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Entanglement statistics of randomly interacting spins
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We investigate the entanglement in the ground state of systems comprising two and three qubits with random
interactions. Since the Hamiltonians also contain deterministic one-body terms, by varying the interaction
strength, one can continuously interpolate between deterministic separable eigenstates and fully random en-
tangled eigenstates, with nontrivial intermediate behavior. Entanglement strongly depends on the underlying
topology of the interaction among the qubits. Since W states correspond to a zero-measure set as compared to
the set of Greenberger-Horne-Zeilinger (GHZ) states, in all investigated cases the ground states are of the latter
type. However, for a certain class of interactions (nonseparable collective potential) high GHZ entanglement
is produced, while for fully separable pairwise interactions the marginal GHZ ground states concentrate in the
vicinity of W states.
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I. INTRODUCTION

Randomness and entanglement are two fundamental fea-
tures of quantum mechanics. While the former can ultimately
be traced back to Born’s postulate (see Ref. [1] for a deeper
discussion), the latter arises from the tensor structure of com-
posite Hilbert spaces and the superposition principle [2], in
the standard framework of quantum theory. From the per-
spective of quantum information science, both are valuable
resources for executing communication and information pro-
cessing tasks.

Apart from randomness with purely quantum origins,
stochasticity may appear as a consequence of the complexity
of interactions among the several parts of a physical system,
as, for instance, in atomic nuclei [3]. This may be modeled
by random Hamiltonians, which typically also generate en-
tanglement. A direct approach to the problem is to bypass
the analysis of Hamiltonians and study random states di-
rectly, by considering random rotations of a reference vector,
for example. This sort of state has been studied analytically
and numerically from various perspectives, mostly focusing
on bipartite entanglement [4–11]. Recently, the entangle-
ment properties of three-qubit random states have also been
studied [12].

However, this kind of completely random state does not
naturally occur in all physical situations involving random-
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ness. A perhaps more natural problem is to study states
associated with Hamiltonians which are partially random but
retain some kind of structure, either through their eigenvectors
or via dynamics. There have been many investigations in
this direction, particularly in connection with the problem of
thermalization [13–20].

In this work, we study entanglement in ground states of
low-dimensional qubit systems in which interactions are fully
random, but the Hamiltonians also contain deterministic one-
body terms. The situation can be thought of as a spin lattice
with random interactions, where each spin is subjected to a
constant magnetic field. The relative intensity between one-
body terms and interaction can be varied continuously, tuning
the eigenstates from deterministic to fully random, with inter-
esting intermediate phenomena.

We show that the statistical properties of bipartite and
tripartite entanglement heavily depends on the topological
nature of the interaction potentials.

In the next section we provide the necessary background on
random matrices and entanglement quantification. Section III
addresses the simple case of two qubits. Sections IV and V
consider systems comprising three qubits. We provide closing
remarks in Sec. VI.

II. PRELIMINARY CONCEPTS

A. Random matrices

Complex Hamiltonians have long been modeled as random
matrices in a variety of systems, from nuclear physics to
quantum dots, from microwave billiards to disordered media
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[21–23]. The simplest model is to enforce hermiticity but draw
the samples according to a Gaussian measure,

P(H) ∝ e−Tr(H2 )/σ 2
, (1)

where σ is the standard deviation of the distribution. This
has two important consequences: first, the off-diagonal ma-
trix elements are independent, identically distributed random
variables; second, the ensemble is rotation invariant, in the
sense that P(UHU †) = P(H) for any unitary transformation
U . In the absence of any specific symmetries, the matrix is
complex Hermitian without any further constraint. If it has
dimension N , this is called the GUE (N )—Gaussian unitary
ensemble [24].

Modeling the Hamiltonian as a random matrix means giv-
ing up the ambition of obtaining results that describe any
specific system and, instead, focusing on properties that may
be of universal validity, representative of systems that are
typical in some sense, or set a null hypothesis against which
any results or conjectures supposed to hold for a given system
may be compared.

The eigenstates of a matrix from GUE (N ) may be arranged
as a unitary matrix, and this is distributed uniformly in the
unitary group. We will refer to this by the standard terminol-
ogy of Haar measure. Basically, normalized eigenstates are
uniformly distributed as points in the complex sphere [21].

