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NMR investigations of dynamical tunneling in spin systems
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In the usual quantum tunneling, a low-energy quantum particle penetrates across a physical barrier of higher
potential energy, by traversing a classically forbidden region, and finally escapes into another region. In an
analogous scenario, a classical particle inside a closed regular region in the phase space is dynamically bound
from escaping to other regions of the phase space. Here, the physical potential barrier is replaced by dynamical
barriers which separate different regions of the phase space. However, in the quantum regime, the system can
overcome such dynamical barriers and escape through them, giving rise to dynamical tunneling. In chaotic
Hamiltonian systems, dynamical tunneling refers to quantum tunneling between states whose classical limits
correspond to symmetry-related regular regions separated by a chaotic zone between which any classical
transport is prohibited. Here, an experimental realization of dynamical tunneling in spin systems is reported
using nuclear magnetic resonance (NMR) architecture. In particular, dynamical tunneling in quantum kicked
tops of spin-1 and spin-3/2 systems using two- and three-qubit NMR registers is investigated. By extracting
time-dependent expectation values of the angular momentum operator components, size-dependent tunneling
behavior for various initial states is systematically investigated. Further, by monitoring the adverse effects of
dephasing noise on the tunneling oscillations, we assert the importance of quantum coherence in enabling
dynamical tunneling.
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I. INTRODUCTION

Quantum tunneling usually refers to the phenomenon by
which a wave packet penetrates and transits through a physical
potential barrier despite having lesser energy than the barrier
height [1]. Classically, this is a forbidden process, though
it is allowed in a quantum system. The quantum tunneling
phenomenon has been studied extensively and has found
applications in various fields ranging from nuclear physics,
superconductivity, and electronics to microscopy [1–8].

In chaotic Hamiltonian systems, quantum tunneling mani-
fests into a much richer and more complex phenomenon due
to the complexity of underlying classical dynamics [9,10].
Interestingly, it was realized that the quantum tunneling phe-
nomenon can be extended to scenarios even without any
physical barrier. In such cases, the potential barriers are re-
placed by dynamical barriers formed by invariant phase space
structures in the classical limit. Hence, this is often called
dynamical tunneling. It was first recognized in experimentally
determined local mode doublets of H2O [11,12], and exten-
sively studied by Davis and Heller (see Refs. [13,14]) in a
two-dimensional nonlinear system. Dynamical tunneling hap-
pens when a wave packet tunnels between symmetry-related
regular regions such as elliptic islands. It is important to
note that the regular regions are separated, not necessarily
by potential barriers, but by dynamical constraints. A clas-
sical particle initialized in one such regular region can never
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couple with the other, and hence any transport between these
regions is forbidden. In a semiclassical sense, these regular
regions would contribute to degenerate eigenstates. However,
if tunneling is present between these regular classical regions,
we expect the disconnected classical regions to be coupled by
quantum dynamics and the degeneracy is lifted. This results in
characteristic tunneling doublets in the energy spectrum. The
corresponding eigenstates are symmetric and antisymmetric
linear combinations of wave functions that predominantly
localize on these regular regions [7,9,13,15,16]. This can be
effectively modeled as a two-state process (a two-level sys-
tem) involving these nearly degenerate states.

It was found that the tunneling rate between the regular
regions can be further enhanced if these regions are separated
by a sea of chaos [9]. In this case, the tunneling wave function
has an overlap also with the chaotic region, which aids the
tunneling process. In this case dynamical tunneling, termed
as chaos-assisted tunneling, is a process involving three
levels—the two nearly degenerate states coupled through an
intermediate chaotic state. The chaotic state can be modeled
as a typical state drawn from an appropriate random matrix
ensemble. It must be pointed out that a similar mediation
by the classical nonlinear resonances, called the resonance
assisted tunneling, in the near-integrable regime also leads to
enhanced tunneling rates between low and high excited states
lying within the same nonlinear resonance region [17–23].
This phenomenon was also reported in a system with three
degrees of freedom [24]. The rate of tunneling in integrable
systems comparatively is much slower due to the absence
of resonances and chaos. It is evident that quantum tunnel-
ing behavior can be strongly influenced by the underlying
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classical structures arising from integrability and nonintegra-
bility of the system [10,16,25].

Though dynamical tunneling has been theoretically ex-
plored for the last three decades, experimental demonstrations
are far fewer [9,26–34]. They are limited to essentially
two chaotic testbeds, namely, a driven cold atomic cloud
[27,29,30] and microwave annular billiards [26,31]. Despite
the popularity of kicked models within the fold of quantum
chaos, especially the ones based on spins such as the kicked
top model [35], only one experimental demonstration until
now has employed kicked systems [36]. A theoretical study
of dynamical tunneling in the quantum kicked top (QKT)
had been reported in Refs. [37,38]. Reference [37] showed
that in the presence of dynamical tunneling between regular
regions, the expectation values of angular momentum operator
components display periodic revivals. To our knowledge, this
feature has not been explicitly shown through experiments
so far.

