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Rise and fall of entanglement between two qubits in a non-Markovian bath
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We analyze the dynamics of quantum correlations between two qubits coupled to a linear chain of oscillators.
The chain mediates interactions between the qubits and acts as a non-Markovian reservoir. The model is
amenable to an analytical solution when the initial state of the chain is Gaussian. We study the dynamics of
the qubits’ concurrence starting from a separable state and assuming that the chain spectrum is gapped and
the chain is initially in a thermal state. We identify three relevant regimes that depend on the strength of the
qubit-chain coupling in relation to the spectral gap. These are (i) the weak-coupling regime, where the qubits
are entangled at the asymptotics, (ii) the strong-coupling regime, where the concurrence can exhibit collapses
followed by revivals with exponentially attenuated amplitude, and (iii) the thermal damping regime, where the
concurrence rapidly vanishes due to the chain’s thermal excitations. In all cases, if entanglement is generated,
this occurs after a finite time has elapsed. This time scale depends exponentially on the qubits’ distance and is
determined by the spectral properties of the chain. Entanglement irreversible decay, on the other hand, is due to
the dissipative effect induced by the coupling with the chain and is controlled by the coupling strength between
the chain and qubits. This study unravels the basic mechanisms leading to entanglement in a non-Markovian
bath and allows one to identify the key resources for realizing quantum coherent dynamics of open systems.
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I. INTRODUCTION

The coupling to the surrounding environment is commonly
considered the cause of the fragility of quantum superposi-
tions and entanglement. This fragility is a central challenge
for quantum technologies [1] that is usually addressed by
trying to isolate the quantum system and to actively correct
the detrimental effects of the environment on the system’s
dynamics. This requires an accurate knowledge of the noise
induced by the external environment. Within a microscopic
theory, the environment is described by a second, large phys-
ical system interacting with the system of interest [2,3].
These interactions establish entanglement between the system
and the environment degrees of freedom, that in turn results
in loss of coherence, namely, decoherence [4–6]. Neverthe-
less, there are counterexamples where the coupling with an
external bath can even lead to entanglement between the
system’s constituents [7–12]. The concepts underlying this
environment-induced quantum coherence have been used to
design protocols for quantum state preparation and computing
using dissipation [13–17]. This progress has put forward the
need to systematically understand which features of an envi-
ronment are resources and which are instead detrimental to
quantum coherent dynamics. An important resource are de-
coherence free subspaces, namely, subspaces of the system’s
Hilbert space that are effectively decoupled from the environ-
ment because of destructive interference [18,19]. This concept
has been recently extended to dynamical symmetries of the
master equation, allowing for the existence of stable limit
cycles [20,21]. The backflow of information from environ-
ment to the system, characterizing non-Markovianity [22,23],
has been shown to be a further important resource [24,25].
For specific master equations and settings entanglement

generation in a non-Markovian environment can be faster than
for a Markovian one [25,26]. Moreover, non-Markovian baths
can distribute entanglement between distant nodes [12,27–
36], providing interesting perspectives for realizing quantum
communication in nonunitary channels [37]. In general, clas-
sifying the role of the individual features and understanding
their interplay would open the perspective to design robust and
scalable quantum coherent dynamics in noisy environment.

In this work we perform a detailed characterization of a
non-Markovian bath in terms of its capability to establish
entanglement between two qubits. The non-Markovian envi-
roment is a chain of oscillators; each qubit couples to one of
the oscillators as illustrated in Fig. 1 but does not directly
couple to the other qubit. Previous studies reported that this
configuration may support the onset of entanglement between
the qubits [9,27,38], which can even survive at long times
[39]. The model is amenable to an analytical solution of the
propagator [38,39]. This permits us to shed light into the
individual processes of the bath-induced dynamics, which are
otherwise difficult to simulate in a non-Markovian environ-
ment [40]. In detail, we provide a systematic analysis of the
processes that lead to the generation of entanglement and of
the ones that cause its decay. We determine the dependence of
the corresponding time scales on the strength of the coupling
between qubits and chain, on the properties of the chain, and
on the distance between the qubits.