The parameter σ controls the variance of the interactions,
such that for small σ the matrix H becomes vanishingly small,
while for large σ the matrix H may have very large elements,
in the sense that

〈Hi j〉 = 0, 〈|Hi j |2〉 = σ 2. (2)

For a single spin, for example, with the total Hamiltonian
given by ŝz + V , where ŝz is the usual Pauli matrix and V is
taken at random from the GUE (2), the situation will be as
follows: for small σ , the eigenvalues will be close to ± 1

2 and
the eigenvectors will be close to |0〉 and |1〉; for large σ , the
eigenvalues will be a pair of correlated random variables and
the eigenstates will be random vectors with Haar measure.

B. Entanglement involving two and three qubits

Entanglement [2] quantification is a difficult problem and,
in general, the degree of nonseparability embodied by a quan-
tum state is not uniquely captured by a single figure of merit.
Different quantifiers may lead to distinct orderings. However,
when it comes to two or even three qubits, things simplify
considerably. In the first case we employ the concurrence
[25] as the entanglement quantifier, whereas in the second,
more complex case we characterize nonseparability with both
the concurrence (of bipartitions and reduced states) and the
three-tangle [26].

Given an arbitrary two-qubit state represented by a density
matrix ρ, its concurrence is determined by the eigenvalues
{λ1, λ2, λ3, λ4}, with λ1 � λ2 � λ3 � λ4, of the matrix ρρ̃,
where ρ̃ = (ŝy ⊗ ŝy)ρ∗(ŝy ⊗ ŝy), and given by

C = max{
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, 0}.
This reduces to C = 2|ad − bc|, for the general pure state
|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉. The squared concur-
rence is often referred to in the literature as the two-tangle.

For a pure state |�〉 of three qubits, the three-tangle, or
residual entanglement, τ , is a quantifier of genuine three-
partite entanglement, which is nonzero only for the class
of Greenberger-Horne-Zeilinger (GHZ) states, vanishing for
fully separable, biseparable, and W states [27]. It is given by

τ = C2
1|23 − C2

12 − C2
13, (3)

where 1,2,3 are labels for the three qubits; 1|23 refers to
the bipartition where 1 is a subsystem and 23 is the other
subsystem, while 12 and 13 denote reduced systems, where
3 and 2 have been traced out, respectively. The concurrence
of 1|23 is C1|23 = 2

√
det ρ1 [26], where ρ1 = Tr23(|�〉〈�|).

Although not evident from the definition, the three-tangle
is invariant under any permutation of the subsystems, being a
feature of the whole system.

We will also refer to the total concurrence Ct = C12 +
C13 + C23. For any pure state of three qubits we have Ct � 4/3
(the equality holds if and only if |�〉 is a maximally entangled
W state) [27].

III. TWO-QUBIT RANDOM EIGENSTATES

We begin our study by considering a four-dimensional
Hilbert space, H = H1 ⊗ H2, with Hi = C⊗2 being the
Hilbert space of a spin, the total Hamiltonian being given by

H = H1 + H2 + V, (4)

with

H1 = ŝz,1 ⊗ 12, H2 = 11 ⊗ ŝz,2, (5)

where ŝz,i stands for the Pauli operator in the z direction,
acting on Hi.

The interaction term V is random in one of the two fol-
lowing ways. Either (i) V = V1 ⊗ V2, where Vi are taken from
GUE (2), or else (ii) V = V12 is directly taken from GUE (4).

To make meaningful comparisons between situations (i)
and (ii), we must guarantee that the interaction term V has the
same average magnitude for a given σ . That is to say, when
we take σ12 = σ as the standard deviation of the Gaussian
ensemble related to V12, we choose σ1 = σ2 = √

σ for V1 and
V2, respectively. With this we get

〈|(V12)i j |2〉 = 〈|(V1 ⊗ V2)i j |2〉 ∝ σ 2.

Considering σ1 = σ2 incurs no essential loss of generality,
since one can easily show that the results depend only on the
product σ1σ2 (which equals σ12). So, in the remainder of this
section we will consider a single deviation parameter σ , as de-
scribed in the previous paragraph. Both kinds of interactions V
vanish when σ = 0, leading to a direct sum total Hamiltonian
H1 + H2 with a separable ground state.