Nuclear magnetic resonance (NMR) has been a convenient
testbed for quantum simulations and development of method-
ologies for quantum information processing [39,40]. Previous
NMR studies of nonlinear dynamics include investigating bi-
furcation in a quadrupolar NMR system [41], realizing QKT
with nuclear spin qubits [42], phase synchronization in a pair
of interacting nuclear spins subjected to an external drive [43],
quantum phase transitions [44–46], out-of-time-order correla-
tions in integrable and nonintegrable systems [47], etc. In this
paper, we carry out NMR investigation of dynamical tunnel-
ing in a QKT model formulated as a collection of periodically
kicked and interacting spins. This model is useful because the
approach to the classical limit can be attained by expanding
the Hilbert space, by either increasing the number of spins, or
the spin number, or both. Hence, this system provides a conve-
nient route to study dynamical tunneling and push it towards
the classical limit. By monitoring the expectation values of
the angular momentum operators of the QKT, we performed
a systematic experimental investigation into (i) dynamical
tunneling in spin systems for different initial states, (ii) system
size dependence of tunneling period with two different system
sizes, and (iii) effect of dephasing noise on the robustness
of tunneling. By observing the prolonged time periods of
dynamical tunneling in the larger system, we infer the inverse
size dependence of the phenomenon. The dephasing noise
also resulted in dampening of tunneling amplitudes, which
incidentally appears to have relatively stronger effects on the
larger system.

The paper is organized as follows. We introduce the QKT
model and the concept of dynamical tunneling in spin systems
in Sec. II. We explain the methodologies of NMR experiments
in Sec. III, followed by results in Sec. IV, and finally conclude
in Sec. V.

II. DYNAMICAL TUNNELING IN SPIN SYSTEMS

A. Quantum kicked top model

The QKT model of a spin- j system is described by the
Hamiltonian (with h̄ set to unity) [35,37]

HQKT = π

2
Jy

∑
n

δ(t − nτ ) + k

2 j
J2

z , (1)

where Jα with α = x, y, z are components of the angular mo-
mentum operator. The first term describes an instantaneous
kick about the y axis which brings about a rotation of π/2
angle, and the second term characterized by the chaoticity
parameter k describes a nonlinear torsion about the z axis.
However, in experiments, we cannot realize ideal instanta-
neous δ kicks, but only kicks of finite widths. Hence, the above
equation for kicks of finite width can be expressed as

HQKT =
{

Hkick = π
2�

Jy, for t ∈ [
nτ − �

2 , nτ + �
2

]
HNL = k

2 jτ J2
z , otherwise

. (2)

Here, � is the kick duration that produces a π/2 rotation
about the y axis described by the unitary operator Ukick =
exp{−iHkick�}. The second term describes the nonlinear evo-
lution governed by the chaoticity parameter k for a time
period τ with the corresponding unitary UNL = exp{−iHNLτ }.
The effective Floquet operator can then be written as U =
UNLUkick. The dynamics of the system can be evaluated from
the evolution of angular momentum components of the QKT
under the Floquet evolution after the nth kick as Jα (n + 1) =
U†Jα (n)U , for α = {x, y, z}. The classical map can be obtained
from the scaled variables V = Jα/ j in the limit j → ∞ [35]
which leads to the following equations of motion:

X ′ = Z cos(kX ) + Y sin(kX ),

Y ′ = −Z sin(kX ) + Y cos(kX ).

Z ′ = −X. (3)

Since the total angular momentum of the system is con-
served, the dynamics of the system can be parametrized in
terms of two parameters (θ, φ) such that X = sin θ cos φ,Y =
sin θ sin φ, Z = cos θ . For low values of the chaoticity param-
eter, k ≈ 0.5, the system is highly regular, but it transitions
to a mixed phase space as k is increased before becoming
almost completely chaotic at around k = 6 [48]. This map has
time-reversal symmetry and reflection symmetry about the y
axis [35]. The classical phase space for k = 3 is shown in
Fig. 1. Under classical evolution, even as time t → ∞, the
initial conditions indicated by A and A′ in Fig. 1 will remain
trapped in their respective regular regions. However, if the
system is initialized in a chaotic region, indicated by C in
Fig. 1, it can then explore the entire connected chaotic layer
of the phase space. In contrast, a QKT initialized in one of the
regular regions can tunnel to other regular regions, giving rise
to dynamical tunneling, as explained below.

B. Dynamical tunneling in the QKT model

Just as a wave packet can tunnel through a potential
barrier with higher energy, quantum systems can overcome
dynamical barriers and couple regular regions which are
classically disconnected and between which any classical
transport is strictly forbidden. A classical system initial-
ized in one of the regular regions, A and A′ in Fig. 1,
remains localized, while a quantum system can defy the
classical dynamical barrier and periodically tunnel to and
from the other regular region of appropriate symmetry [15].
Such periodic tunneling behavior was theoretically studied in
Ref. [37] using the QKT model for a spin j = 18 system.
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FIG. 1. Classical phase space of the kicked top model for
chaoticity parameter k = 3. The mixed phase space has distinct regu-
lar islands separated by a chaotic sea. A classical system initialized in
the regular regions, labeled by A and A′, will continue to remain there
throughout the dynamics, while that initialized in the near-regular
region, labeled by B, can move along its periodic orbit, and that
initialized in the chaotic region, labeled by C, can explore the phase
space. The regions labeled by E and E′ form a period-2 orbit and
keep jumping from one to the other with every kick. The dynamics
of a QKT initialized in the states A, B, and C studied here reveal
dynamical tunneling between A and A′ as indicated by the arrows.