This paper is organized as follows. In Sec. II we introduce
the model at the basis of this study and review some of
its basic properties. In Sec. III we analyze the dynamics of
correlations between the qubits as a function of distance. In
Sec. IV we characterize the behavior of entanglement as a
function of the coupling strength between qubit and chain.
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FIG. 1. Entanglement generation between two qubits induced by
the coupling with a linear chain. The qubits do not mutually interact
but are coupled to one oscillator of a linear chain by means of
an optomechanical interaction. The chain is a non-Markovian bath
that mediates interactions and establishes entanglement between the
qubits. The characteristic time scales of entanglement are determined
as a function of the spectral gap of the chain, of the strength γ of the
qubit-oscillator coupling, and of the effective distance D between the
qubits, here quantified by the spatial distance between the chain’s
oscillators to which the qubits couple.

We then determine the time scales of entanglement generation
and decay and their dependence on the physical parameters,
including the spatial distance between the qubits. The conclu-
sions are drawn in Sec. V. The Appendixes provide results
complementing the discussion in Secs. III and IV.

II. TWO QUBITS COUPLED TO A CHAIN
OF OSCILLATORS

The open quantum system is composed by two qubits,
here denoted by a and b, that do not mutually interact but
couple to the vibrational modes of a linear chain. The chain
is composed of N oscillators; the qubits couple to the chain at
the oscillators labeled by �a and �b, respectively, according to
the Hamiltonian:

Hint = −h̄γ̄
(
σ a

x x�a + σ b
x x�b

)
, (1)

where σ a
x and σ b

x are the Pauli operators along x for qubits
a and b, respectively, and x� is the (dimensionless) position
operator of the oscillator at site � = 1, . . . , N . The parameter
γ̄ is a positive coupling constant, determining the strength of
qubit-chain coupling. The chain dynamics is governed by the
Hamiltonian (with periodic boundary conditions)

Hc = h̄ν

2

∑
�

(
x2
� + p2

�

) − h̄J̄

2

∑
�

x�x�+1, (2)

where p� is the dimensionless canonically conjugated opera-
tor to x�, while the positive frequencies ν and J̄ respectively
scale the energy of the oscillators and the coupling between
neighboring oscillators. The chain’s stability is warranted by
the inequality J̄ � ν. The ratio J̄/ν, in particular, controls
whether the chain’s spectrum is gapped (J̄ < ν) or gapless
(J̄ = ν). The system’s Hamiltonian is neglected here and the
total Hamiltonian is thus given by H = Hc + Hint: the Hamil-
tonian commutes with the operators σ

j
x and the chain hence

acts as a (non-Markovian) dephasing bath in the eigenbasis of
the operators σ

j
x .

In the following, we rescale the energy by h̄ν and the time
by ν−1. The rescaled oscillator-oscillator and qubit-oscillator
couplings are J0 = J̄/ν and γ = γ̄ /(

√
2ν), respectively. We

further introduce the distance D between the qubits in terms
of the distance between the oscillators to which they couple,

D = |�b − �a|.
This quantity corresponds to the number of oscillators sepa-
rating oscillator �a from oscillator �b. For later convenience,
we will use the definition �a = N − l + 1 and �b = l , with
l = 1, . . . , N

2 for N even (l = 1, . . . , N+1
2 for N odd). Accord-

ing to this notation, the distance between the qubits can be
rewritten as D = N + 1 − 2l .

