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In this work, we derive Robertson-Heisenberg–type uncertainty relation for two incompatible observables
in a pre- and postselected (PPS) system. The newly defined standard deviation and the uncertainty relation in
the PPS system have physical meanings which we present here. We demonstrate two unusual properties in the
PPS system using our uncertainty relation. First, for commuting observables, the lower bound of the uncertainty
relation in the PPS system does not become zero even if the initially prepared state, i.e., preselection, is the
eigenstate of both the observables when specific postselections are considered. This implies that for such case,
two commuting observables can disturb each other’s measurement results which is in fully contrast with the
Robertson-Heisenberg uncertainty relation. Second, unlike the standard quantum system, the PPS system makes
it feasible to prepare sharply a quantum state (preselection) for noncommuting observables (to be detailed in the
main text). Some applications of uncertainty and uncertainty relation in the PPS system are provided: (i) detection
of mixedness of an unknown state, (ii) stronger uncertainty relation in the standard quantum system, (iii) “purely
quantum uncertainty relation” that is, the uncertainty relation which is not affected (i.e., neither increasing nor
decreasing) under the classical mixing of quantum states, (iv) state-dependent tighter uncertainty relation in the
standard quantum system, and (v) tighter upper bound for the out-of-time-order correlation function.
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I. INTRODUCTION

The uncertainty relation, which Heisenberg discovered, is
one of the most well-known scientific findings [1,2]. It asserts
that it is impossible to accurately measure the position and the
momentum of a particle. In other words, measuring the posi-
tion of a particle always affects the momentum of that particle
and vice versa. Robertson developed the uncertainty rela-
tion known as “Robertson-Heisenberg uncertainty relation”
(RHUR) [3] in the very later years to describe the difficulty of
jointly sharp preparation of a quantum state (see Ref. [4] for
the notion of sharp preparation) for incompatible observables.
This relation not only limits the joint sharp preparation for
noncommuting observables but also proved its usefulness: to
formulate quantum mechanics [5,6], for entanglement detec-
tion [7,8], for the security analysis of quantum key distribution
in quantum cryptography [9], as a fundamental building block
for quantum mechanics and quantum gravity [10], etc.

On the one side, we have the standard quantum systems
where the RHUR hold while pre- and postselected (PPS)
systems, on the other side, are different kinds of quan-
tum mechanical systems that were developed by Aharonov,
Bergmann, and Lebowitz (ABL) [11–13] to address the is-
sue of temporal asymmetry in quantum mechanics. Recently,
in Refs. [14,15], the authors generalized the probabilities of
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obtaining the measurement results of an observable in a PPS
system given by ABL [11].

In the later years, Aharonov, Albert, and Vaidman (AAV)
[16] introduced the notion of “weak value” defined as

〈Aw〉φψ = 〈φ|A|ψ〉
〈φ|ψ〉 , (1)

in a pre- and postselected system when the observable A is
measured weakly. Here, |ψ〉 and |φ〉 are pre- and postselected
states, respectively. Weak values have strange features for
being complex and its real part can lie outside the max-min
range of the eigenvalues of the operator of interest when the
pre- and postselections are nearly orthogonal.

In order to obtain the real and imaginary parts of the
weak value of A [17,18], first the system of interest and a
pointer (ancilla) is prepared in the product state |ψ〉 ⊗ |ξ 〉.
Then the system pointer is evolved under the global unitary
U = exp(−iHt ), where H = gA ⊗ Px is the von Nuemann
Hamiltonian, A is the measurement operator of the system,
Px is the pointer’s momentum observable, g is the coupling
coefficient between system and pointer, and t is the interaction
time. Now after the time evolution of the system-pointer, the
system is projected to |φ〉 and, as a result, the state of the
pointer collapses to the unnormalized state |̃ξφ〉 ≈ 〈φ|ψ〉(1 −
igt 〈Aw〉φψ Px ) |ξ 〉 in the limit g � 1, i.e., weak interaction.
Now, it can be shown that the average position and momen-

tum shifts of the pointer in state |ξφ〉 = |̃ξφ〉√
〈̃ξφ |̃ξφ〉

are 〈X 〉ξφ
=

gt Re(〈Aw〉φψ ) and 〈Px〉ξφ
= gt

2σ 2 Im(〈Aw〉φψ ), respectively, with

the Gaussian pointer 〈x|ξ〉 = ( 1√
2πσ

)1/2e−x2/4σ 2
, σ is the root-
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mean-square (rms) width of the position distribution | 〈x|ξ〉 |2
of the pointer and thus providing the full knowledge of the
weak value of A.

Recently, a lot of attention was paid to these aspects
[19–40]. The measurements involving weak values are known
as “weak measurements” or “weak PPS measurements.” Since
it depends on probabilistic postselection |φ〉, a weak value
can be thought of as conditional expectation value. Moreover,
when the postselection is same as preselection, i.e., |φ〉 = |ψ〉,
it becomes

〈A〉ψ = 〈ψ |A|ψ〉 , (2)

the expectation value in the standard quantum system. The
PPS systems can therefore be thought of as being more gen-
eral than the so-called standard quantum systems.

As pre- and postselected systems are already useful practi-
cally as well as fundamentally, then an immediate question
can be asked whether there exists any uncertainty relation
like the RHUR which can give the limitations on joint sharp
preparation of the given pre- and postselected states when
noncommuting observables are measured.

In this study, we demonstrate the existence of such uncer-
tainty relations in PPS systems, which are expected as PPS
systems are more generalized versions of standard ones. We
first define the standard deviation of an observable in the PPS
system for the given pre- and postselections with geometrical
as well as physical interpretations. After that, we derive our
main result of this paper “uncertainty relations in pre- and
postselected systems” using the well known Cauchy-Schwarz
inequality.

We provide the following physical applications of our re-
sults: (i) detection of the purity of an unknown state of any
quantum systems (e.g., qubit, qutrit, two qubit, qutrit-qubit,
etc.) using two different definitions of the uncertainty of an
observable in the PPS system, (ii) stronger uncertainty relation
in the standard quantum system (i.e., the uncertainty relation
that can not be made trivial or the lower bound can not be
made zero for almost all possible choices of initially prepared
systems) using the uncertainty relation in the PPS system, (iii)
purely quantum uncertainty relations, that is, the uncertainty
relations which are not affected (i.e., neither increasing nor
decreasing) under the classical mixing of quantum states using
the uncertainty relations in PPS systems, (iv) state-dependent
tighter uncertainty relation in the standard system by intro-
ducing the idea of postselection, and, finally (v) tighter upper
bound for the out-of-time-order correlation function. More-
over, as the RHUR has plenty of applications, uncertainty
relations in the PPS systems can also be applied in quantum
optics, information, technologies, etc.

This paper is organized as follows. In Sec. II, we discuss
uncertainty relations in standard quantum systems. In Sec. III,
we derive our main results of this paper. Application of our
results are given in Sec. IV and finally we conclude our work
in Sec. V.

II. UNCERTAINTY RELATION
IN STANDARD QUANTUM SYSTEM

In this section, we first interpret the standard deviation of
an observable in standard quantum systems from geometrical

as well as information-theoretic perspective. For establishing
the standard deviation in a PPS system, we will introduce a
similar interpretation. The RHUR’s well-known interpretation
is also provided here.

A. Standard deviation

We consider the system Hilbert space to be H and let |ψ〉
be a state vector in H. Due to the probabilistic nature of the
measurement outcomes of the observable A, the uncertainty in
the measurement is defined as the standard deviation

〈�A〉ψ =
√

〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2. (3)

Geometric interpretation. Standard deviation can be given
a geometrical interpretation using the following proposition.

Proposition 1. If |ψ〉 ∈ H is an initially prepared state of
a standard quantum system and A ∈ L(H) is a Hermitian
operator, then we can decompose A |ψ〉 ∈ H as

A |ψ〉 = 〈A〉ψ |ψ〉 + 〈�A〉ψ |ψ⊥
A 〉 , (4)

where |ψ⊥
A 〉 = 1

〈�A〉ψ (A − 〈A〉ψ ) |ψ〉, and 〈A〉ψ = 〈ψ |A|ψ〉.
Equation (4) is sometimes known as the “Aharonov-Vaidman
identity” [41].

Proof. Let A |ψ〉 and |ψ〉 are two nonorthogonal state vec-
tors. Using Gram-Schmidt orthogonalization process, we find
the unnormalized state vector |ψ̃⊥

A 〉 ∈ H orthogonal to |ψ〉 as

|ψ̃⊥
A 〉 = A |ψ〉 − (〈ψ |A)|ψ〉

〈ψ |ψ〉 |ψ〉 = (A − 〈A〉ψ ) |ψ〉 , (5)

where 〈ψ |ψ〉 = 1 and after normalization, Eq. (5) becomes

A |ψ〉 = 〈A〉ψ |ψ〉 + 〈�A〉ψ |ψ⊥
A 〉 , (6)

where |ψ⊥
A 〉 = |ψ̃⊥

A 〉/
√

〈ψ̃⊥
A |ψ̃⊥

A 〉 and
√

〈ψ̃⊥
A |ψ̃⊥

A 〉 =√
〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2 = 〈�A〉ψ and 〈A〉ψ = 〈ψ |A|ψ〉. �
So, Eq. (4) can be interpreted as the unnormalized state

vector A |ψ〉 which has two components and these are 〈A〉ψ
along |ψ〉 and 〈�A〉ψ along |ψ⊥

A 〉. Here we interpret 〈�A〉ψ as
disturbance of the state vector due to the measurement of the
operator A or as the measurement error (or standard deviation)
of that operator when the system is prepared in the state |ψ〉.
For instance, if we set up the system in one of the eigenstates
of the observable A, then from Eq. (4), it can be seen that the
standard deviation of A is zero.

Information-theoretic interpretation. From an information-
theoretic approach, Eq. (3) can be written as

〈�A〉ψ =
√√√√d−1∑

i=1

∣∣〈ψ⊥
i |A|ψ〉∣∣2

, (7)

where {|ψ〉 , |ψ⊥
1 〉 , |ψ⊥

2 〉 , . . . , |ψ⊥
d−1〉} forms an orthonormal

basis such that I = |ψ〉 〈ψ | + ∑d−1
i=1 |ψ⊥

i 〉 〈ψ⊥
i | and “d” is

the dimension of the system. So, the origin of the nonzero
standard deviation 〈�A〉ψ in the standard quantum system can
also be thought of due to the nonzero contributions of the
unnormalized fidelities {|〈ψ⊥

i |A|ψ〉|}d−1
i=1 which can be viewed

as the spread of the information of the observable A along
{|ψ⊥

i 〉}d−1
i=1 directions.
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B. RHUR

The well-known RHUR for two noncommuting operators
A and B on a Hilbert space H when the system is prepared in
the state |ψ〉 is given by

〈�A〉2
ψ 〈�B〉2

ψ �
[

1

2i
〈ψ |[A, B]|ψ〉

]2

, (8)

where 〈�A〉ψ and 〈�B〉ψ are the standard deviations of the
operators A and B, respectively, and [A, B] = AB − BA is the
commutator of A and B. The derivation of Eq. (8) using
the Aharonov-Vaidman identity can be found in [41,42]. The
stronger version is obtained by adding the “Schrödinger’s
term” in Eq. (8) as

〈�A〉2
ψ 〈�B〉2

ψ �
[

1

2i
〈ψ |[A, B]|ψ〉

]2

+
[

1

2
〈ψ |{A, B}|ψ〉 − 〈A〉ψ 〈B〉ψ

]2

. (9)

The RHUR is usually interpreted as the following: it puts
bound on the sharp preparation of a quantum state for two
noncommuting observables. Hence, a quantum state in which
the standard deviations of the two noncommuting observables
are both zero cannot exist.