The tunneling phenomenon was captured using the expecta-
tion values 〈Jα〉 of the scaled angular momentum operator
J/ j. Periodic revivals in expectation values of 〈Jα〉 indicated
tunneling between regular regions, while lack of clear oscil-

lations indicated absence of tunneling. Interestingly, a QKT
initialized in a regular region showed clear periodicity, while
that initialized in a chaotic region did not show such clear
periodicity.

While our experiments use the same QKT model, we first
numerically study the system size dependence of tunneling
behavior for chaoticity parameter k = 3. As the system size
increases ( j → ∞), the classical limit is approached, and
the tunneling behavior is suppressed. Let us consider the
initial state A ≡ |θA, φA〉 ≡ (2.25, 0.63) at the center of one
of the regular regions and its symmetry related state A′ ≡
exp(−iπJy)|θA, φA〉 ≡ (π − 2.25, π − 0.63) (see Fig. 1). The
numerical simulations of 〈Jα〉 for the QKT model for differ-
ent spin sizes starting from A are shown in Figs. 2(a)–2(c).
It is clear that 〈Jx〉 and 〈Jz〉 show rapid oscillations for
j = 1 [Fig. 2(a)] indicating tunneling between A and A′.
However, for a larger system with j = 10 [Fig. 2(b)] the
period is elongated, and for j = 100 [Fig. 2(c)] the system
shows no sign of periodicity in the chosen time range. It is
interesting to note that the other two similar-looking regu-
lar regions, labeled by E ≡ |θE, φE〉 = (2.25, 0.63 + π ) and
E′ ≡ exp(−iπJy)|θE, φE〉 ≡ (π − 2.25, 2π − 0.63), have a
totally different behavior, as shown in Figs. 2(d)–2(f). They
form a period-2 orbit and oscillate between one another with
every kick in the classical limit [35]. This is clearly observed
for a large spin system, such as j = 100 in Fig. 2(f). For
smaller spin sizes, such as j = 1 and 10 [Figs. 2(d) and 2(e)],
the values of 〈Jx〉 and 〈Jz〉 show irregular oscillations with beat
patterns.

FIG. 2. Normalized expectation values of angular momentum operator components 〈Jα〉 obtained from numerical simulations with k = 3
starting from the states A (a)–(c) and E (d)–(f) for spin sizes j = 1 (a), (d), j = 10 (b), (e), and j = 100 (c), (f). As the spin size increases the
system tends towards the classical limit exhibiting prolonged tunneling periods. For the latter initial state (d)–(f), the oscillations in expectation
values 〈Jα〉 are maintained for all spin sizes, with the system exhibiting clear period-2 oscillations as it tends to the classical limit, which can
be seen prominently for j = 100 (f).
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FIG. 3. Experimental systems used for tunneling experiments.
(a) The two-qubit system of sodium fluorophosphate used to simulate
a single spin-1 system and (b) three-qubit system of dibromoflu-
oromethane used to simulate a single spin-3/2 system, along with
their Hamiltonian parameters shown in the tables below. The diago-
nal elements indicate resonance offsets, while off-diagonal elements
indicate the scalar J -coupling constant values in Hz. Also shown are
the T1 and T ∗

2 values of the different nuclear species.

III. EXPERIMENTAL METHODOLOGY

A. NMR Hamiltonian

To study the size dependent behavior of dynamical tunnel-
ing, we simulated the QKT in spin-1 and spin-3/2 systems
using two- and three-qubit NMR systems respectively. The
two-qubit system was composed of 19F and 31P of sodium flu-
orophosphate [Fig. 3(a)] dissolved in D2O, and the three-qubit
system was composed of 13C, 1H, and 19F spins of dibro-
mofluoromethane [Fig. 3(b)] dissolved in deuterated acetone.
All the experiments were performed on samples containing
about 1015 nuclear spins maintained at 300 K on a Bruker
500-MHz high-resolution spectrometer with a static magnetic
field B0ẑ with B0 = 11.7 T. The field lifts the degeneracy of
ms spin levels via the Zeeman interaction, with an energy
gap h̄γiB0 which has the corresponding Larmor frequency of
ωi = γiB0 where γi is the gyromagnetic ratio of the spin [49].
Different nuclear spin species exist in different chemical en-
vironments which influence the effective field experienced by
the spins. The resulting time-averaged local field corresponds
to a modified Larmor frequency ωi = γiB0(1 + δi ), where δi is
the chemical shift of the spins [49]. The spins also interact in-
directly with one another via the scalar coupling constant Ji j

mediated by covalent bonds. For the heteronuclear systems
considered here, we move to a rotating frame resonant with
the Larmor frequencies of the spins and the resonance offsets
may be set to zero [49]. The effective NMR Hamiltonian in
the weak-coupling limit is then given only by the scalar Ji j

coupling interaction and takes the form [49]

HJ =
∑
i, j>i

2πJi j IziIz j . (4)

The spins can further be manipulated by radio-frequency (rf)
pulses resonant with the corresponding characteristic Larmor
frequencies and described by the Hamiltonian

Hrf =
∑

i

π

2�i
Iyi, (5)

where �i is the pulse duration corresponding to the ith spin
species. Hence the NMR system with the rf pulses is described
by the combined Hamiltonian [42]