In Fig. 1(a) we plot the average ground-state concur-
rence, computed from 105 realizations, as a function of the
parameter σ .

In the regime σ � 1, we found that 〈C〉 ∼ σ , for both
kinds of interactions. This asymptotics can easily be derived
from perturbation theory, as follows. The ground state of
H = H1 + H2 (σ = 0) is simply |g〉 = |00〉, with eigenvalue
Eground = −2. Since 〈|(V1 ⊗ V2)i j |2〉 ∝ σ 2 (⇒ Vi j ∝ σ ) and
the first-order correction from nondegenerate perturbation
theory is of the form

∑
j (Vgj/Ejg)|ψ⊥

j 〉, with Ejg = Ej −
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FIG. 1. (a) Average concurrence 〈C〉 as a function of σ with N =
5 × 104 samples for the two types of interaction potential: V12 (blue
circles) and V1 ⊗ V2 (red squares). (b) Standard deviations of C as a
function of σ . Horizontal lines indicate the results for Haar-random
states.

Eground and 〈00|ψ⊥
j 〉 = 0, the new ground state can be written

as |g′〉 ∝ |00〉 + σ |g⊥〉 for small σ , where |g⊥〉 is a ket in the
subspace spanned by {|01〉, |10〉, |11〉}. Calculating the con-
currence of this pure state leads to C ∝ |σ + O(σ 2)| ≈ σ for
sufficiently small σ . This justifies the linear behavior observed
in the previous plots.

More interestingly, in case (i) the average concurrence
attains a maximum for σ = 1 and vanishes asymptotically,
whereas in situation (ii) it grows monotonically with σ , tend-
ing to the corresponding value for a Haar random state, which
is given by [5]

〈C〉Haar = 3π

16
≈ 0.589. (6)

These two distinct behaviors for different kinds of interaction
can be understood as follows. When σ → ∞, the terms H1

and H2 in the Hamiltonian become negligible compared to
V , i.e., H ≈ V . In case (i) this leads to a Hamiltonian with
separable eigenstates, whereas in case (ii) the Hamiltonian
remains nonfactorable. In the opposite limit of σ = 0, for both
cases, the potential terms vanish and the Hamiltonian becomes
H1 + H2, which gives rise to separable fundamental states.
Therefore, in case (i), there must be at least one maximum.
We do not have a rigorous proof of the fact that the maximum
is located at σ = 1. However, there is a simple reasoning to
justify it. In case (i), the entanglement is exclusively produced

FIG. 2. Diagrams representing the three types of interactions
considered in this section. In the triangles, qubits are the corners
and interactions are the sides. Bold segments represent nonseparable
interactions and dashed segments represent separable interactions.

by the combined effect of both terms (single-body and two-
body). Any of these terms alone leads to zero ground-state
entanglement. It is thus expected that the entanglement attains
a maximum when the two terms have equal weights, which
corresponds to σ = 1.

In Fig. 1(b) we plot the concurrence standard deviation δ =√
〈C2〉 − 〈C〉2 [in the current context of two qubits we can see

that the curves 〈C〉(σ ) and δ(σ ) are very similar, but this is not
always the case for three qubits].

As expected, under interaction V12 the quantity δ rapidly
converges to the corresponding value of Haar random states
(these have 〈C2〉Haar = 2/5, which leads to δHaar ≈ 0.23
[5,6]).

We note that, whereas in case (ii) the average concurrence
is about twice as large as the corresponding standard devia-
tion, in case (i) both 〈C〉 and δ have similar magnitudes for a
given σ .

IV. THREE QUBITS, COLLECTIVE INTERACTION

Now we investigate the degree of entanglement of three-
qubit ground states, thus, in an eight-dimensional Hilbert
space, H = H1 ⊗ H2 ⊗ H3, with Hi = C⊗2, i = 1, 2, 3. The
considered random Hamiltonians are given by

H = H1 + H2 + H3 + V, (7)

where H1 = ŝz,1 ⊗ 12 ⊗ 13, H2 = 11 ⊗ ŝz,2 ⊗ 13, and H3 =
11 ⊗ 12 ⊗ ŝz,3.