III. MAIN RESULTS

The idea of the standard deviation or information disper-
sion (see preceding section) is a crucial component of the
theory in a preparation-measurement situation. Pre- and posts-
elected systems are typical examples, therefore, we define the
standard deviation (uncertainty) of an observable and show
that for such systems, there exist RHUR-like uncertainty rela-
tions for two noncommuting observables.

A. Standard deviation in PPS system

Geometric definition. It is well known that when the pre-
selection and the postselection are the same, the PPS system
becomes the standard quantum system (see Introduction). The
following proposition generalizes Eq. (4) for the PPS system.

Proposition 2. If a PPS system is in a preselected state |ψ〉
and postselected state |φ〉, then for a Hermitian operator A ∈
L(H), we can decompose A |ψ〉 as

A |ψ〉 = 〈φ|A|ψ〉 |φ〉 + 〈�A〉φψ |φ⊥
Aψ 〉 , (10)

where

〈�A〉φψ =
√

〈ψ |A2|ψ〉 − | 〈φ|A|ψ〉 |2 (11)

and |φ⊥
Aψ 〉 = 1

〈�A〉φψ
(A |ψ〉 − 〈φ|A|ψ〉 |φ〉), a normalized state

vector which is orthogonal to |φ〉.
Proof. We assume that A |ψ〉 and |φ〉 are two non-

orthogonal state vectors. The unnormalized state vector
|φ̃⊥

Aψ 〉 ∈ H which is orthogonal to |φ〉 is obtained using Gram-
Schmidt orthogonalization process as∣∣φ̃⊥

Aψ

〉 = A |ψ〉 − 〈φ|(A|ψ〉)

〈φ|φ〉 |φ〉 = A |ψ〉 − 〈φ|A|ψ〉 |φ〉 ,

(12)
where 〈φ|φ〉 = 1 and after normalization, Eq. (12) becomes

A |ψ〉 = 〈φ|A|ψ〉 |φ〉 + 〈�A〉φψ
∣∣φ⊥

Aψ

〉
,

where |φ⊥
Aψ 〉 = |φ̃⊥

Aψ 〉/
√

〈φ̃⊥
Aψ |φ̃⊥

Aψ 〉 and
√

〈φ̃⊥
Aψ |φ̃⊥

Aψ 〉 =√
〈ψ |A2|ψ〉 − | 〈φ|A|ψ〉 |2 = 〈�A〉φψ . �
To define the standard deviation of the observable A in

the PPS system, we now present an argument which is sim-
ilar to the one used to describe the standard deviation of an
observable in a standard quantum system. So, Eq. (10) can
be interpreted geometrically as the unnormalized state vector
A |ψ〉 which has two components 〈φ|A|ψ〉 along the postse-
lection |φ〉 and 〈�A〉φψ along |φ⊥

Aψ 〉. Here we define 〈�A〉φψ as
the standard deviation of the observable A when the system is
preselected in |ψ〉 and postselected in |φ〉.

The standard deviation 〈�A〉φψ can be realized via the weak
value of the observable A as

〈�A〉φψ =
√

〈ψ |A2|ψ〉 − ∣∣〈Aw〉φψ
∣∣2|〈φ|ψ〉|2 (13)

=
√

〈�A〉2
ψ + 〈A〉2

ψ − ∣∣〈Aw〉φψ
∣∣2|〈φ|ψ〉|2, (14)

where 〈Aw〉φψ is the weak value of the observable A defined in
Eq. (1) and we have used Eq. (3) to derive Eq. (14). |〈φ|ψ〉|2 is
the success probability of the postselection |φ〉. Equation (13)
is no longer a valid expression if pre- and postselected states
are orthogonal to one another because in this situation, weak
value is not defined. Then, go back to Eq. (11). It should be
noted that Eq. (11) holds true whether the measurement is
strong or weak.

Information-theoretic definition. Another expression of the
standard deviation 〈�A〉φψ in the PPS system can be derived by

inserting an identity operator I = |φ〉 〈φ| + ∑d−1
i=1 |φ⊥

i 〉 〈φ⊥
i |,

where {|φ〉 , |φ⊥
1 〉 , |φ⊥

2 〉 , . . . , |φ⊥
d−1〉} forms an orthonormal

basis in the first term of the right-hand side of Eq. (13) as

〈�A〉φψ =
√√√√d−1∑

i=1

∣∣〈Aw〉φ⊥
i

ψ

∣∣2|〈φ⊥
i |ψ〉|2. (15)

From an information-theoretic perspective, Eq. (15) may
now be understood as follows: nonzero standard deviation in
the PPS system arises as a result of the nonzero contribu-

tions from the weak values {〈Aw〉φ⊥
i

ψ }d−1
i=1 along the orthogonal

postselections {|φ⊥
i 〉}d−1

i=1 . Note that two consecutive measure-
ments are taken into account in a PPS system: the operator
of interest A and the projection operator �φ = |φ〉 〈φ| which
corresponds to the postselection |φ〉. As a result, it is hard
to tell whether or not A has been measured when the weak
value is zero. Because of this, it is crucial to have nonzero
weak values which carry the information about the observable
A. Null weak values have recently been given a useful inter-
pretation [43]: if a successful postselection occurs with a null
weak value, then the property represented by the observable A
cannot be detected by the weakly coupled quantum pointer.
In other words, the pointer state remains unchanged when
the weak value is zero (see Introduction section). Thus, one
should anticipate that the standard deviation in the PPS system
should be zero if we obtain null weak values for the post-
selections {|φ⊥

i 〉}d−1
i=1 , that means the information about the

observable A is not dispersed throughout the postselections
{|φ⊥

i 〉}d−1
i=1 .
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In addition to the standard deviation’s geometrical and
information-theoretical explanations [Eqs. (10) and (15), re-
spectively] in the PPS system, we now study the minimum
(zero) and maximum uncertainty (or standard deviation)
which provide additional insights to understand the standard
deviation.

Zero uncertainty. The uncertainty 〈�A〉φψ defined in
Eq. (11) in the PPS system is zero if and only if

A |ψ〉 = 〈φz|A|ψ〉 |φz〉 , (16)

or |φz〉 ∝ A |ψ〉. We have used the notation |φz〉 as the post-
selection for which uncertainty in PPS system becomes zero.
The zero uncertainty in the PPS system can now be realized
in the following way: the weak value 〈Aw〉φz

ψ becomes nonzero

i.e., 〈ψ |A2|ψ〉
〈ψ |A|ψ〉 �= 0 when we postselect the system to |φz〉, and

the weak values for all postselections {|φz
⊥
i 〉}d−1

i=1 orthogonal
to |φz〉 are zero. As a result, the right side of Eq. (15) is
reduced to zero. It should be noted that all postselections
orthogonal to |φz〉 are “legitimate postselections,” meaning
that their weak values are clearly specified. Equivalently, we
can state that the information about the observable A is not
dispersed along the postselections {|φz

⊥
i 〉}d−1

i=1 as null weak
values do not carry information about the observable A (ac-
cording to the above information-theoretic definition). Hence,
it is guaranteed that in a particular direction there will be one
and only one nonzero weak value of A in a PPS system if and
only if the condition (16) is met.

Usefulness of zero uncertainty state. In this paragraph we
provide the following usefulness of the zero uncertainty post-
selected state |φz〉.

(1) In a parameter estimation scenario, where the task
is to obtain the precision limit in the estimation of interac-
tion coefficient g in the interaction Hamiltonian H = gA ⊗ p
(p is the pointer’s momentum variable), Fisher information
plays an important role whose maximum value is given by
F max(g) = 4σ 2 〈ψ |A2|ψ〉, where σ is the standard deviation
of initial distribution of the pointer state and |ψ〉 is the
initially prepared state of the system [44]. In an arbitrarily
postselected state |φ〉, Fisher information is given by Fφ (g) =
4σ 2|〈φ|A|ψ〉|2 � F max(g) [44]. Recently, it was shown in
Ref. [45] that the Fisher information can be expressed in
terms of quasiprobability distribution of an arbitrary prese-
lected state when the system is a PPS system. Although the
quasiprobabilities are in general complex and can take nega-
tive values as well, the Fisher information is always positive
and real. The Fisher information of the preselected state with
negative quasiprobability distribution can surpass the usual
quantum Fisher information (defined in standard quantum
system). Violation of such limit implies that the error which
occurs in estimating the unknown parameter can be reduced
significantly using the Fisher information of the preselected
state with negative quasiprobability distribution compared to
the usual quantum Fisher information. One can immediately
see using Eq. (11) that Fφ (g) = 4σ 2[〈ψ |A2|ψ〉 − (〈�A〉φψ )2].
Now it is obvious that for the zero-uncertainty postse-
lected state |φz〉 as appeared in Eq. (16), we have Fφz (g) =
F max(g). Hence, to achieve the maximum Fisher information
F max(g) in the PPS system, one must postselect the system

in |φz〉 = A |ψ〉 /
√

〈ψ |A2|ψ〉 which corresponds to the zero
uncertainty.

(2) The postselection |φz〉 alone has the ability to
provide the information (e.g., 〈�A〉ψ and 〈A〉ψ ) about
the observable A. Indeed by noting that 〈ψ |A2|ψ〉 =
pz(〈Aw〉φz

ψ )2 and 〈ψ |A|ψ〉 = pz 〈Aw〉φz

ψ , we have 〈�A〉2
ψ =

(1 − pz )pz(〈Aw〉φz

ψ )2, where pz = |〈φz|ψ〉|2 is the probability

of obtaining the postselection |φz〉 = A |ψ〉 /
√

〈ψ |A2|ψ〉.
Maximum uncertainty. To achieve the maximum value of

〈�A〉φψ , the weak value 〈Aw〉φψ in Eq. (13) has to be zero, i.e.,
when the postselection |φ〉 is orthogonal to A |ψ〉 and hence
max(〈�A〉φψ ) =

√
〈ψ |A2|ψ〉. Note that, in a preparation-

measurement scenario, maximum measurement error is also
found to be

√
〈ψ |A2|ψ〉 whether the measurement of the ob-

servable A is performed in standard system [see Eq. (3)] or
while performing the best estimation the operator A from the
measurement of another Hermitian operator [46].