HNMR =
∑

i

π

2�i
Iyi +

∑
i, j>i

2πJi j IziIz j . (6)

In systems with three or more qubits, we can realize a uniform
evolution under a single effective scalar coupling constant J
by using the standard spin echo methods [50], such that

H eff
NMR = Hrf + H eff

J

=
∑

i

π

2�i
Iyi + J

∑
i, j>i

2π IziIz j . (7)

Comparing this with Eq. (2), we can see that the linear term
Hkick can be mapped to the rf term Hrf . Since we realize
the spin- j QKT using a collection of 2 j qubits [48,51], the
nonlinear term in Eq. (2) can be expanded as

k

2 jτ
J2

z = k

2 jτ

⎛
⎝ 2 j∑

i=1

Izi

⎞
⎠

2

= k

2 jτ

⎡
⎣ 2 j∑

i=1

I2
zi + 2

2 j∑
i=1, j>i

IziIz j

⎤
⎦

= k

2 jτ

⎡
⎣ 2 j∑

i=1

1

4
+ 2

2 j∑
i=1, j>i

IziIz j

⎤
⎦

≡ k

2 jτ
2

2 j∑
i=1, j>i

IziIz j . (8)

Thus, the nonlinear term can be mapped to the scalar J cou-
pling term H eff

J up to the identity term which only introduces
an unobservable global phase. Moreover, comparing Eq. (8)
with H eff

J , we can see that k = 2 jπJ τ , which enables us to
vary the chaoticity parameter k by tuning the duration τ of
the effective J evolution. Since the duration of the rf pulse
�i � τ = k/(2 jπJ ), we ignore H eff

J during the rf pulse
and hence decompose the Floquet evolution UNMR = UJUrf ,
where Urf = exp(−iHrf�) and UJ = exp(−iH eff

J τ ).

B. Initial-state preparation

At ambient temperatures, the thermal energy kBT of the
NMR spin system is much larger than the Zeeman energy
splitting h̄γiB0. Hence, an n-qubit system is in a highly mixed
state and is given by the Boltzmann distribution [49]

ρeq � 1

2n
+

∑
i

εiIzi, (9)

where 1/2n captures the uniform population background, and
the purity factor εi = h̄γiB0/(2nkBT ) ≈ 10−5 captures the de-
viation from uniform population distribution.

To simulate the dynamics of a QKT, it is conventional to
initialize the system into coherent states as these are closest to
a classical state [52,53]. We simulate a spin- j QKT using 2 j
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FIG. 4. An experimental circuit to realize the QKT model in a
system of M qubits. Starting from the state ρeq in thermal equi-
librium, a pseudopure state ρPPS is prepared. This is followed by
preparation of initial state ρθφ . We then implement the QKT model
for N kicks and finally read out each qubit.

qubits initialized in the spin coherent state defined as

|θ, φ〉 = Uθφ|0〉⊗n, where Uθφ = e−iφ
∑

i Izi e−iθ
∑

i Iyi . (10)

To realize this in a multiqubit NMR spin system, we first
transform the thermal equilibrium state ρeq to a pseudopure
(PPS) state of the form ρPPS = (1 − ε)1/2n + ε|ψ〉〈ψ | whose
dynamics can be mapped isomorphically to the dynamics of
a pure state |ψ〉 [54,55]. The detailed NMR pulse sequences
for preparing PPS of the two- and three-qubit spin systems
considered here are given in Ref. [56]. These states can then
further be transformed into coherent states |θ, φ〉 for an n-
qubit system:

ρθφ = UθφρPPSU †
θφ ≡ |θ, φ〉〈θ, φ|. (11)

The system is thus initialized to a required (θ, φ) coordinate
in the phase space and the QKT Floquet operator UNMR is
subsequently applied N times to study the time evolution.
An experimental circuit, showing the lineup of successive
operations for simulating a QKT, is displayed in Fig. 4. The
pulse sequences of this circuit for the two- and three-qubit
systems used here are shown in Fig. 11 in Appendix E.

C. Measurement of 〈Jα〉
In an NMR system, the direct signal measurement by

quadrature detection gives 〈Ixi〉 + i〈Iyi〉 [49]. To extract 〈Izi〉,
we apply the following in succession: (i) a pulsed field
gradient (PFG) which destroys the x and y magnetization
components of the system and (ii) a (π/2) pulse about the y
axis to rotate the z component of magnetization to the x axis,
and then detect the transverse magnetization. Note that mea-
surement of the angular momentum components of individual
spins suffices to estimate the total expectation values 〈Jα〉 (see
Appendix B). In the following, we discuss the results of the
above-mentioned protocols for studying dynamical tunneling
in two- and three-qubit spin systems.