In this case, a larger variety of nonequivalent potentials
exist. Initially we study the following interactions:

VI = V1 ⊗ V2 ⊗ V3, (8)

with each Vi in GUE (2), fully separable;

VII = V12 ⊗ V3, (9)

where V12 and V3 are in GUE (4) and GUE (2), respectively,
partially separable; and

VIII = V123, (10)

in GUE (8), fully nonseparable. See Fig. 2 for a schematic
depiction of these interactions, which are all such that the
three qubits interact collectively. In the next section we study
pairwise interactions.

In order to characterize the ground state genuine three-
partite entanglement we use the three-tangle (residual entan-
glement); the pairwise entanglement, via the concurrence of
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FIG. 3. (a) Average three-tangle 〈τ 〉 with 5 × 104 samples for
different interactions. (b) Corresponding standard deviation δ.

the reduced systems (12, 13, and 23); and the entanglement of
the bipartitions, through the concurrence of the states related
to the bipartitions (1|23, 12|3, and 13|2).

If we take the variance of case (III) to be σ123 = σ , then we
should have σ12 σ3 = σ and σ1 σ2 σ3 = σ , such that

〈|(VI )i j |2〉 = 〈|(VII )i j |2〉 = 〈|(VIII )i j |2〉 ∝ σ 2.

The results only depend on the product of the involved devia-
tions, so for definiteness we adopt the most symmetric choice:
σ12 = σ 2/3 and σ3 = σ 1/3 for case (II) and σ1 = σ2 = σ3 =
σ 1/3 for case (I).

In Fig. 3(a) we show the averaged three-tangle for the po-
tentials (I), (II), and (III). The first feature that stands out is the
much higher ability of the totally nonseparable interactions of
type (III) to generate sizable values of τ , with 〈τ 〉 being more
than an order of magnitude larger than that coming from cases
(I) and (II).

In these latter cases, 〈τ 〉 has a maximum at σ ≈ 1 and
decays as σ → ∞. This can be understood with the same
reasoning as in the previous section: the one-body terms in (7)
become negligible as σ → ∞, and the ground states become
either separable [case (I)] or biseparable [case (II)]. The three-
tangle, as a genuine three-partite entanglement quantifier,
becomes zero in both cases. In the opposite limit, σ = 0, the
interactions vanish and the Hamiltonian becomes H1 + H2 +
H3, leading to nonentangled fundamental states. Again we do
not have a closed analytical justification for the occurrence
of the maximum at σ ≈ 1, but the reasoning of balancedness
between the one-body and three-body terms may also apply.
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FIG. 4. (a) Total concurrence 〈Ct 〉 with ρ12 and 15 × 104 samples
for different interactions. (b) Corresponding standard deviation δ.

In case (III), 〈τ 〉 grows monotonically with σ and converges
to the average three-tangle of pure, Haar-random three-qubit
states, 〈τ 〉Haar = 1/3 [28].

The fact that 〈τ 〉 is very small for cases (I) and (II), at least
two orders of magnitude smaller than 1 (the value of τ for a
maximally entangled GHZ state), indicates that the generated
ground states are either close to W states or to separable states.
We shall return to this point later.

In Fig. 3(b) we show the corresponding standard devia-
tions, which display qualitative behaviors similar to those of
the average.

As a complementary characterization, in Fig. 4 we plot
the average and standard deviation for the total concurrence
Ct = C12 + C13 + C23. Again, it is interaction of type (III) that
leads to the highest values. Average total concurrence only
decays with σ for the totally separable interaction of type (I),
as expected. For sizable values of σ , the average is twice the
standard deviation for types (III) and (II), but half that value
for type (I).

V. THREE QUBITS, PAIRWISE INTERACTIONS

Here we study random interactions with a pairwise struc-
ture which are physically relevant, as, for instance,

Va = 1
2 (11 ⊗ V23 + V12 ⊗ 13), (11)

Vb = 1
2 (11 ⊗ V2 ⊗ V3 + V1 ⊗ V2 ⊗ 13), (12)
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(a) (b)

(c)

FIG. 5. Diagrams representing the three types of interactions
considered in this section. We use the same convention as in Fig 2.
Dotted gray segments denote absence of interaction.

such that no interaction between qubits 1 and 3 exists. In
addition, we consider the more symmetric interaction

Vc = 1
3 (11 ⊗ V2 ⊗ V3 + V1 ⊗ 12 ⊗ V3 + V1 ⊗ V2 ⊗ 13),

(13)
see Fig. 5 for a schematic depiction.

