H,, their effect on the coupling
Hamiltonian A leads to a system Hamiltonian of the form

Hs = Z Z Z b} by + H.. 1)

n=1 r=1 uen;

The contribution H/. contains terms of the form b, b,,,,, which
involve Bogoliubov operators for different subsystems and en-
ergy eigenspaces. However, the full details of the coefficients
appearing in this part are not needed in what follows. The
coupling of the system to the baths produces an additional
contribution to the unitary part of the dynamics

N D,
Ais =" ¢ (0n)b},bu, (42)

n=1 A=1 u,veny

where

@)= Y [(s\1V (@) + %P (w))

i,j€S,

+ (s () + 577 ()i U UT,. - (43)
and the s§'7’k) (w) are also defined in (25). In contrast to the
global approach, this term does not commute with the system
Hamiltonian and therefore does not simply shift the energies
of the system Hamiltonian.

In the local approach, the validity of the full-secular ap-
proximation is determined by the local Hamiltonians of each
subsystem. For each subsystem, the differences v, of the
normal-mode eigenvalues associated with the local Hamilto-
nian A, must satisfy miny, (v, — vi| > 1/tp. Again, this
approximation results in a master equation containing only
passive terms that cannot generate squeezing.

C. The steady-state solution

We now show that whenever the steady state of the global
or local master equation is unique, it is a Gaussian state with
a covariance matrix of the form (17). Thus, for any initial
system state the steady state will be a separable Gaussian state.
We first provide a short proof that assumes the steady state is
unique, and then derive a condition for the steady state to be
unique. Both derivations make use of the fact that the global
and local master equations take Gaussian states to Gaussian
states. This is because the Hamiltonian part is quadratic in
the Bogoliubov operators, and the Lindblad operators in the
dissipative part are linear in the Bogoliubov operators.

For the simple proof, note that the right-hand side of both
the global (29) and local (38) master equations can be written
in terms of a Liouvillian £ as £p(¢). In each case £ com-
mutes with the superoperator N+ = [N, -], where the total

excitation-number operator is N = Y j I;jf) ; in the global ap-
proach and N = Zn’ j 13;,-13,1 ;j in the local approach. Therefore,

any state that is initially block diagonal in the N eigenbasis,
with no coherences between different number sectors, will
remain block diagonal for all time. Such a state has no squeez-
ing and thus a covariance matrix of the separable form (17).
This proves our result provided that the steady state is unique,
because an initial Gaussian state with covariance matrix of the
form (17) must then remain a Gaussian state with a covariance
matrix of this form for all time.

We now derive a condition for the steady state to be unique.
Recall that any initial system state p(0) can be written as

1
p(0) = ﬁ/(Otlﬁ)(())lﬂ)Ia)(ﬂldzadzﬁ, (44)

where |«) is a d-mode Glauber coherent state with amplitudes
o = (ay, ..., oy). By the linearity of the master equations, if
we obtain the long-time evolution of each term |«) (B8] in the
decomposition (44) we can then deduce the form of the steady
state.

Let us first deal with the coherent states |«) («¢| appearing in
(44). These are Gaussian states, each with the same covariance
matrix l;/2 but different centers. We now show that in the
long-time limit every coherent state |«)(c| tends to the same
Gaussian state pg with zero first moments and a covariance
matrix of the form (17). Because the master equations map
Gaussian states to Gaussian states, the initial coherent states
|} will remain Gaussian for all time. It is then enough to work
out the steady-state expectation values of the first and second
moments.

We focus on the global master equation (29), as the
derivation for the local master equation proceeds along the
same lines. From (29) it follows that the time evolution of an
operator O is determined by

d A - A A
—O =i[Hs + H;s, O]

dt
D 1
+y.> r;}}(wk)(bwbj‘, — E{bvbj;, 0})

=1 u,vEA;_
oan 1o
+ Ffj)(a),\)(bIObu — 5{bzbu, 0}). (45)

The equations of motion for the one- and two-point corre-
lators (IA)i) and (Eil;j) are thus obtained by setting O to b;
and b;b j, respectively. Now recall that every coherent state
|a) has the same covariance matrix, l»;/2, and that the Bo-
goliubov operators are related to the original operators by
the unitary transformation & = U b. From this we see that
(bib;) — (b;)(h;) = 0 for all i, j at time t = 0. By plugging
these initial conditions into the equations of motion for 8;; =
(b;b i) — (b)) (b ;) itis straightforward to check that 8;; = 0 for
all time (see Appendix A). Therefore, (a;a;) — (a;)(a;) = O at
every time for all i, j. Because the equations of motion for the
(co)variances do not couple to the first moments, the covari-
ance matrix of every initial coherent state |«) tends to the same
steady-state covariance matrix of separable form (17).

All that remains is to show that the center of every initial
coherent state goes to the same value in the long-time limit.
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For this we need the equations of motion for the first moments

d . . N
b)) = —iw; b)) —i > piul@))iby)

ueA

+

N =

3 (MW @) — T2 )b  (46)
ueAj

For simplicity we have redefined w; as the eigenvalue asso-

ciated with the mode b; and A as the eigenspace to which
the eigenvalue w; belongs. This set of linear equations can
be written in the form db/dt = Rb, where b; = (b;) and R
is a non-Hermitian matrix. The Hermitian part of R is neg-
ative semidefinite (see Appendix B), and therefore, if R is
invertible, then b = 0 is the only steady-state solution. If this
condition is satisfied, it follows that every initial state |«)
tends to the same Gaussian state p; with zero first moments
and a covariance matrix of the form (17).