IV. EXPERIMENTAL RESULTS

A. Tunneling in mixed phase space (k = 3)

As explained above, we initialize the two- and three-qubit
based QKT systems to different regions of the mixed phase
space at k = 3, and study the tunneling behavior via the scaled
angular momentum components 〈Jα〉 for α ∈ [x, y, z]. Follow-
ing Sanders and Milburn’s work [37] we chose the initial state
A (see Fig. 1) in the regular region of phase space, while the
initial state B lies in the border between the regular region and

FIG. 5. Attenuated correlation of the instantaneous state of the
system initialized in the regular region A for spin-1 (a) and spin-3/2
(b) systems with respect to the tunneling regions A and A′. Experi-
mentally extracted values of attenuated correlation are indicated by
symbols overlaid on simulated values indicated by dotted lines.

chaotic sea. The initial state C lies entirely in the chaotic sea.
The system was evolved for N = 25 kicks and 〈Jα〉 was mea-
sured after each kick. Note that a classical system initialized in
state A in the regular region is dynamically bound and cannot
escape to other regions, such as the state A′.

When working with such small quantum systems, the
spreading of wave functions (outside the phase space region of
interest) might be significant and hence needs to be monitored
to ensure that tunneling we observe is not due to leakage of
probability density. To quantify the overlap of the the time-
evolving state with the initial coherent state in regular region
A and the symmetry-related tunneling region A′, we study the
trace attenuated correlation defined as [57]

FS(t ) = Tr[ρ(t )ρS]√
Tr[ρ(0)2]Tr

(
ρ2

S

) , (12)

where ρ(t ) is the traceless deviation density matrix of the in-
stantaneous state of the system at time t , ρ(0) is the state of the
system, and ρS for S ∈ {A, A′} are the deviation density matri-
ces of coherent states A and A′. The experimentally measured
(symbols) and theoretically estimated (dotted lines) attenuated
correlation of systems evolving under QKT dynamics with
initial state A are shown in Fig. 5 for spin-1 (a) and spin-3/2
(b) systems respectively. Note that the attenuated correlation
can take negative values since the numerator in Eq. (12) is the
product of two traceless matrices. Exact overlap is quantified
by FS(t ) = 1, while orthogonality is quantified by FS(t ) = 0.
Nonzero negative values indicate partial overlap and opposite
phases between states. From Figs. 5(a) and 5(b), it is evident
that the initial coherent state has maximum overlap with the
regular region A and a modest overlap with A′ in spin 1 and
even smaller overlap in spin 3/2. However, during the course
of QKT evolution, the system gets more and more mixed,
resulting in decaying overlap with both regions A and A′.
The purity dynamics of the experimental two- and three-qubit
systems are shown in Fig. 12 in Appendix F.

Figure 6 shows the experimental results (symbols)
of scaled angular momentum components 〈Jα〉/ j for a
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FIG. 6. Dynamics of QKT in the two-qubit spin-1 system (a)–(c) and three-qubit spin-3/2 system (d)–(f) corresponding to initialization in
states A (a), (d), B (b), (e), and C (c), (f). The symbols indicate experimental data while dotted lines indicate simulation of the corresponding
spin- j system. The upper three traces represent 〈Jα (t )〉 and the lower four traces represent CS (t ). In (a) and (d) we see that both the systems
show clear tunneling patterns for initialization in the regular region with good agreement between simulation and experiments. The revival
patterns are observed for the near-regular region as well (b), (e), but are not as prominent as those of the regular region. The patterns for the
chaotic initial state (c), (f) show no clear periodicity.

spin-1 system realized using two qubits [Figs. 6(a)–6(c)] and
a spin-3/2 system realized using three qubits [Figs. 6(d)–6(f)]
initialized in states Q ∈ {A, B, C} of the classical phase space
shown in Fig. 1. The experimental data in each plot are over-
laid on the corresponding simulation of single spin- j system
shown by dotted lines. In all cases, we set the chaoticity pa-
rameter k = 3 and initialize the systems in states A [Figs. 6(a)
and 6(d)], B [Figs. 6(b) and 6(e)], and C [Figs. 6(c) and 6(f)].
In all the graphs, the top three traces show the expectation
values 〈JQ

α (t )〉. For the initialization into state A in the regular
region, we observe prominent oscillations in the expectation
values of Jx and Jz, while that of Jy remains constant as the sys-
tem is symmetric about y kicks [Figs. 6(a) and 6(d)]. A state
initialized in B near the border of regular and chaotic regions

shows similar periodicity, though not as prominent as that for
A [Figs. 6(b) and 6(e)]. For initial state C in the chaotic region,
we observe no clear periodicity, although the Jy component
shows oscillation as the system periodically gets localized and
delocalized with kicks [Figs. 6(c) and 6(f)]. The experimental
data show a decay in the oscillations due to decoherence and
other experimental imperfections. We note a relatively longer
time period of three-qubit oscillations compared to that of the
two-qubit system (see Appendix D for further analysis).

In all the plots, the lowest four traces show correlations

CS(t ) = |〈JS|JQ(t )〉|2 (13)

between JS of state S and the instantaneous total angular
momentum operators JQ(t ). The overlap measure allows us
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FIG. 7. Effects of dephasing noise on dynamical tunneling in two qubits (a)–(c) as well as three qubits (d)–(f), with PFG strengths 0 G/cm
(a), (d), 0.005 G/cm (b), (e), and 0.05 G/cm (c), (f). In all the cases, the system was initialized in state A inside a regular region of Fig. 1.
The symbols indicate experimental data overlaid on dashed lines corresponding to simulations of two- and three-qubit systems with dephasing
noise. The upper three traces represent 〈Jα (t )〉 and the lower four traces represent CS (t ). While both the systems are susceptible to dephasing
noise the two-qubit system is relatively more robust in comparison to the three-qubit system wherein the oscillations have decayed more
severely with noise.