A. Symmetries

In order to determine the propagator, we make use of the
symmetry of the total Hamiltonian by reflection about the
centers of the chain segments that connect the two qubits.
Given the periodic boundary conditions, there are two such
points and we choose the one separating the shortest segment.
This symmetry defines the separated subspaces containing
respectively the symmetric and antisymmetric states under
this reflection. In order to single out this property we introduce
the chain’s symmetric and antisymmetric coordinates

xS
N−2�+1 = 1√

2
(xN−�+1 + x�), (3)

xA
N−2�+1 = 1√

2
(xN−�+1 − x�), (4)

and the respective canonically conjugated momenta, pS
N−2�+1

and pA
N−2�+1. The chain Hamiltonian can be decomposed into

the sum of the Hamiltonian for the symmetric and the anti-
symmetric modes, Hc = HS

c + HA
c , which mutually commute:

[HS
c , HA

c ] = 0. Using these coordinates, the interaction Hamil-
tonian, Eq. (1), takes the form

H (D)
int = −

√
2γ

(
σ a

x + σ b
x

)
xS

D −
√

2γ
(
σ a

x − σ b
x

)
xA

D, (5)

for D > 0. For the given Hamiltonian, the operators σ a,b
x

are constants of motion. Therefore, a convenient qubits basis
for analyzing the dynamics is the basis of eigenstates |i j〉 ≡
|i〉a ⊗ | j〉b, with σ a,b

x |±〉a,b = ±|±〉a,b. In particular, the two-
dimensional subspace spanned by the basis vectors {|bS〉} :
{|++〉x, |−−〉x} couples to the symmetric chain, while the
antisymmetric chain couples to the two-dimensional subspace
spanned by the basis vectors {|bA〉} : {|+−〉x, |−+〉x}. In this
basis the coupling does not modify the occupation of the
eigenstates, but affects the evolution of superpositions. The
states {|bS〉} are eigenstates of the operator SS

x = (σ a
x + σ b

x )/2
at the eigenvalues bS = ±1 and belong to the kernel of op-
erator SA

x = (σ a
x − σ b

x )/2. Vice versa, the states {|bA〉} are
eigenstates of the operator SA

x at the eigenvalues bS = ±1
and belong to the kernel of operator SS

x . This shows that in
general no decoherence-free subspace exists for D > 0. The
case D = 0 is special. In this case

H (0)
int = −γ

(
σ a

x + σ b
x

)
x0 (6)

and there is a decoherence-free subspace of the qubits Hilbert
space, which consists of the kernel of operator σ a

x + σ b
x .
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B. Chain’s normal modes

Before proceeding, it is useful to introduce the normal-
mode coordinates x̃S

n , p̃S
n and x̃A

n , p̃A
n , with normal-mode

frequency ω
j=S,A
n =

√
1 − J0 cos k j

n and wave numbers kn ∈
[−π, π ). As we will consider finite chains, one shall distin-
guish between an even or odd number of oscillators. In detail,
for N even, then the Brillouin zones for the symmetric and
antisymmetric modes are kS

n = 2nπ/N and kA
n = kS

n + 2π/N ,
with n = 0, . . . , N

2 − 1. For N odd, then n = 0, . . . , N−1
2 for

kS
n and n = 0, . . . , N−3

2 for kA
n .

In the normal-mode representation, the symmetric and an-
tisymmetric part of the chain’s Hamiltonian read

H̃ j=S,A = 1

2

∑
n

(
p̃ j2

n + ω j2
n x̃ j2

n

)
. (7)

We write the interaction Hamiltonian Hi using the chain’s
normal modes:

Hint = −
∑

n

[
γ̃ S

n x̃S
n

(
σ a

x + σ b
x

)
/2 + γ̃ A

n x̃A
n

(
σ a

x − σ b
x

)
/2

]
. (8)

The coupling constants now depend on the normal modes
and read

γ̃ S
n = 2

√
2γ√
N

cos

(
kS

n D

2

)
,

γ̃ A
n = 2

√
2γ√
N

sin

(
kA

n D

2

)
. (9)

The coupling to the mode at lowest frequency (n = 0) is
γ̃ S

0 = 2γ√
N

and the coupling to the mode at largest fre-

quency (n = N/2) takes the form γ̃ A
N/2|even = 2γ√

N
(−1)

D+1
2 and

γ̃ A
(N−1)/2|odd = 2γ√

N
(−1)

D
2 (the latter distinction is a finite-size

effect). Interestingly, the distance introduces a characteris-
tic wave number kD = 2π/D, which modulates the coupling
strength to a given mode.