B. Uncertainty relation in PPS system

After defining the standard deviation of an observable in a
PPS system, interpreting it geometrically and informationally,
and maintaining a parallel comparison and connection with
the standard deviation in the standard system, we are now in
a position to provide an uncertainty relation in a PPS system
for two incompatible observables. One can formulate many
different types of uncertainty relations in PPS systems (for ex-
ample, [47]), but our interpretation of an uncertainty relation
in a PPS system is based on the standard deviation defined
in Eq. (11) or (13). Since the weak value of the observable
A in the standard deviation (13) in the PPS system replaces
the average value of the same observable A in the standard
deviation (3) in standard quantum system, it is not surprising
that the mathematical expression of the uncertainty relation in
the PPS system is a modified version of the RHUR (8), where
the average values of the incompatible observables A and B in
Eq. (8) will be replaced by the weak values of the respective
observables when the system is preselected in |ψ〉 and posts-
elected in |φ〉. The explicit form of the uncertainty relation in
the PPS system is provided in the following theorem.

Theorem 1. Let A, B ∈ L(H) be two noncommuting Her-
mitian operators which are measured in the PPS system of our
interest with |ψ〉 and |φ〉 being pre- and postselected states,
respectively, then the product of their standard deviations sat-
isfies

( 〈�A〉φψ
)2( 〈�B〉φψ

)2 �
[

1

2i
〈ψ |[A, B]|ψ〉 − Im(WAB)

]2

,

(17)

where WAB=〈ψ |A|φ〉〈φ|B|ψ〉=(〈Aw〉φψ )∗ 〈Bw〉φψ |〈φ|ψ〉|2 [us-
ing the definition of the weak value defined in Eq. (1)].

Proof. Cauchy-Schwarz inequality for two unnormalized
state vectors |φ̃⊥

Aψ 〉 and |φ̃⊥
Bψ 〉 in H becomes

〈φ̃⊥
Aψ |φ̃⊥

Aψ 〉〈φ̃⊥
Bψ |φ̃⊥

Bψ 〉 � |〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉|2. (18)
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Now, as |〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉|2 = [Re(〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉)]2 + [Im

(〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉)]2 and hence

|〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉|2 � [Im(〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉)]2, (19)

where Im(〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉) = 1
2i (〈φ̃⊥

Aψ |φ̃⊥
Bψ 〉 − 〈φ̃⊥

Bψ |φ̃⊥
Aψ 〉) and

Re(〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉) = 1
2 (〈φ̃⊥

Aψ |φ̃⊥
Bψ 〉 + 〈φ̃⊥

Bψ |φ̃⊥
Aψ 〉). Now put

|φ̃⊥
Aψ 〉 = A |ψ〉 − 〈φ|A|ψ〉 |φ〉 defined in Eq. (12) for operator

A and similarly for operator B also, then we have

〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉 = 〈ψ |AB|ψ〉 − 〈ψ |A|φ〉 〈φ|B|ψ〉 . (20)

Note that 〈φ̃⊥
Aψ |φ̃⊥

Aψ 〉 = ( 〈�A〉φψ )
2

is square of the standard
deviation of the observable A in the PPS system defined in
Eq. (11) and similarly 〈φ̃⊥

Bψ |φ̃⊥
Bψ 〉 = ( 〈�B〉φψ )

2
is square of

the standard deviation of the observable B in the PPS system.
Finally, putting these values and using Eqs. (19) and (20) in
Eq. (18), it becomes Eq. (17). �

Equation (17) is always true for any strong PPS systems
[11–13] or weak PPS systems [16]. For weak PPS measure-
ments [16], WAB is expressed in terms of weak values of
both the observables. If the pre- and postselected states are
the same, i.e., |φ〉 = |ψ〉, then one gets back the RHUR (8)
as argued before. Equation (17) with “Schrödinger’s term”
becomes( 〈�A〉φψ

)2( 〈�B〉φψ
)2 �

[
1

2i
〈ψ |[A, B]|ψ〉 − Im(WAB)

]2

+
[

1

2
〈ψ |{A, B}|ψ〉 − Re(WAB)

]2

.

(21)

The uncertainty relation (17) can be interpreted in the same
way as we did for the RHUR (8). That is, it bounds the
sharp preparation of the pair for pre- and postselections (|ψ〉,
|φ〉) for two noncommuting observables. The lower bound
contains an additional term Im(WAB) compared to the RHUR
(8). So even if [A, B] �= 0, the bound on the right-hand side of
Eq. (17) can become zero implying the possibility of both the
standard deviations being zero implying further the possibility
of sharp preparation of a pair of pre- and postselected states.
Below, we provide the necessary and sufficient condition for
such case (see Observation 2). Recently, the authors of [48,49]
confirmed that in a PPS system using the ABL rule [11–13],
it is possible to go beyond the standard lower bound in the
RHUR for position and momentum observables. Not exactly,
but a similar property, i.e., achieving arbitrary small lower
bound (which depends on the pre- and postselections) of the
product of standard deviations of two noncommuting observ-
ables in a PPS system is possible in the relations (17). We
now explore two peculiar characteristics of the uncertainty
relations (17) and (21) that cannot be observed in standard
quantum systems.

Observation 1. If the lower bound in an uncertainty relation
in any quantum system is nonzero, then we say that two
incompatible observables disturb each others’ measurement
results. Now consider the following case. If |ψ〉 is a common
eigenstate of both A and B, then 〈�A〉ψ = 0, 〈�B〉ψ = 0
implying that the measurement of one does not disturb the

outcome of the other. Surprisingly, this property does not
hold in the PPS system. Note that, even if |ψ〉 is a common
eigenstate of both A and B, the lower bound of the relation
(21) does not become zero for specific postselections which
implies 〈�A〉φψ �= 0, 〈�B〉φψ �= 0. Hence, we can say that the
measurement of A is invariably disturbed by the measurement
of B or vice versa in a PPS system. In Ref. [50], Vaidman
demonstrated the same property in a PPS system using the
ABL rule.

Observation 2. With two noncommuting observables in
the standard quantum system, sharp preparation of a quantum
state is impossible. Or, equivalently, for an initially prepared
state |ψ〉, it is impossible to have 〈�A〉ψ = 0, 〈�B〉ψ = 0
if [A, B] �= 0. But in the PPS system, we can prepare any
quantum state |ψ〉 which can give 〈�A〉φψ = 0, 〈�B〉φψ = 0 for
a specific choice of postselection implying sharp preparation
of |ψ〉 for noncommuting observables A and B. It is easy to
show that both the uncertainties 〈�A〉φψ and 〈�B〉φψ are zero
for the common postselection |φz〉 if and only if

|φz〉 ∝ A |ψ〉 , |φz〉 ∝ B |ψ〉 .

After the normalization, we find the common postselection
condition

|φz〉 = A |ψ〉√
〈ψ |A2|ψ〉 = B |ψ〉√

〈ψ |B2|ψ〉 , (22)

up to some phase factors.
Example. Now, consider an example of two noncommuting

observables A = 1√
2
(I + σx ) and B = 1√

2
(σz + σx ) with the

initially prepared state |0〉. With these specific choices, it is
possible to show that condition (22) is satisfied. Recall that in
order to conduct the experiment using weak values, the aver-
age values of the observables must not be zero; for this reason,
we did not take into account the Pauli observables σx and
σy with initially prepared state |0〉. Nonetheless, if one does
not adhere to weak values, this example is still true. So, the
common postselection for this case is |φe〉 = (|0〉 + |1〉)/

√
2

and hence both the uncertainties 〈�A〉φe
0 and 〈�B〉φe

0 of the
noncommuting observables A and B, respectively, are zero
for the given initially prepared state |0〉 and the conditioned
postselection |φe〉 in Eq. (22). In the PPS system, it is now
feasible to do the hitherto impossibly difficult task of jointly
sharply preparing a quantum state for two noncommuting
observables.

The aforementioned Observations 1 and 2 demonstrate that
PPS systems are capable of being even stranger than their
well-known unusual results, e.g., quantum Cheshire cats [24],
measurement of a component of a spin- 1

2 particle which can
reach 100h̄ [16], etc.

Comments. The characteristics of the uncertainty relations
(17) and (21) in PPS systems as compared to the RHUR (8)
and Eq. (9) are substantially altered by the postselections.
These uncertainty inequalities (17) and (21) will undoubtedly
have applications like the RHUR for quantum foundations,
information, and technologies. For instance, (i) they can be
used for information extraction using commuting observables
because the inequalities do not become trivial for particular
choices of postselections, (ii) one can obtain a series of uncer-
tainty inequalities by changing the postselections and that is
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advantageous for practical purposes (see stronger uncertainty
relations in Sec. IV), (iii) existing applications of uncertainty
relations (8) and (9) in standard systems, such as entangle-
ment detection [7], quantum metrology [51,52], etc., can be
revisited using uncertainty relations (17) and (21) in the PPS
systems, (iv) PPS system based spin squeezing: spin-squeezed
states are a class of states having squeezed spin variance along
a certain direction, at the cost of antisqueezed variance along
an orthogonal direction. This is done by using the RHUR (8)
in the standard quantum system [53–56]. Such analysis can
be reintroduced in the light of PPS systems. As there is no
unique definition of spin squeezing in the standard quantum
systems, it is, by means of Eq. (17), also possible to define the
spin squeezing nonuniquely in the PPS system. A very careful
analysis is required to see whether there exist some states in
the PPS systems for which 〈�A〉φψ = 〈�B〉φψ and inequality
(17) is saturated similar to coherent spin states in the standard
quantum systems.

Intelligent pre- and postselected states

In the standard quantum system, the states for which
the equality condition holds in the RHUR (8) are known
as intelligent states or minimum-uncertainty states [57–59].
Minimum-uncertainty states have been proposed to improve
the accuracy of phase measurement in quantum interferometer
[60]. Minimum-uncertainty states in the PPS systems can also
be defined based on the following condition.

One can find the condition for which the inequality (17)
saturates (see Appendix A) is given by

A |ψ〉 − 〈φ|A|ψ〉 |φ〉 = ±i
〈�A〉φψ
〈�B〉φψ

(B |ψ〉 − 〈φ|B|ψ〉 |φ〉).

(23)
If the sign of “i” on the right-hand side of Eq. (23) is taken to
be positive (negative) when the observable A appears on the
left-hand side of Eq. (23), then the sign of i on the right-hand
side of Eq. (23) is taken to be negative (positive) when the
observable B appears on the left-hand side of Eq. (23). So, the
pre- and postselected states which satisfy the condition (23)
can be referred as the “intelligent pre- and postselected states.”
For the given preselection and observables in Eq. (23), one can
find the postselection which will make Eq. (17) the most tight,
i.e., equality.

C. Uncertainty equality in PPS system

Recently, in Ref. [61], the authors have shown that there ex-
ist variance-based uncertainty equalities from which a series
of uncertainty inequalities with hierarchical structure can be
obtained. It was shown that stronger uncertainty relation given
by Maccone and Pati [62] is a special case of these uncertainty
inequalities. Here we show such uncertainty equalities in the
PPS systems. We provide interpretation of the uncertainty
inequalities derived from the uncertainty equalities. Further,
in application Sec. IV, we use uncertainty equalities in PPS
systems to obtain stronger uncertainty relations and state-
dependent tighter uncertainty relations.