to track the localization of the system in states A and A′ as
it tunnels between these regular regions. As expected, when
the system is initialized in state A, we see clear periodic
and out-of-phase tunneling oscillations of CA(A′ )(t ) [Figs. 6(a)
and 6(d)]. These tunneling oscillations persist even for near-
regular initialization in state B due to significant spreading
of the low dimensional quantum systems considered here
[Figs. 6(b) and 6(e)]. However, such tunneling oscillations are
washed out for chaotic initialization in state C [Figs. 6(c) and
6(f)]. Furthermore, the correlation measures CS(t ) indicate
that for the chaotic state, it is widely delocalized. The bottom
two traces in Fig. 6 capture brief leakage amplitudes to the
regions E and E′, which is the consequence of deep-quantum
systems considered here.

B. Robustness of dynamical tunneling

Now that we observe tunneling across a dynamical bar-
rier, it is interesting to see the role of quantum coherence
in sustaining tunneling. To this end, we monitor the robust-
ness of dynamical tunneling between regular regions A and
A′ under dephasing noise. For this purpose, we use PFGs
which introduce a linearly varying magnetic field along the z
direction and accordingly distribute Larmor frequencies over
the length of the sample [50]. PFGs along with translational
diffusion of molecules effectively induce strong dephasing in
the system [58,59]. The experimental impact of dephasing
on dynamical tunneling is shown in Fig. 7 for two-qubit
[Figs. 7(a)–7(c)] and three-qubit systems [Figs. 7(d)–7(f)] and
for PFG strengths 0 G/cm [Figs. 7(a) and 7(d)], 0.005 G/cm

032207-7



KRITHIKA, SANTHANAM, AND MAHESH PHYSICAL REVIEW A 108, 032207 (2023)

[Figs. 7(b) and 7(e)], and 0.05 G/cm [Figs. 7(c) and 7(f)].
The 0-G/cm scenario in Figs. 7(a) and 7(d) is the same as
Figs. 6(a) and 6(d) and has been replotted here for visual com-
parison. Here, the experimental data (symbols) are overlaid on
numerical simulations (dashed lines) of two- and three-qubit
systems with dephasing effects instead of the corresponding
single spin- j systems. We find that in both cases, the tunneling
behavior is weakened by dephasing noise. In the two-qubit
system, the periodic oscillations survive, but with decaying
tunneling amplitudes [Figs. 7(b) and 7(c)]. In the three-qubit
case, even in the presence of weak PFG of 0.005 G/cm the
oscillations decay much faster [Figs. 7(e) and 7(f)]. Here, the
correlation measure indicates that the system has a preferen-
tially larger overlap with the regular region A compared to
other regular regions. We can also see that the simulation of
experimental data agrees reasonable well with the actual data.
The difference seen between them can be attributed to the
effects of other imperfections such as gradient and rf calibra-
tion, and rf inhomogeneity. These results indicate the fragility
of dynamical tunneling under dephasing noise, and thereby
establish the importance of quantum coherence in sustaining
the phenomenon.

V. SUMMARY AND OUTLOOK

Dynamical tunneling, such as chaos-assisted tunneling, is a
well-studied phenomenon and has been demonstrated experi-
mentally in driven cold atomic clouds and microwave annular
billiards, and has most recently been used to generate NOON
states [33]. However, a systematic study of tunneling with
system size and different initial conditions was not available.
In this paper, we have experimentally demonstrated chaos-
assisted tunneling in two- and three-qubit systems using a
NMR based testbed. We initialized the systems to different
regions of the phase space—regular, near regular, (the border
region between regular and chaotic), and chaotic. Follow-
ing Ref. [37], we use 〈Jα〉, the components of the angular
momentum operator, as probes to study dynamical tunnel-
ing. We observe that the systems initialized in the regular
region show periodic oscillation in 〈Jα〉. Systems initialized in
the near-regular region also show periodicity in 〈Jα〉, but the
oscillations are not as perfect as those for the case of the
initial state in a regular region. Further, systems initialized in a
chaotic region show no periodicity. Additionally, by analyzing
the norm distance between the instantaneous total angular
momentum operator and that corresponding to either of the
regular regions, we monitor the periodic tunneling of the
system between these regions for different initial conditions.

To understand the significance of quantum coherence in
maintaining dynamical tunneling, we studied the robustness
of tunneling against dephasing noise. Experimental results
showed that while both the spin j = 1 and 3/2 systems are
susceptible to dephasing noise, the effect was severe for the
larger system, wherein the revivals of 〈Jα〉 were almost com-
pletely destroyed in the presence of dephasing noise.

Tunneling suppression for increasing number of qubits will
be related to the h̄ scaling in the kicked top model. For the
QKT, quantum correlations are known to decay in a power-
law form as a function of h̄ [48]. It will be useful to explore
the validity of this prediction for dynamical tunneling in future

studies. This is likely to be a challenging exercise from an
experimental point of view since it will require maintaining
coherence with a large number of interacting spins. Systems
with all-to-all and effectively equal spin couplings enable
convenient simulation of the nonlinear evolution under J2

z .
Since such coupling architectures are difficult to find, this
poses a challenge in experimentally simulating the kicked
top model of large spin- j systems. In heteronuclear systems
with unequally coupled spins, the nonlinear evolution with an
effective uniform coupling can be realized with the help of
spin-selective refocusing pulses as shown here. However, we
needed individual experiments to detect magnetization of each
heteronuclear species. One can also use a homonuclear spin
system which allows detecting magnetization of all spins in a
single experiment, but realizing spin-selective pulses becomes
difficult. Moreover, in homonuclear systems, the chemical
shift evolution will also need to be refocused.