We will analyze the dynamics as a function of the coupling
strength γ , of the distance D, and of the elastic strength J0.
The latter controls the gap of the chain’s spectrum,

ω0 =
√

1 − J0.

In this work we choose J0 < 1; thus the spectrum is gapped.
The coupling J0 also determines the bandwidth �ω =√

1 + J0 − √
1 − J0, as well as the velocity with which in-

formation propagates along the chain. For γ = 0 this is
quantified by the Lieb-Robinson bound, which gives the
maximal velocity vLR with which information can propagate
through a nonrelativistic quantum system [41]:

vLR = 2 max
k∈BZ

|∇k ωk|, (10)

where BZ here indicates the Brillouin zone. Note that vLR van-
ishes for J0 → 0 and monotonously increases in the interval
J0 ∈ [0, 1].

C. Propagator

Let ρd (t ) be the density matrix of the two qubits at time t .
It is obtained by tracing out the chain’s degrees of freedom
from the density matrix χ (t ) of the total system, ρd (t ) =

Trc[χ (t )], where Trc denotes the trace over the chain’s degrees
of freedom. In this work we assume that at t = 0 the initial
density matrix χ (0) is a separable state of qubits and chain,
χ (0) = ρd (0) ⊗ Rβ . The propagator �t , connecting the state
of the qubits at time t with the initial state ρd (0), is defined as

ρd (t ) = Trc[U (t )ρd (0) ⊗ RβU †(t )] ≡ �tρd (0). (11)

Here, U (t ) = exp[−i(Hint + Hc)t/h̄] is the evolution operator.
An analytical form for the propagator is found when the
chain is in a Gaussian state. In what follows the chain is
initially prepared in a thermal state with inverse temperature
β, namely, Rβ = exp(−βHc)/Z , with Z being the partition
function. The propagator is conveniently expressed in the
basis of eigenstates {|bi〉} : {|++〉, |−−〉, |+−〉, |−+〉}. Re-
calling that the symmetric (antisymmetric) subspace is {|bS〉} :
{|++〉x, |−−〉x} (respectively {|bA〉} : {|+−〉x, |−+〉x}), the
matrix elements coupling states in the same subspace evolve
according to [38,39]〈

bα
i

∣∣ρd (t )
∣∣bα

j

〉 = 〈
bα

i

∣∣ρd (0)
∣∣bα

j

〉
× exp

( − f α (t )
(
bα

i − bα
j

)2)
, (12)

where α = S, A and

f α (t ) = 1

2

∑
n

γ̃ α 2
n

ωα 3
n

[
2n̄

(
ωα

n

) + 1
][

1 − cos
(
ωα

n t
)]

, (13)

with the mean thermal occupation of the αth symmetric
(antisymmetric) mode of the chain being given by the Bose-
Einstein statistics n̄(ω) = 1/(eβω − 1). The dynamics leads to
damping of the off-diagonal elements within the same sub-
space, while the diagonal elements are constant in time. We
will denote this term by damping term (or also attenuation).

The time evolution of the matrix elements between the
symmetric and the antisymmetric subspaces takes instead the
form 〈

bα
i

∣∣ρd (t )
∣∣bβ

j

〉
β 	=α

= 〈
bα

i

∣∣ρd (0)
∣∣bβ

j

〉
β 	=α

× exp(− f α (t ) − f β (t )

+ i[ϕα (t ) − ϕβ (t )]), (14)

where the time-dependent phases read [38,39]

ϕα (t ) = 1

2

∑
n

(
γ̃ α 2

n

ωα 2
n

t − γ̃ α 2
n

ωα 3
n

sin
(
ωα

n t
) )

. (15)

The phase is the sum of two contributions: (i) a contribution
linear in time and (ii) a multichromatic, oscillating contri-
bution. The term (i) gives rise to a periodic oscillation at
frequency �0 = �S