Theorem 2. The product of standard deviations of two
noncommuting Hermitian operators A, B ∈ L(H) in a PPS

system with pre- and postselected states |ψ〉 and |φ〉, respec-
tively, satisfies

〈�A〉φψ 〈�B〉φψ = ∓(
1
2i 〈ψ |[A, B]|ψ〉 − Im(WAB)

)
1 − 1

2

∑d−1
k=1

∣∣ 〈ψ | A
〈�A〉φψ

± i B
〈�B〉φψ

|φ⊥
k 〉 ∣∣2 ,

(24)

where we have assumed that 〈�A〉φψ and 〈�B〉φψ are nonzero,
and the sign should be considered such that the numerator is
always real and positive. Here {|φ〉 , |φ⊥

k 〉d−1
k=1 } is a complete

orthonormal basis in the d-dimensional Hilbert space.
Proof. Consider an orthonormal complete basis

{|φ〉 , |φ⊥
k 〉d−1

k=1 } in the d-dimensional Hilbert space H.
Now, define the projection operator � = I − |φ〉 〈φ| and the
unnormalized state vector |ξ±〉 = ( A

〈�A〉φψ
± i B

〈�B〉φψ
) |ψ〉. Then

we have the following identity:

〈ξ∓|�|ξ∓〉 = 〈ξ∓|ξ∓〉 − 〈ξ∓|φ〉 〈φ|ξ∓〉

=
⎧⎨⎩ 〈ψ |A2|ψ〉(〈�A〉φψ

)2 + 〈ψ |B2|ψ〉(〈�B〉φψ
)2 ∓ i 〈ψ |[A, B]|ψ〉

〈�A〉φψ 〈�B〉φψ

⎫⎬⎭
−

⎧⎨⎩ |〈φ|A|ψ〉|2(〈�A〉φψ
)2 + |〈φ|B|ψ〉|2(〈�B〉φψ

)2 ± 2 Im(WAB)

〈�A〉φψ 〈�B〉φψ

⎫⎬⎭
= 2 ± 2

(
1
2i 〈ψ |[A, B]|ψ〉 − Im(WAB)

)
〈�A〉φψ 〈�B〉φψ

, (25)

where we have used Eq. (11) and WAB = 〈ψ |A|φ〉 〈φ|B|ψ〉.
Now, we use another expression of � = ∑d−1

k=1 |φ⊥
k 〉 〈φ⊥

k | to
calculate the same identity

〈ξ∓|�|ξ∓〉 =
d−1∑
k=1

∣∣∣∣ 〈ψ | A

〈�A〉φψ
± i

B

〈�B〉φψ
|φ⊥

k 〉
∣∣∣∣2

. (26)

So, from the Eqs. (25) and (26), we obtain the uncertainty
equality (24) in the PPS system. �

Theorem 3. The sum of the variances of two noncommut-
ing Hermitian operators A, B ∈ L(H) in a PPS system with
pre- and postselected states |ψ〉 and |φ〉, respectively, satisfies( 〈�A〉φψ

)2 + ( 〈�B〉φψ
)2 = ±(i 〈ψ |[A, B]|ψ〉 − 2 Im(WAB))

+
d−1∑
k=1

| 〈φ⊥
k |(A ∓ iB)|ψ〉 |2.

(27)

Here, the “±” sign is taken suitably such that the first term in
right side is always positive.

Proof. Consider an orthonormal complete basis
{|φ〉 , |φ⊥

k 〉d−1
k=1 } in the d-dimensional Hilbert space H

and hence I − |φ〉〈φ| = ∑d−1
k=1 |φ⊥

k 〉 〈φ⊥
k |. By equating the

following two

Tr((A ∓ iB)|ψ〉〈ψ |(A ± iB)(I − |φ〉 〈φ|)),

Tr

[
(A ∓ iB)|ψ〉〈ψ |(A ± iB)

(
d−1∑
k=1

|φ⊥
k 〉 〈φ⊥

k |
)]

,

we have Eq. (27). �
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An inequality can be obtained by discarding some of the
terms in the summation corresponding to k or all the terms
except one term in Eq. (24) or (27). It is also possible to obtain
an arbitrarily tight inequality by discarding the minimum val-
ued term inside the summation in the denominator of Eq. (24)
for a particular value of k. Note that we have to optimize the
minimum | 〈ψ | A

〈�A〉φψ
± i B

〈�B〉φψ
|φ⊥

k 〉 |2 over all possible choice

of basis {|φ⊥
k 〉d−1

k=1 } in the subspace orthogonal to |φ〉.
In an experiment, let us assume that a few postselected

states from {|φ⊥
k 〉}d−1

k=1 are not detected by the detector because
of certain technical difficulties. Using such imprecise experi-
mental data, one may still be able to obtain an uncertainty
relation. In that case, the terms corresponding to the unregis-
tered postselections in Eq. (24) or (27) are to be eliminated.

D. Uncertainty relation for mixed preselection in PPS system

So far, we have only considered the preselected state to be
pure in a PPS system. Let us now generalize the definition of
the standard deviation and derive the uncertainty relations for
mixed preselected state in the PPS system. A direct general-
ization of the standard deviation defined in Eq. (11) is given
by

〈�A〉φρ =
√

Tr(A2ρ) − 〈φ|AρA|φ〉. (28)

See Ref. [63] for the motivation for calling 〈�A〉φρ as a stan-
dard deviation when the preselection is a mixed state. If ρ =∑

i pi |ψi〉 〈ψi|, where
∑

i pi = 1, then the variance is given
by ( 〈�A〉φρ

)2 =
∑

i

pi
( 〈�A〉φψi

)2
. (29)

Equation (29) demonstrates the intriguing fact that the vari-
ance of A in PPS system, i.e., 〈VarA〉φρ = ( 〈�A〉φρ )

2
respects

classical mixing of quantum states. Mathematically, classical
mixing of quantum states is represented by a density operator.
By taking advantage of this property, one can obtain a purely
quantum uncertainty relation when the preselection ρ is a
mixed state (see Sec. IV). It may be noted here that in standard
quantum systems, the variance VarA = 〈�A〉2

ρ increases, in
general, under the classical mixing of quantum states.

To realize the standard deviation in PPS system via weak
value for mixed preselected state, a generalization of the stan-
dard deviation 〈�A〉φψ given in Eq. (13) can be defined as

〈�Aw〉φρ =
√

Tr(A2ρ) − | 〈Aw〉φρ |2 〈φ|ρ|φ〉, (30)

where 〈Aw〉φρ = 〈φ|Aρ|φ〉
〈φ|ρ|φ〉 is the weak value of the operator A

when the pre- and postselections are ρ and |φ〉, respectively.
Now, 〈VarAw〉φρ := (〈�Aw〉φρ )2 can be viewed as a variance
like quantity (henceforth called as generalized variance) of
A involving weak value and, it is, in general, different from
the variance 〈VarA〉φρ = ( 〈�A〉φρ )

2
, and 〈VarAw〉φρ is always

nondecreasing under the classical mixing of quantum states.
This property is certified by the following proposition.

Proposition 3. The generalized variance 〈VarAw〉φρ is lower
bounded by the variance 〈VarA〉φρ , that is

〈VarAw〉φρ �
∑

i

pi
( 〈�A〉φψi

)2 = 〈VarA〉φρ , (31)

where equality holds if the preselection ρ is a pure state.
Proof. Let ρ = ∑

i pi |ψi〉 〈ψi|, then using Eq. (30) (after
using the definition of the weak value for mixed preselection),
we have

〈VarAw〉φρ = ( 〈�Aw〉φρ
)2

= Tr(A2ρ) − | 〈φ|Aρ|φ〉 |2
〈φ|ρ|φ〉

=
∑

i

pi 〈ψi|A2|ψi〉

− | ∑i
√

pi 〈φ|A|ψi〉 √
pi 〈ψi|φ〉 |2

〈φ|ρ|φ〉
�

∑
i

pi 〈ψi|A2|ψi〉

−
(∑

i pi| 〈φ|A|ψi〉 |2)(∑
i pi 〈φ|ψi〉 〈ψi|φ〉 )

〈φ|ρ|φ〉
=

∑
i

pi 〈ψi|A2|ψi〉 −
∑

i

pi| 〈φ|A|ψi〉 |2

=
∑

i

pi
( 〈�A〉φψi

)2 = (〈�A〉φρ
)2= 〈VarA〉φρ,

where we have used the Cauchy-Schwarz inequality for the
complex numbers in the first inequality and Eq. (29) in the
last line. When ρ is pure, equality holds automatically. �

As 〈VarA〉φρ does neither increase nor decrease under clas-
sical mixing of quantum states, the inequality 〈VarAw〉φρ �
〈VarA〉φρ clearly implies that under classical mixing of quan-
tum states, the generalized variance 〈VarAw〉φρ is always
nondecreasing. In fact, one can easily verify that 〈VarAw〉φρ is
sum of the quantum uncertainty 〈VarA〉φρ and the classical un-
certainty C(ρ, A, φ) := 〈φ|AρA|φ〉 − | 〈Aw〉φρ |2 〈φ|ρ|φ〉, both
of which will be discussed in detail in Sec. IV C.

It is important to note that, in general, the equality in
Eq. (31) does not imply that the preselection ρ is pure. In
Sec. IV A (see below), we show that only in the qubit system,
equality of Eq. (31) implies that the preselection is a pure
state. To make an equality in Eq. (31) in higher-dimensional
systems, we need to put conditions on the observable and
postselection (see below in Sec. IV A).

The uncertainty relation (17) or (21) can be generalized for
mixed preselection ρ also which is given by

( 〈�A〉φρ
)2( 〈�B〉φρ

)2 �
[

1

2i
〈[A, B]〉ρ − ImWAB

]2

, (32)

where WAB = 〈φ|BρA|φ〉. See the derivation of Eq. (32) in
Appendix B. Equation (32) holds also when the definition of
standard deviation defined in Eq. (30) is considered due the
Proposition 3.

032206-7



SAHIL, SOHAIL, AND SIBASISH GHOSH PHYSICAL REVIEW A 108, 032206 (2023)

TABLE I. Comparison of different properties between standard quantum systems and PPS systems.