Further, while it might not be entirely surprising that in-
troduction of noise kills tunneling effects, there are Floquet
engineering techniques that allow calibrated disorder while
still suppressing decoherence [60,61]. It will be interesting to
explore if such Floquet schemes help sustain chaos-assisted
tunneling even in the presence of noise. Another interesting
topic to consider would be a scenario of quantum tunneling
in the simultaneous presence of a potential-energy barrier as
well as a dynamical barrier. These aspects will be considered
in a later work.
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APPENDIX A: WAVE-FUNCTION SPREADING
IN THE DEEP-QUANTUM LIMIT

In the deep-quantum limit, it is important to take into
account the spread or finite width of spin wave functions. The
spin coherent state into which the system is initialized has a
finite spread depending on the spin size, which for smaller
spins is more than that of a larger spin. Let us now look
at the extent of overlap between states localized in regions
A and A′. Figure 8 shows the theoretical attenuated corre-
lation computed using Eq. (12) of the instantaneous state of
a system initialized in A and undergoing QKT dynamics for
k = 3 for spin-1 (a), spin-5 (b), and spin-20 (c) systems. It
is evident that as the system size increases, the degree of
overlap of states localized in A(A′) with A′(A) decreases. This
behavior also emphasizes the importance of chaotic states
in dynamical tunneling. As the system size increases, the
overlap of a localized state in a regular region (A,A′) with
the surrounding chaotic state decreases, which in turn ham-
pers the tunneling efficiency as is reflected in the prolonged
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FIG. 8. Attenuated correlation of the instantaneous state of QKT
with k = 3 initialized in the regular region A for spin-1 (a) and spin-5
(b) and spin-20 (c) systems with respect to the tunneling regions
A (dotted lines) and A′ (dashed lines). Attenuated correlation of
coherent state A with A′, as a function of spin- j size (d).

time periods in Figs. 8(b) and 8(c). The attenuated correla-
tion of a single spin- j system in coherent state A with the
corresponding state A′ as a function of spin size is shown
in Fig. 8(d). It can be seen that to achieve overlap <0.1
between A and A′, we need at least spin 5, i.e., ten qubits,
while overlap <0.01 requires at least spin 50 (or 100 qubits),
which is beyond the reach of current state-of-the-art quantum
simulators.

APPENDIX B: MEASUREMENT OF EXPECTATION
VALUES 〈Jα〉

The general state ρ of the multiqubit system can be ex-
panded in the product operator basis of constituent spins as

ρ = 1

2n
+

∑
i

cαiIαi +
∑
i jαβ

cαβi j IαiIβ j + · · · , (B1)

where higher-order spin correlation terms are not shown. The
total expectation value 〈Jα〉 for the linear term can then be

FIG. 9. Control experiments with k = 0 for the two- and three-
qubit systems. (a) Denotes the classical trajectory for different initial
states. (b) Shows the data of 〈Jα〉 for α ∈ {x, y, z} from two- and
three-qubit systems respectively. The symbols indicate experimental
data, while solid lines indicate simulations. We can see that the
experimental data are in good agreement with simulated data. The
decay in experimental data points is due to relaxation in the systems.

estimated as

〈Jα〉 = Tr

[
ρ

∑
i

Iαi

]
=

∑
i

cαiIαi =
∑

i

Tr[ρiIαi], (B2)

where ρi = 1
2 + ∑

i cαiIαi are the reduced density matrices of
the constituent spin systems.

APPENDIX C: k = 0 CONTROL EXPERIMENTS

As a control, we first studied the behavior of the system
in the absence of chaos, i.e., k = 0. In this case, the system
just evolves under (π/2) kicks applied about the y axis. The
classical equations of motion [Eq. (3)] at the (N + 1)th kick
relate to the N th kick as follows:

X (N + 1) = Z (N ),

Y (N + 1) = Y (N ),

Z (N + 1) = −X (N ). (C1)

The y component of the system remains invariant under
evolution, while the x and z components evolve with each
kick. The evolution is thus restricted to circles in the xz plane
for any given initial state. The results of this control experi-
ment are displayed in Fig. 9 for the system initialized into the
phase space region characterized by |θ, φ〉 = (2.25, 0.63).
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FIG. 10. Fourier transform of (a) control experiments and
(b) tunneling experiments for spin-1 (solid lines) and spin-3/2 (dot-
ted lines) systems. We can see that in the case of control experiments,
the frequency of oscillation is the same for both the systems. In the
case of tunneling experiments, there is a clear shift in the frequency
of the three-qubit system as compared to the two-qubit system. This
is in accordance with the expectation that as system size increases
the tunneling effect should get suppressed.