0 − �A
0 with

�α
0 =

∑
n

γ̃ α 2
n

ωα 2
n

. (16)

The oscillations can be associated to an effective Hamil-
tonian dynamics similar to the Lamb-shift Hamiltonian of
quantum electrodynamics [42,43]. Due to this analogy and
to its collective nature (see the following section), we will
denote this frequency by collective Lamb shift [44–46]. For
a single qubit the multichromatic oscillations are responsible
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for decoherence [39]. For this reason we will refer to this term
as decoherence or also dephasing term.

D. Discussion

The form of the propagator allows us to identify some
relevant time scales. We first observe that real and imaginary
parts exhibit multichromatic oscillations at the frequency of
the chain’s spectrum. At the time t 
 tmax ≡ 1/ωmax, one
finds the scaling behavior f ∝ t2 while ϕ ∝ t3, which is inde-
pendent of the chain spectrum [39,47]. During the evolution,
as time goes by the influence of the chain’s normal modes at
decreasing frequency start to be important. When �ω � ω0,
one can identify a time scale separation at which the low-
frequency modes of the reservoir spectrum become relevant in
determining the system evolution [48]. In this work this is not
the case, since the chain spectrum is gapped, ω0 > 0, and the
largest frequency of the normal modes, ωmax = ω0 + �ω, is
chosen to be of the same order as ω0. For our dynamics, an im-
portant time scale is tchain ∼ π/�ω, at which the oscillations
at the smallest and at the largest chain frequencies are out of
phase by π . At this time scale the decoherence and damping
terms start to oscillate. There is a further important time scale
to consider in our analysis. This is the time scale over which
the finite size of the chain becomes important and is essen-
tially the Poincaré time [3]. We estimate the Poincaré time
using the Lieb-Robinson bound, tP ∼ N/(2vLR). For N � 1
and times t 
 tP the dynamics is independent of the specific
chain’s size.

Let us now discuss the real and imaginary parts of the
propagator separately. The dissipative component scales with
n̄(ω) and thus increases with the initial temperature of the
chain. Its value as a function of time is bound from above:
f � 16[2n̄(ω0) + 1]γ 2/ω3

0. Hence, for weak couplings and
moderate temperatures, the off-diagonal elements of the den-
sity matrix are attenuated with respect to the initial value,
while for large couplings they vanish after a time t � tmax.
The function ϕ, instead, is independent of the temperature.
Interestingly, for a single qubit it vanishes identically [39].
For two qubits, this term vanishes when the qubits are either
in an eigenstate |i j〉 of σ a,b

x or in a maximally entangled state.
This also implies that the frequency �0 is different from zero
only in the presence of a second qubit. Note that the frequency
�0 corresponds to an effective, coherent interaction between
the qubits that emerges because of the coupling with the bath.

III. BATH-INDUCED DYNAMICS

The physical problem considered here is an example of
bath-induced dynamics, where the reservoir is intrinsically
non-Markovian. Notably, for a single qubit the dynamics is
solely dissipative, while coherent oscillations and decoher-
ence are induced only in the presence of a second qubit.
In order to identify the salient physical regimes, it is useful
to first consider three asymptotic, well-defined limits, taking
care that the symmetry of the two-qubit dynamics is pre-
served. (i) In the trivial limit γ = 0 the qubits are isolated
and undergo no dynamics. (ii) When J → 0 and at finite
γ , the oscillators of the chain become decoupled and the
dynamics reduces to a qubit coupled to a single oscillator at

frequency ω0 = 1. In this case, correlations can be established
between the qubits only when they couple to the same oscil-
lator, namely, for D = 0. (iii) Finally, in the limit γ → ∞ the
dynamics reduces to an exchange of excitations between the
qubit and the oscillator to which it couples. The interaction
Hamiltonian tends to freeze the oscillator in an eigenstate of
the position operator and to suppress propagation of excita-
tions along the chain. Outside of these asymptotic cases, the
dynamics is characterized by oscillations at frequency �0 that
are dephased by the second term in the function ϕ and damped
by the attenuation function.