The multiplicative factors are there to make the average
intensity of the full interaction term the same in all cases. For
the same reason, we set σ23 = σ12 = σ in Va and Vb, and σ1 =
σ2 = σ3 = σ 1/2 in Vc.

In Fig. 6 we show the averaged three-tangle of the ground
states coming from these interactions, along with the corre-
sponding standard deviations. Here, for all investigated cases
there is a very low degree of genuine three-partite entan-
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FIG. 6. (a) Average three-tangle 〈τ 〉 from 6 × 105 samples for
the interactions Va, Vb, and Vc. We find 〈τ 〉 ∼ σ 3 for small σ . (b) Cor-
responding standard deviation δ.
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FIG. 7. Average concurrence 〈C13〉 from 5 × 104 samples for the
interactions Va and Vb.

glement of GHZ type, as compared to the potential VIII, for
which 〈τ 〉 is typically larger by one order of magnitude [see
Fig. 4(a)].

A curious feature in Fig. 6(b) is that, although the larger
values of 〈τ 〉 are those produced by Va, the deviations attached
to Vc are consistently the larger ones. In all cases the averages
and the deviations have the same order of magnitude.

Notice that in Fig. 6(a), the three-tangle remains close to
zero for 0 < σ < 0.5. In fact, we will show, based on numeri-
cal results, that 〈τ 〉 ∼ σ 3 for small σ . This will be relevant for
future discussions.

A. Hamiltonian swapping

The two standard ways to produce entanglement are either
to make the parties interact or to carry out a swapping opera-
tion (based on entangled measurements) [29,30]. If, however,
we consider the Hamiltonian (7) with either potential Va or Vb,
no interaction occurs between qubits 1 and 3. Notwithstand-
ing, the average ground state entanglement between these
qubits is finite (although small).

This may be considered as an instance of entangle-
ment swapping without measurement—see, for instance,
Ref. [31]—since the correlation appears neither from a direct
interaction nor from an entangling measurement (standard
swapping). However, as can be seen in Fig. 7, the average
concurrence between 1 and 3 is quite low, saturating around
〈C13〉 ∼ 0.001 and 〈C13〉 ∼ 0.08 for interactions Va and Vb, re-
spectively. Therefore, the states are close to being biseparable.

B. Concentration near W states

As we saw in the previous section, VIII gives rise to states
with the highest average three-tangle among the investigated
interactions. That is to say, this form of V generates GHZ
states which are, on average, relatively far from the boundary
with W states. The question arises whether there is a form
of the random interaction that produces the latter states. The
strict answer is negative because that would require fine tun-
ing in order to ensure τ = 0. In other words, in the space
of parameters of three-qubit pure states (χ ), the dimension
of the subspace of GHZ states is the same as dim χ , while
on the other hand, the subspace defined by τ = 0 has lower
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FIG. 8. 〈C1|23〉 and 〈C13〉 with 5 × 104 samples for the interac-
tion potential Vc. Both quantities present a steep linear growth for
small σ .

dimension. Therefore, the probability to generate a W state as
an eigenvector of a random Hamiltonian is zero.

This can be understood in a more precise way by employ-
ing the optimal parametrization reported in Ref. [32]. For an
arbitrary pure three-qubit state, |�〉, there is always a basis for
which one can write

|�〉 = a0|000〉 + a1eiϕ |100〉 + a2|101〉 + a3|110〉 + a4|111〉,
where the coefficients aj are non-negative real numbers, and
0 � ϕ � π . It is easy to show that the corresponding three-
tangle is given simply by τ = (2a0a4)2, so that τ = 0 would
require either a0 = 0 or a4 = 0 (or both). If a0 = 0 and a4 �=
0, we typically get biseparable states. If a0 �= 0 and a4 = 0,
we typically obtain W states. Of course, these situations cor-
respond to zero-measure sets, as compared to the set of GHZ
states.