Properties Standard quantum systems Pre- and postselected systems

Standard deviation 〈�A〉ψ = (〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2)1/2 〈�A〉φ

ψ = (〈ψ |A2|ψ〉 − |〈Aw〉φ

ψ |2|〈φ|ψ〉|2)1/2

Zero standard deviation Only if |ψ〉 is an eigenstate of A, i.e., |ψ〉 ∝ A |ψ〉 Only if |φ〉 ∝ A |ψ〉
Uncertainty relation 〈�A〉2

ψ 〈�B〉2
ψ � [ 1

2i 〈ψ |[A, B]|ψ〉]2
( 〈�A〉φ

ψ

)2( 〈�B〉φ

ψ

)2 �
[

1
2i 〈ψ | [A, B] |ψ〉 − Im(WAB )

]2

Joint sharp preparation If |ψ〉 is the eigenstate of both A and B If |φ〉 = A|ψ〉√
〈ψ |A2 |ψ〉

= B|ψ〉√
〈ψ |B2|ψ〉

, up to some phase factors

See Table I for the comparison of different properties be-
tween standard quantum systems and PPS systems.

IV. APPLICATIONS

Suitably postselected systems can offer some essential in-
formation regarding quantum systems. Below, we provide a
few applications of standard deviations and uncertainty rela-
tions in PPS systems.

A. Detection of mixedness of an unknown state

Practically, partial information about a quantum state is
often of great help. For example, whether an interaction has
taken place with the environment, one must verify the purity
of the system’s state. Quantum state tomography (QST) is
the most resource intensive way to verify the purity of a
quantum state but here we provide some results that can be
used to detect purity of the quantum state using less resources
compared to the QST.

We will use the inequality (31) in Proposition 3 to detect
the mixedness of an unknown preselected state in a PPS
system. The proofs of the following lemmas are given in
Appendix C.

Lemma 1. Qubit system: In the case of a two-level quan-
tum system (i.e., a qubit), equality in Eq. (31) holds if and
only if the preselected state ρ is pure irrespective of choice of
the observable A and the postselected state |φ〉.

Lemma 2. Qutrit system: If for an observable A and a com-
plete orthonormal basis {|φk〉}3

k=1 (to be used as postselected
states) of any three-level quantum system (i.e., a qutrit), and
the condition 〈φ1|A|φ2〉 = 0 also holds good, then equality in
Eq. (31) holds good if and only if the preselected state ρ is
pure.

Lemma 3. Qubit-qubit system: Consider any two
nonorthogonal postselections |φB〉 and |φ′

B〉 in the subsystem
B. For any observable A, equality of 〈�(A⊗I )w〉φAB

ρ

and 〈�(A⊗I )〉φAB
ρ and separately of 〈�(A⊗I )w〉φ′

AB
ρ and

〈�(A⊗I )〉φ′
AB

ρ hold only when the 2 ⊗ 2 preselected state ρ

is pure, where |φAB〉 = |φA〉 |φB〉 and |φ′
AB〉 = |φA〉 |φ′

B〉. Two
nonorthogonal postselections |φB〉 and |φ′

B〉 in the subsystem
B are required here due to the fact that there exists an unique
2 ⊗ 2 mixed density matrix which satisfies the equality of
Eq. (31).

Lemma 4. Qubit-qutrit system: If for an observable A and
any complete orthonormal basis {|φk

A〉}3
k=1 (to be used as post-

selected states) for a qutrit, and the condition 〈φ1
A|A|φ2

A〉 = 0 is
considered, then equality of 〈�(A⊗I )w〉φAB

ρ and 〈�(A⊗I )〉φAB
ρ

and separately of 〈�(A⊗I )w〉φ′
AB

ρ and 〈�(A⊗I )〉φ′
AB

ρ hold if and
only if the 3 ⊗ 2 preselected state ρ is pure.

Extension of this method for higher-dimensional systems
will require more conditions to be imposed on the observable
and postselections. So it might be difficult to apply our method
for higher dimensions. To overcome this difficulties, Eq. (17)
or (21) can be used to detect the mixedness of the initially
prepared states. Note that Mal et al. have used the stronger
version of the RHUR (9) to do so [64].

B. Stronger uncertainty relation

Motivation. If, for example, the initially prepared state of
the system is an eigenstate of one of the two incompatible
observables A and B, both the sides of the RHUR (8) become
trivial (i.e., zero). For certain states, a trivial lower bound
is always possible because the right side of the relation (8)
contains the average of the commutator of incompatible ob-
servables. For such cases, the RHUR (8) does not capture the
incompatibility of the noncommuting observables. One can
think of adding Schrödinger’s term in the RHUR but still
this can be become trivial (e.g., when the prepared state is
an eigenstate of either A or B). So, none of them are un-
questionably appropriate to capture the incompatibility of the
noncommuting observables.

It is Maccone and Pati [62] who considered a different
uncertainty relation, based on the sum of the variances
〈�A〉2

ψ + 〈�B〉2
ψ , that is guaranteed to be nontrivial (i.e.,

having nonzero lower bound) whenever the observables are
incompatible on the given state |ψ〉. But there are shortcom-
ings in the Maccone-Pati uncertainty relations (MPUR). It is
easy to show that in two-dimensional Hilbert space [65] if,
for example, the initial state |ψ〉 of the system is an eigenstate
of the observable A, then one finds that the first inequality
〈�A〉2

ψ + 〈�B〉2
ψ � ±i 〈ψ |[A, B]|ψ〉 + | 〈ψ |(A ± iB)|ψ⊥〉 |2

in MPUR becomes 〈�B〉2
ψ � 〈�B〉2

ψ , where |ψ⊥〉 is arbitrary
state orthogonal to |ψ〉. Similarly, it can be shown that the sec-
ond inequality 〈�A〉2

ψ + 〈�B〉2
ψ � 1

2 | 〈ψ⊥
A+B|(A + B)|ψ〉 |2

in MPUR becomes 〈�B〉2
ψ � 1

2 〈�B〉2
ψ , where

|ψ⊥
A+B〉 = [1/ 〈�(A + B)〉ψ ](A + B − 〈A + B〉ψ ) |ψ〉 and

〈�(A + B)〉2
ψ = 〈(A + B)2〉ψ − 〈A + B〉2

ψ for arbitrary
dimensional Hilbert space if the initial state of the system is
an eigenstate of the observable A [66]. It indicates that the
first and second inequalities in MPUR for two and arbitrary
dimensions, respectively, contain no information about the
observable A and are therefore of no practical significance.
In other words, we learn nothing new about the quantum
system other than the trivial fact that 〈�B〉ψ is non-negative.
In addition, if the initially prepared state |ψ〉 is unknown, then
|ψ⊥〉 is likewise unknown in the MPUR inequalities and, so
is the lower bound of MPUR. The first inequality in MPUR
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may be useful in a quantum system with Hilbert spaces of
more than two dimensions.

Here, we demonstrate that relations (17) and (21) can be
used to solve the triviality problem of the RHUR and the
problem with MPUR that we have mentioned above, i.e., these
uncertainty relations can provide nontrivial information about
the observable A. Even if the initially prepared state (pres-
election) |ψ〉 is unknown, the lower bound of our stronger
uncertainty relation can be calculated.

Consider the relation (17) which, using Eq. (14), becomes(〈�A〉2
ψ +εA

)(〈�B〉2
ψ +εB

)
�

[
1

2i
〈ψ | [A, B] |ψ〉−Im(WAB)

]2

,

(33)

where εX = 〈X 〉2
ψ − |〈Xw〉φψ |2|〈φ|ψ〉|2, with X = A or B. Now

suppose |ψ〉 is an eigenstate of A then, Eq. (33) is nontrivial
unless |φ〉 = |ψ〉, as, in the case when |φ〉 �= |ψ〉, the inequal-
ity (33) becomes

εA
( 〈�B〉2

ψ + εB
)
�[Im(WAB)]2. (34)

Notice that, in the both sides of Eq. (34), there is a quantum
state |φ〉 which can be chosen independently in the stan-
dard quantum system. So, it is always possible to choose
a suitable |φ〉 such that the relation (33) is nontrivial. With
“Schrödinger’s term,” the relations (33) and (34) become(〈�A〉2

ψ +εA
)(〈�B〉2

ψ +εB
)
�

[
1

2i
〈ψ | [A, B] |ψ〉−Im(WAB)

]2

+
[

1

2
〈ψ |{A, B}|ψ〉−Re(WAB)

]2

,

(35)

εA
( 〈�B〉2

ψ + εB
)
� [Im(WAB)]2

+
[

1

2
〈ψ |{A, B}|ψ〉−Re(WAB)

]2

,

(36)

respectively. As εA and εB can also be negative, the left-hand
side of relation (33) can become lower than the left-hand side
of relation (8). The same holds true for the right-hand side as
well. So, for a fixed |ψ〉, we always want to have a nontrivial
lower bound from the relations (8) and (33) which can be
combined in a single uncertainty relation, i.e., the stronger
uncertainty relation

max{LRH,LPPS} � max{RRH,RPPS},
where LRH = 〈�A〉2

ψ 〈�B〉2
ψ , LPPS = (〈�A〉2

ψ + εA)(〈�B〉2
ψ

+ εB), RRH = [ 1
2i 〈ψ |[A, B]|ψ〉]2, and RPPS = [ 1

2i 〈ψ | [A, B]
|ψ〉 − Im(WAB)]2.

In Fig. 1, comparison between the relations (8) and both
(33) and (35) is shown. Equations (34) and (36) capture the
information about the operator A when the initially prepared
state |ψ〉 is one of the eigenstates of A, while MPUR fails to
capture such information which we have already discussed.

Moreover, even if the initial state (i.e., preselection) is
unknown, the lower bound of the uncertainty relation (33)
can be calculated experimentally and in that case we need

FIG. 1. Comparison between the RHURs (8) and (9), and the
uncertainty relations (33) and (35). We choose A = σx , B = σy for
a spin- 1

2 particle and |ψ〉 = cos(θ/2) |0〉 + eiξ sin(θ/2) |1〉, |φ〉 =
cos(ω/2) |0〉 + eiη sin(ω/2) |1〉 with ξ = 0, ω = π/3, and η = π/5.
The blue curve is the left-hand side of the RHUR and, for this
particular case, it coincides with its lower bound, i.e., right-hand
side of RHUR. The orange curve is the left-hand side of Eq. (35)
and, for this particular case, it coincides with the right-hand side of
Eq. (35). The green curve is the right-hand side of Eq. (33). Now,
notice that, for θ = −π/2 and π/2, the RHUR becomes trivial while
for the same values of θ , the relation (33) as well as the relation (35)
are nontrivial. For this particular choice of postselection, both the
relations (33) and (35) are stronger than the RHUR (8). Note that the
relation (35) is the strongest under this condition as it is nontrivial
for all the values of θ . If, for the fixed values of θ and ξ , the relations
(33) and (35) are trivial, then one should keep changing the values
of ω and η (i.e., by choosing the postselection suitably) until they
become nontrivial which is our main goal.

the average value of the Hermitian operator 1
i [A, B] and weak

values of the operators A and B.
Sum uncertainty relation in the PPS system can also be

used to obtain stronger uncertainty relation in the standard
quantum system. One can easily show that( 〈�A〉2

ψ + εA
) + ( 〈�B〉2

ψ + εB
)
� ±(i 〈ψ |[A, B]|ψ〉

−2Im(WAB))

holds in Eq. (27) in Theorem 3 by discarding the summation
part which is always a positive number. This inequality re-
mains strong against when |ψ〉 is one of the eigenstates of A
by suitably choosing postselection |φ〉.