A. Weak- and strong-coupling regimes

Some salient regimes can be identified for a gapped chain
spectrum (J < 1), which is the situation we analyze in this
work. For γ 
 ω

3/2
0 , the coupling to the chain gives rise to

the coherent interaction �0, while decoherence and damp-
ing (at moderate temperatures) are small corrections that
limit the visibility of the oscillations. We will denote this
regime by a weak-coupling regime. In the opposite limit,
the strong-coupling regime γ � ω

3/2
0 , damping and decoher-

ence become dominant at sufficiently long times, which we
identify with t � tmax. There is a third regime, where the
temperature is such that γ 
 ω

3/2
0 but γ

√
n̄ � ω

3/2
0 : in this

case one observes decaying oscillations due to damping, while
dephasing is negligible. The oscillations vanish at the asymp-
totics when γ

√
n̄ � ω

3/2
0 . We will denote this regime by a

thermal-damping regime. These considerations are useful for
understanding the dynamics of observables and correlations.

B. Dynamics of the correlation functions

For a single qubit the coupling with the chain induces deco-
herence and dissipation, but no dynamics [47]. Interestingly,
the coupling of a second qubit gives rise to observable effects
on the first qubit. In this section we discuss these dynamics by
analyzing the single-particle expectation values 〈σ a,b

α 〉 and the
two-particle correlation function,

gα,β (t, t ′) = 〈
σ a

α (t )σ b
β (t ′)

〉 − 〈
σ a

α (t )
〉〈
σ b

β (t ′)
〉
, (17)

where 〈·〉 = Tr{·ρd (0)}. The qubits are initially aligned along
y, namely, they are prepared in the pure states |ψ〉 j=a,b =
(|+〉x + |−〉x )/

√
2. Moreover, we assume that the chain is

at low temperatures, such that the mean occupations of the
normal modes are n̄(ω) 
 1.

Figure 2 shows the dynamics of the y component of one
of the qubits in the weak- (left) and in the strong- (right)
coupling regime, when the second qubit is at distance D = 0
(upper row) and D > 0 (lower row). We first discuss the case
D = 0, where there is a decoherence-free subspace. In the
weak-coupling regime, Fig. 2(a), the qubit undergoes slow
oscillations at the frequency �0, whose visibility is close to
unity. We emphasize that the qubit oscillation is a cooperative
effect determined by the collective Lamb shift.

The strong-coupling regime is shown in Fig. 2(b): the oscil-
lations become multichromatic, the characteristic frequencies
are the normal modes of the chain which are excited during the
corresponding time scale, and the corresponding amplitude is
quickly damped to the asymptotic value.
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)〉

(c) γ = 0.04, D = 10
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(d) γ = 0.3, D = 10

FIG. 2. Dynamics of the observable 〈σ a
y (t )〉 when the qubits are

at distance D = 0 (upper row) and at distance D = 10 (lower row).
The coupling strength is γ = 0.04 in the left subplots, (a) and (c),
and γ = 0.3 in the right subplots (b) and (d). The chain consists of
N = 104 spins with ω0 = 0.45 and inverse temperature β = 105. The
qubits are initially prepared in the pure state |ψ〉 = |ψ〉a ⊗ |ψ〉b with
|ψ〉 j=a,b = (|+〉x + |−〉x )/

√
2, corresponding to eigenstates of σ a,b

y

at eigenvalue 1.