FIG. 11. Pulse sequences for simulating QKT dynamics in (a) the two-qubit register in the sodium fluorophosphate molecule with τPF =
1/(2JPF ), τQKT = 3/(2πJFP ) and (b) the three-qubit register in dibromofluoromethane with τCH = 1/(2JCH), τCF = 2/|JCF| − 1/2|JCF| (to
take care of the negative sign of JCF) and τHF = 1/(2JHF ), and τCH

QKT = 1/(πJCH), τCF
QKT = 2/|JCF| − 1/|πJCF| (to take care of negative

coupling), τHF
QKT = 1/(πJHF ). The solid rectangles represent rotations by an angle and about an axis as indicated over them, while the blank

rectangles represent π pulses to refocus the evolution under undesired spin-spin interaction. The [φ]z rotation in both cases was effectively
realized using three pulses [90]y[φ]x[90]−y (time ordered from left to right). The black half ellipsoids and dotted rectangles represent PFG along
the +z axis. The dotted rectangles in PFG are only applied in dephasing experiments. The right triangles at the end of the pulse sequences
represent FID in each nuclear species.

The experimental data show a decay in the amplitude of
the oscillation due to accumulation of pulse errors with each
kick. We can see that both the two- and three-qubit systems
have oscillating Jx and Jz values, while the value of Jy re-
mains constant. Moreover, the period of oscillation is the
same in both cases. To understand the frequency of oscilla-
tions better, we computed the Fourier transform of the time
evolution of the system. The frequency domain analysis of
the evolution [displayed in Fig. 10(a)] shows that the period
of oscillation, as anticipated, is independent of the system
size.

APPENDIX D: TIME PERIOD OF OSCILLATIONS
AND SYSTEM SIZE DEPENDENCE

Comparing the periodicity of oscillation, we can see that
the period is slightly longer for the three-qubit system which
completes about three oscillations in 25 kicks, while the two-
qubit system completes three and a half oscillations in the
same duration. In the case of k = 3, the period of oscillations
decreases with increasing system size. This is clear from the
frequency domain picture shown in Fig. 10. This is expected
since as the system size increases, it approaches the classical
limit, thereby suppressing quantum behavior.
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APPENDIX E: PPS AND QKT PULSE SEQUENCES

The pulse sequences for PPS preparation and QKT dynam-
ics in two- and three-qubit systems are shown in Figs. 11(a)
and 11(b) respectively.

The dynamics of the systems evolving under the QKT
Hamiltonian is as given in Eq. (2). The nonlinear Hamiltonian
HNL = k

2 jτ J2
z is evolved for time τ which gives the unitary

U = exp (−iHNLτ ). The expansion of the nonlinear term for a
system of 2 j qubits emulating the dynamics of a single spin- j
system is shown in Eq. (8). Following this expansion, we can
see that the main parameter governing the dynamics of the
nonlinear term is the chaoticity parameter k.

In the experimental systems, we evolve the spin-1 and
spin-3/2 systems under their spin-spin coupling Hamiltonians
[Eq. (4)] for appropriate durations, to achieve the desired
chaoticity parameter value k. Comparing the nonlinear term
of the QKT Hamiltonian [Eq. (8)] with the spin-spin cou-
pling NMR Hamiltonian [Eq. (4)], for a two-qubit system we
get [{k/(2 jτ )}2Iz1Iz2]τ ≡ πJFP2IzF IzPτQKT, which gives the
condition k/(2 j) ≡ πJFPτQKT. Hence the time for which evo-
lution under coupling term is required to realize a chaoticity
parameter value k is τQKT = k/(2π jJFP).

For the three-qubit system, a similar calculation gives

k

2 jτ
(2Iz1Iz2 + 2Iz2Iz3 + 2Iz1Iz3)τ

≡ 2π
(
JCHτCH

QKTIzCIzH +JCFτ
CF
QKTIzCIzF +JHFτ

HF
QKTIzH IzF

)
,

(E1)

which describes the condition for the respective evolution
times τCH

QKT, τCF
QKT, and τHF

QKT. The explicit forms of these du-
rations are also mentioned in the caption of Fig. 11. Hence,
the dynamics is primarily determined by the k value, and
evolution under intrinsic system parameters in experiments is
tailored accordingly.

FIG. 12. Experimental normalized purity function P(t ) of two-
and three-qubit systems during QKT evolution, denoted by filled
circles and squares respectively. The faster decay of purity in the
three-qubit system in comparison to the two-qubit system is clearly
evident.

In our experiments, for k = 3 the effective delay between
the kicks τQKT was set to 5.5×10−4 and 132×10−4 s in two-
and three-qubit systems respectively. For 25 kicks (N = 25 in
Fig. 11), these amounted to experimental durations of 0.014
and 0.3 s in the two- and three-qubit systems respectively.

APPENDIX F: PURITY DYNAMICS

To understand the degree of mixedness in the experimen-
tal system as it evolves under QKT dynamics, we study the
purity, defined by P(t ) = Tr(ρ(t )2), where ρ(t ) is the instan-
taneous traceless deviation density matrix of the state at time
t . The behavior of the normalized purity function is shown in
Fig. 12. We can see that both systems become more mixed
during the course of QKT evolution. However, the three-qubit
system suffers a significantly higher loss of purity in compar-
ison to the two-qubit system, as is evident from Fig. 12.
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