C. Purely quantum uncertainty relation

Motivation. In practice, it is not always possible to carry
out quantum mechanical tasks with pure states because of
interactions with the environment. Because the mixed initial
prepared state is a classical mixture of pure quantum states,
any task or measurement involves a hybrid of classical and
quantum parts. In modern technologies, it is considered that
quantum advantage is more effective and superior to classical
advantage. Hence, a hybrid of a quantum and classical com-
ponent may be less advantageous than a quantum component
alone. For example, the uncertainty of an observable A in
standard quantum system increases in general under classical
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mixing of quantum states, i.e., 〈�A〉2
ρ � ∑

i pi 〈�A〉2
ψi

(where
ρ = ∑

i pi |ψi〉 〈ψi|) and this is disadvantageous in the sense
that the knowledge about the observable is more uncertain
than only when the average of the pure state uncertainties are
considered. The uncertainty that one gets to see due to (clas-
sical) mixing of pure states is considered here as “classical
uncertainty.” The standard deviation 〈�A〉ρ can be referred as
the hybrid of classical and quantum uncertainties and hence
the RHUR (8) can be considered as the hybrid uncertainty
relation in the standard quantum systems.

Purely quantum uncertainty relation, a crucial component
of the quantum world, may be very useful, but in order to
obtain it, the classical uncertainty must be eliminated from the
hybrid uncertainty relation. To do this, we first need to deter-
mine the purely quantum uncertainty of an observable, which
can be done in a number of ways, such as by eliminating the
classical component of the hybrid uncertainty or by specifying
a purely quantum uncertainty straight away.

Any measure of purely quantum uncertainty should have at
least the following intuitive and expected property (below “�”
represents sometimes quantum observables, sometimes states,
etc., for different types of quantum mechanical systems; for
example, if the system is a PPS system, then � is the posts-
election |φ〉 and if the system is a standard quantum system,
then the term � disappears):
(i) Quantum uncertainty should not be affected (neither in-
creasing nor decreasing) by the classical mixing of quantum
states, i.e.,

Q(ρ, A,�) =
∑

i

piQ(ψi, A,�), where ρ =
∑

i

pi |ψi〉 〈ψi| .

Here Q(ρ, A,�) is some measure of purely quantum uncer-
tainty of the observable A for a given ρ. There might exist
some other properties depending upon the nature of the system
(e.g., standard systems, PPS systems, etc.) but we emphasize
that the most important property of a purely quantum uncer-
tainty should be (i).

It is seen that the variance of A in PPS system, i.e.,
〈VarA〉φρ = ( 〈�A〉φρ )

2
, is a purely quantum uncertainty which

satisfies the property (i). Now the purely quantum mechanical
uncertainty relation in this regard is Eq. (32).

As can be seen from Eq. (31) for mixed states, the second
definition of the variance of A, i.e., 〈VarAw〉φρ = (〈�Aw〉φρ )2 in
the PPS system defined in Eq. (30) is a hybrid uncertainty.
Hence, the uncertainty in PPS system based on weak value
has both classical and quantum parts. When measurement is
carried out in the PPS system and weak values are involved,
classical uncertainty may be crucial in determining how much
classicality (in the form of classical uncertainty) the mixed
state ρ possesses. Mixed states with less classicality should
have more quantumness (in the form of quantum uncertainty),
and vice versa. To distinguish classical uncertainty from the
hybrid uncertainty 〈VarAw〉φρ , we subtract the quantum uncer-
tainty 〈VarA〉φρ from it, i.e.,

C(ρ, A, φ) = (〈�Aw〉φρ
)2 − (〈�A〉φρ

)2
. (37)

This is one of the good measures of classical uncertainty
which should have some intuitive and expected properties:
(i) C(ρ, A,�) � 0 for a quantum state ρ,

(ii) C(ρ, A,�) = 0 when ρ = |ψ〉 〈ψ | (absence of classical
mixing),
(iii) total classical uncertainty of disjoint systems should be
the sum of individual systems’s classical uncertainties:

C(ρ, A1 ⊗ I + I ⊗ A2,�) = C(ρ, A1 ⊗ I,�) + C(ρ, I ⊗ A2,�),

when ρ = ρ1 ⊗ ρ2.
One can show that all the properties (i)–(iii) of classical

uncertainty are satisfied by C(ρ, A, φ) defined in Eq. (37).
Particularly, property (iii) is satisfied by taking � = |φ1〉 |φ2〉.
Here, |φ1〉 and |φ2〉 are postselections of the two disjoint
systems, respectively.

There are some works by Luo and other authors regarding
the purely quantum uncertainty relation. Initial attempt was
made by Luo and Zhang [67] to obtain uncertainty relation
by using skew information (introduced by Wigner and Yanase
[68]) but it was found to be incorrect in general [69]. Later,
another attempt was made by Luo himself [70], which is
obtained by discarding the classical part from the hybrid un-
certainty relation using skew information. But this uncertainty
relation cannot be guaranteed to be an intrinsically quantum
uncertainty relation [according to property (i)] as the uncer-
tainty they claim to be a quantum uncertainty is a product
of skew information (which is a convex function under the
mixing of quantum states) and a concave function under the
same mixing. After that, a series of successful and failed
attempts was performed by modifying the works of Luo and
other authors [71–74].

Instead, we have given a quantum uncertainty relation al-
though it is based on pre- and postselections which is different
from the standard quantum mechanics but a quantumness can
be seen in the relation (32).

D. State-dependent tighter uncertainty relations
in standard systems

The RHUR (8) or (9) is known not to be the tight one. Some
existing tighter bounds are given in [61,62,75]. The drawback
of these tighter uncertainty relations is that their lower bounds
depend on the states perpendicular to the given state of the
system. If the given state is unknown, then the lower bound of
these uncertainty relations also remains unknown.

Here we show that by the use of arbitrary postselected state
|φ〉, the lower bound of the RHUR based on sum uncertainties
can be made arbitrarily tight and even if the given state (i.e.,
preselection here) is unknown, the lower bound of our tighter
uncertainty relation can be obtained in experiments.

Theorem 4. Let ρ ∈ L(H) be the density operator of the
standard quantum system, then the sum of the standard devia-
tions of two noncommuting observables A, B ∈ L(H) satisfies

〈�A〉2
ρ + 〈�B〉2

ρ � ± i Tr([A, B]ρ) + 〈φ|C†
±ρC±|φ〉 , (38)

where C± = A ± iB − 〈A ± iB〉ρ I and the “±” sign is taken in
such a way that the first term in the right-hand side is always
positive.

Proof. Considering Eq. (27) for preselection |ψ j〉
and multiply by pj , and then after summing over j,
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we have∑
j

p j
( 〈�A〉φψ j

)2 +
∑

j

p j
( 〈�B〉φψ j

)2

= ±i
∑

j

p j 〈ψ j |[A, B]|ψ j〉∓2 Im

(∑
j

p j〈φ|B|ψ j〉〈ψ j |A|φ〉
)

+
d−1∑
k=1

∑
j

p j 〈φ⊥
k |(A ± iB)|ψ j〉 〈ψ j |(A ∓ iB)|φ⊥

k 〉 , (39)

where we have used WAB = 〈φ|B|ψ j〉 〈ψ j |A|φ〉. By using
Eq. (29) for A and B when ρ = ∑

j p j |ψ j〉〈ψ j |, we have( 〈�A〉φρ
)2 + ( 〈�B〉φρ

)2

= ±i Tr([A, B]ρ) ∓ 2 Im(〈φ|BρA|φ〉)

+
d−1∑
k=1

〈φ⊥
k |(A ± iB)ρ(A ∓ iB)|φ⊥

k 〉

= ±i Tr([A, B]ρ) + 〈φ|(A ± iB)ρ(A ∓ iB)|φ〉
− 〈φ|AρA|φ〉 − 〈φ|BρB|φ〉

+
d−1∑
k=1

〈φ⊥
k |(A ± iB)ρ(A ∓ iB)|φ⊥

k 〉 , (40)

where ∓2 Im(〈φ|BρA|φ〉) = ±i(〈φ|BρA|φ〉 − 〈φ|AρB|φ〉)
= 〈φ|(A ± iB)ρ(A ∓ iB)|φ〉 − 〈φ|AρA|φ〉 − 〈φ|BρB|φ〉 has
been used. Now put ( 〈�A〉φρ )

2 = Tr(A2ρ) − 〈φ|AρA|φ〉
defined in Eq. (28) (similarly for B also) and after subtracting
Tr(Aρ)2 + Tr(Bρ)2 from both sides of Eq. (40) and using
|φ〉〈φ| + ∑d−1

k=1 |φ⊥
k 〉〈φ⊥

k | = I , we have

〈�A〉2
ρ + 〈�B〉2

ρ

= ±i Tr([A, B]ρ) + Tr[(A ± iB)(A ∓ iB)ρ]

− Tr(Aρ)2 − Tr(Bρ)2

= ±i Tr([A, B]ρ) + Tr[(A ± iB)(A ∓ iB)ρ]

− Tr[(A ± iB)ρ]Tr[(A ∓ iB)ρ]

= ±i Tr([A, B]ρ) + Tr(M†
∓M∓ρ) − |Tr(M∓ρ)|2

= ±i Tr([A, B]ρ)+Tr[(M∓−〈M∓〉ρ I )†(M∓−〈M∓〉ρ I )ρ],
(41)

where M∓ = A ∓ iB. Now let C± = M± − 〈M±〉ρ I then
Eq. (41) can be rewritten as

〈�A〉2
ρ + 〈�B〉2

ρ = ±i Tr([A, B]ρ) + 〈φ|C†
±ρC±|φ〉

+
d−1∑

i

〈φ⊥
i |C†

±ρC±|φ⊥
i 〉 ,

where {|φ〉, {|φ⊥
i 〉}d−1

i=1 } is an orthonormal basis in H. By
discarding the summation term which is always a positive
number in the above equation, we obtain the inequality (38).�

Notice that the lower bound of Eq. (38) has different
nonzero values depending on different choices of the posts-
elections |φ〉. The inequality (38) becomes an equality when
|φ〉 ∝ (A ± iB − 〈A ± iB〉ρ I ) |ψ〉, where ρ = |ψ〉 〈ψ | is a

pure state. In Refs. [61,62,75], the lower bound of the sum
uncertainty relation depends on the state orthogonal to the
initial pure state, and if the initial state is a mixed state, then
the lower bound can not always be computed at least for
the full-rank density matrix. The reason is that we cannot
find a state which is orthogonal to all the eigenstates of a
full-rank density matrix. Moreover, if the initial density matrix
is unknown, then computing the lower bound will be hard.
In contrast, Eq. (38) does not have such issues as the first
and second terms in the right-hand side of Eq. (38) are the
average values of the Hermitian operators i[A, B] and (A ±
iB − 〈A ± iB〉ρ I ) |φ〉 〈φ| (A ∓ iB − 〈A ∓ iB〉ρ I ) in the state
ρ, respectively, where 〈A ± iB〉ρ = 〈A〉ρ ± i 〈B〉ρ . All of them
can be obtained in experiments even if ρ is unknown.