The long-time dynamics of the cross terms |o) (8| (o # B)
appearing in (44) require a little more work. The Wigner-Weyl
transformation of |«) (8] is a complex Gaussian in phase space
that is highly oscillatory. A familiar example where terms
like this appear is in the Wigner function of a cat state. For
Lindblad master equations with linear Lindblad operators and
quadratic Hamiltonians, the coupling to the environment ex-
ponentially damps the oscillatory parts of these phase-space
functions. This is a manifestation of decoherence. Therefore,
the complex oscillatory parts cannot persist in the steady state.
The dynamics of complex Gaussian wave packets generated
by equations of Lindblad type were analyzed in Ref. [43].
Using these results, we find that each |a) (S| tends to Nygpdg.
Here pg is the same Gaussian steady state we found before,
and the N, g are normalization factors that guarantee the steady
state P is normalized. We can then conclude that the steady
state P is the separable Gaussian state pg.

The same procedure can be followed with the local master
equation (38) to obtain the same result. The only difference,
barring additional indices, is the coupling term ﬁé appearing
in the system Hamiltonian (41). However, this does not pose
any complications when following the steps above, as I-?é only
includes terms of the form b7 b,,, and cannot introduce any
squeezing.

V. CONCLUSION

We have shown that autonomous, steady-state entangle-
ment generation is impossible in bosonic systems of arbi-
trary size undergoing quadratic excitation-number-preserving
interactions (i.e., passive Gaussian interactions or linear in-
terferometers) and weakly coupled to thermal bosonic and/or
spin baths at different temperatures. Our result applies to
both the local and global regimes, which cover the entire
range from weak to strong intersystem coupling. Our re-
sult holds provided that the system Hamiltonian is stable
(Hs > 0), a secular approximation is justified, and the steady
state is unique. This result contrasts with previous findings
for finite-dimensional autonomous thermal machines with
excitation-preserving interactions, which can generate steady-
state entanglement strong enough to exhibit both steering
and nonlocality. Passive Gaussian interactions, even combined

with nonbosonic baths, are sufficiently restrictive to preclude
any steady-state entanglement. We note that the condition for
the steady state to be unique (R invertible) will most likely be
satisfied in all practical situations, where the model parameter
values will never be completely symmetric.

Having ruled out steady-state entanglement in this case,
it is interesting to ask whether bosonic steady-state entan-
glement can be generated in more complicated settings. One
natural next step would be to include higher-order intersys-
tem interactions, such as three- or four-wave mixing. The
challenge here may be to determine whether the (generally
non-Gaussian) steady state is separable or not. One could also
attempt to go beyond the weak-coupling limit by applying, for
example, the reaction coordinate method [44].
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APPENDIX A: TIME EVOLUTION OF THE COVARIANCE
MATRIX ELEMENTS B

The equations of motion for the covariance matrix el-
ements B = (5jl3k) — (13]><13,<) can be obtained from the
operator evolution equation (45). We first compute the equa-
tions for (b ;) and (b jBk), and then combine the results to find

d
7Pk =~ @) + 0B+ > fiul@)B

MEA,’

+ Z Sru(wi)Bju-

ue

(Al)

For simplicity we have redefined w; as the eigenvalue asso-
ciated with mode b; and A; as the eigenspace to which w;
belongs. The functions f;,(w) are defined as

fu(@) = TP (@) - T2 ()] - igu(w),

in terms of functions appearing in the main text. The key result
of this Appendix is that when each element 8;; = 0 att =0,
then each Bj; is zero for all time. This follows immediately
from (Al).

(A2)

APPENDIX B: THE HERMITIAN PART
OF R IS NEGATIVE SEMIDEFINITE

Let the Hermitian part of R be denoted by Ry = (R +
R")/2. From the equations of motion for the first moments
in the main text (46) we obtain the matrix elements

[Rulij = 3 (T} (@) = TP (@) 80,0, (B1)

where w; is the eigenvalue associated with the Bogoliubov
mode b;. We permute the rows and columns of Ry to bring
it into block diagonal form, where each block corresponds to
the same eigenvalue. After a relabeling of indices, the block B
corresponding to the eigenvalue w has the elements

Bi; = (I (@) - TP (w)). (B2)
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‘We now show that this block is negative semidefinite.
Making use of the expressions (23)—(27), (31), and (32) we
find that the matrix elements in (B2) can be written as

N
By =7 [ @@ @bea) - )
n=1

x [(1 +&)pn(en(q)) — 11dg, (B3)
where we have defined
Zin(q) =Y _Ujgi(q) (B4)
jES”

in terms of the unitary matrix U that diagonalizes the system
Hamiltonian and the coupling parameters between the system

and environment g;(g). For every complex vector x

N
doe=n Y [ n@Pste - o)
n=1

x [(1 +&)pn(€n(q)) — 11dg, (BS)

with x,(g) = Zj x;&",(q). For the bosonic baths, &, = —1
and the contribution to (BYS) is less than or equal to zero. For
the spin baths, &, = 41 but p,(w) < 1/2 since w > 0. The
contribution from the spin baths is therefore also less than
or equal to zero, and it follows that x"Bx < 0. This holds for
every block of Ry, and so the Hermitian part of R is negative
semidefinite.
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