It is important, however, to note that the Haar measure
does not correspond to a uniform distribution of the coeffi-
cients a j . In particular, it is not correct to state that W and
separable states are equally likely. Indeed, for the investigated
Hamiltonians, the concurrences concerning any reduced den-
sity matrices and bipartitions are typically not zero, even for
very low values of three-tangle.

Consider, for instance, the symmetric interaction potential
Vc. It leads to ground states with τ < 0.05 for any value
of σ , as one can see in Fig. 6(a). On the other hand, the
concurrences of bipartitions and reduced systems are sizable,
as can be seen in Fig. 8, where C12 = C13 = C23 and C1|23 =
C2|13 = C3|12, due to the mentioned symmetry. This indicates
a possible close proximity to W states.

For small values of σ we found C12 ∼ σ and C1|23 ∼ σ ,
from perturbation theory. Therefore, from Eq. (3), one might
expect τ ∼ σ 2. However, the second-order term is dominated
by the next-order term ∼σ 3. That is to say, in this region we
may have very small three-tangle and not-so-small concur-
rences.

Let us carry out a more quantitative analysis. The lin-
ear regimes of the concurrences in Fig. 8, in the range σ ∈
[0.01, 0.5], are found to be given by 〈C1|23〉 ≈ 0.198 σ and
〈C13〉 ≈ 0.121 σ . By considering the symmetry of the po-
tential, one can write the three-tangle as 〈τ 〉 = 〈C1|23〉2 −
2〈C13〉2 ≈ aσ 2 + O(σ 3), with a � 10−3. Therefore, the cubic

FIG. 9. Log-log plot of 〈τ 〉 against σ . We observe a power law
∼σ b, with b = 3.01.

term dominates (see Fig. 9), and this explains the slow growth
of 〈τ 〉 in this range, in contrast with the faster growth of the
concurrences. The only possible conclusion is that the GHZ
ground states are marginal, in the sense that they concentrate
near the defining set of W states.

To support this conclusion, let us consider the fundamental
states of Vc with σ = 0.5. We computed 106 ground states
|�〉, and calculated the overlap of each with the nearest
state having τ = 0 (numerically τ < 10−6), which we denote
|�〉. We get 99.89% of ground states with p = |〈�|�〉|2 >

0.98, see Fig. 10. For these states, C12 < 0.4, with about
14% of the states with C12 > 0.1. In addition, we found that
τ < min{C2

12,C2
13,C2

23} for more than 99.99% of the states
|�〉. Usually, the three-tangle is several orders of magnitude
smaller than the smallest two-tangle.

We conclude that the ground states are very close to being
W states, and not so close to being separable. So, in practice,
the GHZ states so generated are almost indistinguishable from
the nearest W state. Although the formal difference between
these two classes of states is well defined, we may find actual
situations for which the numerical and practical distinction
become difficult.
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FIG. 10. Overlap p = |〈�|�〉|2 between the Hamiltonian’s
ground state and the nearest τ = 0 state, for σ = 0.5, from 106

samples.
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VI. CLOSING REMARKS

In this work we investigated the entanglement in the
ground state of Hamiltonians containing deterministic one-
body terms (spins subjected to a specified magnetic field)
and random interaction terms, for two and three qubits.
By varying the relative intensity of these contributions one
can interpolate between separable and fully random (Haar
distributed) states. It is clear that, although the characteriza-
tion of Haar random states is relevant, restricting attention
to them leaves a wealth of physically relevant situations
unaddressed.

We found that the amount and nature of the resulting
entanglement strongly depends on the underlying topology
of the interaction terms. In the case of three qubits, we
considered three types of collective interaction and three
types of pairwise interaction, all differing in their degrees
of separability. We found strong GHZ entanglement with a
fully nonseparable collective interaction [a random matrix
from GUE (8)], and the production of week GHZ entangle-
ment, with ground states concentrating near the set of W
states, for the opposite case of a fully separable pairwise
interaction.

An interesting perspective is to increase the number of
qubits in order to investigate more deeply the role of interac-
tion topology in entanglement production. Where should we
generically expect to find more multipartite entanglement, in
the ground state of a fully connected network of spins or in a
system with many pairwise interactions? The answer probably
depends on the type of entanglement that is required.
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