E. Tighter upper bound for out-of-time-order correlators

Recently, Bong et al. [76] used the RHUR for unitary
operators to give upper bound for out-of-time-order corre-
lators (OTOC) which is defined by F = Tr[(W †

t V †WtV )ρ],
where V and Wt are fixed and time-dependent unitary op-
erators, respectively. The OTOC diagnoses the spread of
quantum information by measuring how quickly two com-
muting operators V and W fail to commute, which is
quantified by 〈|[Wt ,V ]|2〉ρ = 2(1 − Re[F ]), where |X |2 =
X †X . The OTOC has strong connection with chaos and infor-
mation scrambling [77–79] and also with high-energy physics
[80–83]. It is known that OTOC’s upper bound is essential for
limiting how quickly many-body entanglement can generate
[80–82]. The standard upper bound for modulus of the OTOC
given by Bong et al. [76] is |F | � cos(θVWt − θWtV ), where
θVWt = cos−1|Tr(ρVWt )|, θWtV = cos−1|Tr(ρWtV )|.

Here, we show that uncertainty relation in PPS system for
unitary operators can be used to derive tighter upper bound for
the OTOC.

Theorem 5. Let ρ ∈ L(H) be the system’s state and |φ〉
be any arbitrary state, then modulus of the OTOC F =
Tr[(W †

t V †WtV )ρ] for fixed and time-dependent unitary oper-
ators V , Wt ∈ L(H), respectively, is upper bounded by

|F | = | 〈W †
t V †WtV 〉 | � cos

(
θ

φ
VWt

− θ
φ
WtV

)
, (42)

where θ
φ
VWt

= cos−1||√ρ(VWt )† |φ〉 || and θ
φ
WtV

=
cos−1||√ρ(WtV )† |φ〉 ||. Here, || . . . || defines a vector norm.

Proof. For a given mixed state ρ and arbitrary state
|φ〉 which we consider to be pre- and postselections,
respectively, the standard deviation 〈�X 〉φρ of any operator
X in the PPS system is defined as (〈�X 〉φρ )2 = Tr(XX †ρ) −
〈φ|X †ρX |φ〉 = Tr((

√
ρX φ

0 )†√ρX φ

0 ) = ||√ρX φ

0 ||2F , where

X φ

0 = X − X |φ〉 〈φ| and ||A||F =
√

Tr(A†A) denotes the
Frobenius norm of the operator A. When X is a Hermitian
operator, 〈�X 〉φρ becomes the standard deviation of X defined
in Eq. (28). Now consider X to be unitary operators U and
V . So, we can derive uncertainty relation for two unitary
operators U and V using the Cauchy-Schwarz inequality for
operators with Frobenius norm when the system is in pre- and
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FIG. 2. For both the figures, the blue curve is the standard upper
bound for |F | given by Bong et al. [76] and the green curve is |F |.
We have considered V = σz and Wt = 1√

2
(

1 1
−i i ) for a fixed time.

Initially prepared state is |ψ〉 = cos(θ/2) |0〉 + eiπ/11sin(θ/2) |1〉.
Now in the left figure, the orange curve is the upper bound of |F |
given in Eq. (42) when the postselection is |φ1〉 = cos(π/2) |0〉 +
eiπ/2sin(π/2) |1〉. In the right figure, the orange curve is the upper
bound of |F | given in Eq. (42) when the postselection is |φ2〉 =
cos(π/4) |0〉 + eiπ/2sin(π/4) |1〉. Here for two (or more) different
postselections, it is clearly seen that the upper bound given in
Eq. (42) is tighter than the standard upper bound given by Bong et al.
[76].

postselections ρ and |φ〉, respectively, as

〈�U 〉φρ 〈�V 〉φρ �
∣∣Tr

[(√
ρU φ

0

)†√
ρV φ

0

]∣∣
= |Tr(VU †ρ) − 〈φ|U †ρV |φ〉 |, (43)

where 〈�U 〉φρ =
√

1 − 〈φ|U †ρU |φ〉 and similarly for V also.

Now, by replacing U → V †W †
t and V → W †

t V †, (43) be-
comes

|Tr(W †
t V †WtV ρ)|

� | 〈φ|(V †W †
t )†ρW †

t V †|φ〉 | + 〈�(V †W †
t )〉φρ 〈�(W †

t V †)〉φρ
� ||√ρV †W †

t |φ〉 ||||√ρW †
t V † |φ〉 ||

+
√

1 − ||√ρV †W †
t |φ〉 ||2

√
1 − ||√ρW †

t V † |φ〉 ||2,
(44)

where we used the Cauchy-Schwarz inequality for vectors and

〈�(V †W †
t )〉φρ =

√
1 − ||√ρV †W †

t |φ〉 ||2 and 〈�(W †
t V †)〉φρ =√

1 − ||√ρW †
t V † |φ〉 ||2, where || |χ〉 || = √〈χ |χ〉 denotes

vector norm.
Now, by setting ||√ρ(VWt )† |φ〉 || = cosθφ

VWt
and

||√ρ(WtV )† |φ〉 || = cosθφ
WtV

in (44), the inequality (42)
is proved. �

In Fig. 2, it is shown that by suitably choosing |φ〉, the
upper bound of |F | in Eq. (42) can be made tighter than the
standard upper bound given by Bong et al. [76]. Hence, we
conclude that the tighter upper bound for the modulus of the
OTOC is

|F | � min
{
min

φ

{
cos

(
θ

φ
VWt

− θ
φ
WtV

)}
, cos(θVWt − θWtV )

}
.

V. CONCLUSION

We have defined standard deviation of an observable in
a PPS system, interpreted it geometrically as well as infor-
mationally from the perspective of weak PPS measurements,

and subsequently derived the Robertson-Heisenberg–type un-
certainty relation for two noncommuting observables. Such
uncertainty relations in PPS system impose limitations on
the joint sharp preparation of pre- and postselected states for
two incompatible observables. We provided the necessary and
sufficient condition for zero uncertainty of an observable and
show its usefulness in achieving optimized Fisher information
in quantum metrology. We have derived both product and
sum uncertainty equalities from which a series of uncertainty
inequalities can be obtained. The generalization of uncertainty
relation for mixed preselection in PPS system has also been
discussed. We have demonstrated that the PPS system can
exhibit more bizarre behaviors than the usual ones. For in-
stance, it is possible in PPS system that measurement of two
compatible observables can disturb each other’s measurement
results. i.e., the lower bound in the uncertainty relation can be
made nonzero by suitably choosing postselections. A similar
property in PPS system was first shown by Vaidman [50].
It is also possible that a quantum state (preselection) can be
prepared in a PPS system for which both of the standard
deviations of incompatible observables are zero although this
is not possible in a standard quantum system (see Sec. III B).

The standard deviation and uncertainty relation in the PPS
system have been used to provide physical applications. (i)
We have used two different definitions of the standard de-
viations in the PPS system to detect purity of an unknown
state. (ii) The uncertainty relation in the PPS system is used to
derive the stronger uncertainty relation (i.e., nontrivial for all
possible choices of initially prepared states) in the standard
quantum system. For two-dimensional quantum system, the
stronger uncertainty relation by Maccone-Pati [62] fails to
provide the information about the incompatible observables
when the system state is an eigenstate of either observable.
We have shown that our stronger uncertainty relation over-
comes this shortcoming of Maccone-Pati uncertainty relation.
(iii) Since the variance in the PPS system remains unaffected
(i.e., neither increases nor decreases) by the classical mixing
of quantum states, we have concluded that the uncertainty
relation in the PPS system is a purely quantum uncertainty re-
lation. In contrast, variance in the standard system increases in
general under the classical mixing of quantum states. Follow-
ing this observation we have provided a measure of classical
uncertainty whose less value implies more purely quantum
uncertainty. (iv) Tighter sum uncertainty relation in the stan-
dard quantum system has been derived where the tightness
depends on the postselection. (v) Uncertainty relation in PPS
system for two unitary operators has been used to provide
tighter upper bound for out-of-time-order correlators.

Future directions: (i) It will be interesting if the global min-
imum for sum of uncertainties of noncommuting observables
in the PPS system exists because that can be used to detect
entanglement by suitably choosing postselections, similar to
the work by Hofmann and Takeuchi [7]. (ii) Applications and
implications of the ideas like “zero uncertainty” and “joint
sharp preparation of a quantum state for noncommuting ob-
servables” need more attention. (iii) This is a matter of further
study if the uncertainty relation (17) in PPS system has appli-
cations similar to the RHUR (8), such as quantum metrology,
spin squeezing, improving the accuracy of phase measure-
ment in quantum interferometers, etc. (iv) We have derived the
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condition for the “intelligent pre- and postselected states” to
achieve the minimum bound of the uncertainty relation in the
PPS system and intelligent pre- and postselected states can be
exploited to get highly precise phase measurements because
many theoretical and experimental efforts have been made in
recent years involving the minimum uncertainty states (for
which the RHUR saturates) and the spin-squeezing states in
the standard quantum systems (see, for example, [52,56,60])
for precise phase measurements.
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APPENDIX A

Here we derive the condition for which the inequality (17)
saturates. In the Cauchy-Schwarz inequality (18), the remain-
der and the real term to be vanished for the equality condition
of Eq. (17), i.e.,

|φ̃⊥
Aψ 〉 − 〈φ̃⊥

Bψ |φ̃⊥
Aψ 〉

〈φ̃⊥
Bψ |φ̃⊥

Bψ 〉 |φ̃
⊥
Bψ 〉 = 0, (A1)

〈φ̃⊥
Aψ |φ̃⊥

Bψ 〉 + 〈φ̃⊥
Bψ |φ̃⊥

Aψ 〉 = 0. (A2)

Now take the inner product between 〈φ⊥
Aψ | and Eq. (A1), and

use the condition (A2), then we have

〈φ̃⊥
Aψ |φ̃⊥

Aψ 〉 + (〈φ̃⊥
Bψ |φ̃⊥

Aψ 〉)2

〈φ̃⊥
Bψ |φ̃⊥

Bψ 〉 = 0. (A3)

Now using 〈φ̃⊥
Xψ |φ̃⊥

Xψ 〉 = (〈�X 〉φψ )2, where X = {A, B};
Eq. (A3) becomes

〈φ̃⊥
Bψ |φ̃⊥

Aψ 〉 = ±i 〈�A〉φψ 〈�B〉φψ . (A4)

Finally, use Eqs. (A4) and (12) in Eq. (A1) to obtain the
condition (23).