When instead the qubits are at finite distance, here D = 10,
the dynamics at weak coupling is effectively frozen out, see
Fig. 2(c), while at strong coupling the expectation value first
quickly decays to a nonvanishing value and then undergoes
a slow dynamics. This behavior for relatively large distances
is understood by inspecting the dependence on D of the pa-
rameter γ̄n, Eq. (9), which scales the Fourier components
of the propagator. The damping of the symmetric and anti-
symmetric modes is multiplied by the factor cos2(kD/2) and
sin2(kD/2), respectively, while the Fourier components of the
imaginary part, ϕS − ϕA, are scaled by the factor cos(kD). In
particular,

�0(D) � 4γ 2/N
∑

n

cos(knD)/ω2
n. (18)

As D increases the value of �0 decreases and for the spectrum
ωn here considered; then �0 → 0 for D → ∞. Therefore,
for D � 1 the oscillation frequency is such that |�0| 
 1,
and in the weak-coupling limit the dynamics is essentially
frozen over the considered time scale. In the strong-coupling
limit, Fig. 2(d), the expectation value quickly decreases due
to damping, while the slower dynamics is due to the slow
oscillation at frequency �0.

Figure 3 displays the correlations between the two qubits,
corresponding to the subplots of Fig. 2. The correlations are
evaluated here at equal time and we choose to show the rep-
resentative case α = β = y. Starting from a separable state,
we observe that the correlations grow with t3 at very short
times. This demonstrates that correlations are first established
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−
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(d) γ = 0.3, D = 10

FIG. 3. Qubit-qubit correlations, Eq. (17) for α = β = y, and at
equal time, gyy(t, t ). The parameters of the subplots are the same as
in Fig. 2.

by the imaginary component of the propagator. After this
transient, in subplots (a), (c), and (d) they exhibit a slow
oscillation at the characteristic frequency �0, about which we
observe fast oscillations at the normal-mode frequencies of
the chain [which are not visible in the weak-coupling regime,
subplot (a), because the amplitude is very small]. The strong-
coupling regime for D = 0, Fig. 3(b), shall be discussed apart.
In this case damping and dephasing are dominant and the
correlations quickly reach a stationary state about which fast
oscillations occur. We refer the reader to Appendix A for the
analytic expression of all two-point correlations at equal and
different times. These results allow us to identify mechanisms
which determine the dynamics of entanglement. Interestingly,
they also show that the measurement of single- and two-body
correlations provides an insightful probe of the surrounding,
non-Markovian environment.

IV. ENTANGLEMENT

Having shown that the chain establishes correlations be-
tween the qubits, we verify when these correlations are
nonclassical. Several measures have been discussed in the
literature for studying entanglement between qubits [49]. For
our purpose, the concurrence is a useful quantity, since for
two qubits it also quantifies entanglement. The concurrence is
analyzed as a function of time and is defined as [50]

C(ρ(t )) = max{0, λ1 − λ2 − λ3 − λ4}, (19)

where λ1, λ2, λ3, λ4 are the eigenvalues, in decreasing or-
der, of the matrix ω(t ) =

√√
ρd (t )ρ̃d (t )

√
ρd (t ) with ρ̃d (t ) =

(σy ⊗ σy)ρ∗
d (t )(σy ⊗ σy) and the complex conjugate is taken

in the eigenbasis of the Pauli matrix σz. The concurrence
being a monotonous function of entanglement, it provides in-
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FIG. 4. Concurrence C for different values of γ when the qubits are coupled to the same oscillator, D = 0. Subplot (a) shows C for three
different values of γ deep in the weak-coupling regime, subplot (b) shows the concurrence for γ � ω

3/2
0 , where the effects of damping and

decoherence start becoming relevant on the time scale of the oscillations, and subplot (c) displays the concurrence for γ � ω
3/2
0 , in the regime

dominated by damping and decoherence. The qubits are initially prepared in the same pure state (20) with θa = θb = π/4 and φa = φb = 0.
The chain is composed by N = 104 oscillators with ω0 = 0.45 and inverse temperature β = 105.

formation about the growth or decay of quantum correlations
between the qubits. The definition we use, moreover, applies
also to mixed states.