APPENDIX B

To show that the uncertainty relation (17) or (21) is also
valid for mixed preselected state ρ, we consider the following
operator:

T = Aφ

0 + (γ + iε)Bφ

0 , (B1)

where Aφ

0 = A − A |φ〉 〈φ| and Bφ

0 = B − B |φ〉 〈φ|, and γ , ε

are some real parameters. Now for any operator T , the in-
equality

Tr(ρT T †) � 0 (B2)

holds. Using Eq. (B1), we have

Tr(ρT T †) =(〈�A〉φρ
)2 + (γ 2 + ε2)

(〈�B〉φρ
)2

+ γ (〈{A, B}〉ρ − 2 ReWAB)

− iε(〈[A, B]〉ρ − 2 ImWAB) � 0, (B3)

where ( 〈�A〉φρ )
2 = Tr(ρAφ

0 Aφ

0

†
) is defined in Eq. (28),

〈[A, B]〉ρ = Tr(ρ[A, B]), 〈{A, B}〉ρ = Tr(ρ{A, B}), and WAB =
Tr(�φBρA). Now one finds the quantity Tr(ρT T †) is min-

imum for γ = −〈{A,B}〉ρ−2 ReWAB

2(〈�B〉φρ )
2 and ε = i(〈[A,B]〉ρ−2i ImWAB )

2(〈�B〉φρ )
2 .

Hence, minγ ,εTr(ρT T †) � 0 becomes

(〈�A〉φρ
)2(〈�B〉φρ

)2 �
[

1

2i
〈[A, B]〉ρ − ImWAB

]2

+
[

1

2
〈{A, B}〉ρ − ReWAB

]2

. (B4)

By discarding the second term which is a positive number in
the right-hand side of Eq. (B4), the uncertainty relation (32)
is achieved.

APPENDIX C

Here we show the proofs of all the Lemmas to detect
mixedness of an unknown state in qubit, qutrit, qubit-qubit,
and qubit-qutrit systems. Let us recall the mathematical ex-
pression of the statement of Proposition 3 which is given by

〈�Aw〉φρ � 〈�A〉φρ . (C1)

In the following, we will use Eq. (C1) to prove all the Lem-
mas. The general form of a mixed state is ρ = ∑

i pi |ψi〉 〈ψi|
and the condition for which the equality of Eq. (C1) holds is
(see proof of the Proposition 3)

〈φ|A|ψi〉 = λ 〈φ|ψi〉 , (C2)

where λ is some constant which depends on the index of |φ〉
(e.g., for |φk〉, it is λk).

1. The proof of Lemma 1

Proof. We first assume that each |ψi〉 is distinct and hence
from Eq. (C2), we have a set of equations

〈φ| (A − λI ) |ψi〉 = 0, (C3)

for each |ψi〉. Denote the unnormalized state vector |φ̃λ
A〉 =

(A − λI ) |φ〉. As |φ̃λ
A〉 is a unnormalized state vector different

from |φ〉 and the |ψi〉, ∀ i are orthogonal to |φ̃λ
A〉, it implies

that {|ψi〉}i=1 are confined in one-dimensional Hilbert space.
Hence, each |ψi〉 is the same initially prepared state that is ρ

is a pure state in a qubit system. �

2. The proof of Lemma 2

Proof. The qubit argument can not be generalized for the
higher-dimensional systems. The reason is simply because
in three-dimensional Hilbert space (for example) all the |ψi〉
can be confined in a two-dimensional subspace of the Hilbert
space which is orthogonal to |φ̃λ

A〉. To make an “if and only if”
condition, we consider the orthogonal basis {|φk〉}3

k=1 as valid
postselections. Here, valid postselections are those postselec-
tions for which weak values are defined.

As there are three postselections in three-dimensional
Hilbert space, we have three sets of equations like (C2) for

032206-13



SAHIL, SOHAIL, AND SIBASISH GHOSH PHYSICAL REVIEW A 108, 032206 (2023)

the equality of the inequality (C1):

{〈φ1| (A − λ1I ) |ψi〉 = 0}i=1, (C4)

{〈φ2| (A − λ2I ) |ψi〉 = 0}i=1, (C5)

{〈φ3| (A − λ3I ) |ψi〉 = 0}i=1. (C6)

Now, there are three possibilities which are implied by
(C4), (C5), and (C6): (i) The state vectors {|φ̃λk

kA〉 = (A −
λkI ) |φk〉}3

k=1 span the whole three-dimensional Hilbert space
H, (ii) {|φ̃λk

kA〉}3
k=1 span a two-dimensional Hilbert space H,

(iii) {|φ̃λk
kA〉}3

k=1 span a one-dimensional Hilbert space H.
Below, we will show that possibility (i) is discarded natu-

rally whereas to discard possibility (iii), we need a condition
on observable A and postselection |φ〉. Then, possibility (ii)
will automatically indicate that all the {|ψi〉}i=1 are the same,
i.e., ρ is pure.

To start with possibility (i), let us assume that possibility
(i) is true, then {|ψi〉}i=1 has to be orthogonal to {|φ̃λk

kA〉}3
k=1

according to (C4), (C5), and (C6) implying |ψi〉 = 0 ∀ i, i.e.,
ρ = 0. So we discard this possibility.

Possibility (iii) implies

N1(A − λ1I ) |φ1〉 = N2(A − λ2I ) |φ2〉 = N3(A − λ3I ) |φ3〉
(C7)

along the z axis (for example) and hence {|ψi〉}i=1 span two-
dimensional xy plane. Here Nk are normalization constants.
Now the inner product of (C7) with |φ1〉, |φ2〉, and |φ3〉,
respectively gives

N1(〈φ1|A|φ1〉 − λ1) = N2 〈φ1|A|φ2〉 = N3 〈φ1|A|φ3〉 , (C8)

N1 〈φ2|A|φ1〉 = N2(〈φ2|A|φ2〉 − λ2) = N3 〈φ2|A|φ3〉 , (C9)

N1 〈φ3|A|φ1〉 = N2 〈φ3|A|φ2〉 = N3(〈φ3|A|φ3〉 − λ3).

(C10)

Now, the particular choice

〈φ1|A|φ2〉 = 0 (C11)

implies that Eqs. (C8) and (C9) do not hold if 〈φ1|A|φ3〉 �= 0
and 〈φ2|A|φ3〉 �= 0, respectively. If either of Eq. (C8) and
(C9) does not hold then possibility (iii) is discarded. But, if
〈φ1|A|φ3〉 = 0 and 〈φ2|A|φ3〉 = 0, then we have to proceed
further. Note that, by setting 〈φ1|A|φ2〉 = 0 from Eq. (C11),
〈φ1|A|φ3〉 = 0 and 〈φ2|A|φ3〉 = 0 in Eqs. (C8), (C9), and
(C10), we have

λk = 〈φk|A|φk〉 for k = 1, 2, 3. (C12)

Now, it is easy to see that with the values of λk from Eq. (C12),
{〈φk|φ̃λk

kA〉 = 0}3
k=1 holds. This implies that {|φ̃λk

kA〉}3
k=1 cannot

be confined in one-dimensional Hilbert space, i.e., along a
particular axis and in our assumption it is the z axis. But
according to Eq. (C7), {|φ̃λk

kA〉}3
k=1 are along the z axis. Hence,

it shows the contradiction and we discard the possibility (iii)
when the condition 〈φ1|A|φ2〉 = 0 is considered.

Finally, the possibility (ii) implies that {|ψi〉}i=1 must be
spanned in one-dimensional Hilbert space H that is, each |ψi〉
is the same initially prepared state which is a pure state.

So, we conclude that if for an observable A and a complete
orthonormal basis {|φk〉}3

k=1 (to be used as postselected states)
of any three-level quantum system (i.e., a qutrit), the condition
〈φ1|A|φ2〉 = 0 is considered, then the equality in Eq. (C1)
holds good if and only if the preselected state ρ is pure. �

3. The proof of Lemma 3

Proof. For this bipartite system, we consider the observ-
able and the postselection to be A ⊗ I and |φAB〉 = |φA〉 |φB〉,
respectively. The standard deviations defined in Eqs. (28) and
(30) for the given bipartite state ρ become

(〈�(A⊗I )w〉φAB
ρ

)2= Tr[(A⊗I )2ρ] − | 〈φAB|(A⊗I )ρ|φAB〉 |2
〈φAB|ρ|φAB〉

= Tr[A2ρA] − | 〈φA|Aρ
φB
A |φA〉 |2

〈φA|ρφB
A |φA〉 , (C13)(〈�(A⊗I )〉φAB

ρ

)2= Tr[(A⊗I )2ρ]−〈φAB|(A⊗I )ρ(A⊗I )|φAB〉
= Tr[A2ρA] − 〈φA|Aρ

φB
A A|φA〉 , (C14)

respectively, where ρ
φB
A = 〈φB|ρ|φB〉 is the collapsed den-

sity operator of the subsystem A when a projection operator
�φB = |φB〉 〈φB| is measured in the subsystem B. In a qubit-
qubit system, the subsystem A is two dimensional and
hence 〈�(A⊗I )w〉φAB

ρ from Eq. (C13) and 〈�(A⊗I )〉φAB
ρ from

Eq. (C14) are equal “if and only if” ρ
φB
A is pure. Now, ρ

φB
A

being pure can be from ρ being both pure and mixed. If ρ is
pure, then ρ

φB
A is always pure but if ρ mixed, then it is easy

to see that ρ
φB
A is pure only when ρ = ∑2

i=1 pi |ψ i
A〉 〈ψ i

A| ⊗
|φi

B〉 〈φi
B|, where |φ1

B〉 = |φB〉 and
∑2

i=1 |φi
B〉 〈φi

B| = I . So, let
us consider another postselection |φ′

B〉 (which is not orthog-

onal to {|φi
B〉}2

i=1) and if we find ρ
φ′

B
A to be pure which is

equivalent to the equality of 〈�(A⊗I )w〉φ′
AB

ρ and 〈�(A⊗I )〉φ′
AB

ρ ,
then we are sure that the bipartite state ρ is a pure state
(due to the virtue of qubit system discussed above), where
|φ′

AB〉 = |φAφ′
B〉.

So, here is the conclusion: Consider any two nonorthogo-
nal postselections |φB〉 and |φ′

B〉 in the subsystem B. For any
observable A, equality of 〈�(A⊗I )w〉φAB

ρ and 〈�(A⊗I )〉φAB
ρ and

separately of 〈�(A⊗I )w〉φ′
AB

ρ and 〈�(A⊗I )〉φ′
AB

ρ hold only when
the 2 ⊗ 2 preselected state ρ is pure. �

4. The proof of Lemma 4

Proof. The treatment above with the condition of the qutrit
system, we have the following conclusion: if for an observable
A and any complete orthonormal basis {|φk

A〉}3
k=1 (to be used as

postselected states) for a qutrit, the condition 〈φ3
A|A|φ1

A〉 = 0 is
considered, then equality of 〈�(A⊗I )w〉φAB

ρ and 〈�(A⊗I )〉φAB
ρ

and separately of 〈�(A⊗I )w〉φ′
AB

ρ and 〈�(A⊗I )〉φ′
AB

ρ hold if and
only if the 3 ⊗ 2 preselected state ρ is pure, where |φ′

AB〉 =
|φAφ′

B〉. �
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