In order to analyze the capability of the chain to mediate
entanglement, we assume that the qubits are initially uncor-
related. Their initial density matrix is ρd (0) = ρa(0) ⊗ ρb(0),
with ρ j=a,b(0) the density matrix of qubit a, b and ρ j (0) =
|�〉 j〈�| a pure state. We parametrize the initial state in the
Bloch-sphere representation

|�〉 j = cos θ j |+〉x + eiφ j sin θ j |−〉x, (20)

with θ j, φ j real and |+〉x and |−〉x the eigenvectors of σx Pauli
matrix with eigenvalues ±1, respectively.

We first focus on the characteristic time scales of entan-
glement for the case in which there exists a decoherence-free
subspace for the qubits, namely, the qubits couple to the same
oscillator. We then analyze the characteristic length scales by
studying the situation where the qubits couple to different
oscillators as a function of the distance D between the oscilla-
tors.

A. Time scales of entanglement

When the qubits couple to the same oscillator, D = 0, the
antisymmetric subspace is decoupled from the chain and is
a decoherence-free subspace. Deep into the weak-coupling
regime, in leading order the dynamics is coherent and the

concurrence is given by C(ρ) =
√

2(1 − Tr{ρ2
R}), where ρR is

the reduced density matrix of one qubit obtained after tracing
out the Hilbert space of the other one [49]. When the qubits are
initially prepared in the initial state (20), then the concurrence
takes the form

C(ρ(t )) � | sin(2θa) sin(2θb) sin(�0t )| (21)

and periodically oscillates at the frequency of the collective
Lamb shift �0. The periodic oscillation characterizes also the
dynamics of the correlations in the weak-coupling regime and
indicates that the collective Lamb-shift term of the propagator
is responsible for the appearance of entanglement. The initial
state of the qubits determines the maximum reached by the

concurrence: the concurrence varies between zero and Cmax =
| sin(2θa) sin(2θb)| with period π/�0 and reaches the maxi-
mal amplitude Cmax = 1 for initial states with Bloch angles
θa, θb = (2n + 1)π/4, with n ∈ Z, namely, when the qubits
are aligned along y or z.

We note that Eq. (21) is valid after a transient time and
specifically for t � tmax. For t 
 tmax, instead, the term �0t
is of the same order as the dephasing term. This is the regime
where decoherence exhibits the universal behavior ϕ ∝ t3 and
where we do not expect to find entanglement because of de-
phasing. This argument shows that there is a finite time scale
at which entanglement is generated between the qubits. We
will extensively characterize it in the next subsection.

We now discuss the behavior of the concurrence for differ-
ent values of the coupling strength γ , ranging from the weak-
to the strong-coupling regime. In what follows we assume
that the qubits are initially prepared in the same eigenstate of
σy. Unless otherwise stated, the chain is initially at very low
temperatures. Figure 4(a) displays the time evolution of the
concurrence deep in the weak-coupling regime, for γ 
 ω

3/2
0 .

The concurrence displays a periodic oscillation as in Eq. (21),
with slightly reduced visibility due to damping. There are also
fast oscillations about the slow envelope that become visible
only after zooming in and are due to the dephasing term of the
propagator. For γ ∼ ω

3/2
0 , Fig. 4(b), the concurrence exhibits

a multichromatic oscillation whose mean amplitude decreases
with γ . At even larger values, deep in the strong-coupling
regime, the concurrence features collapse and revive with
quickly decreasing amplitude; see Fig. 4(c). The decay of the
signal is due to the attenuation; the collapses and revivals
are due to dephasing and rephasing of the function ϕ. The
rephasing time is mostly determined by the beating of �0 and
ω0. The dephasing time scales with tchain and is determined by
the finite bandwidth �ω of the chain’s spectrum.

In order to study the entanglement at long times we use the
time average concurrence C̄, which we define as

C̄ = 1

tend

∫ tend

0
C(t ′)dt ′, (22)
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FIG. 5. Color plot of the average concurrence C̄, Eq. (22) for
D = 0. Subplot (a) shows C̄ as a function of γ and ω0 for β = 105.
Subplot (b) displays C̄ as a function of γ and n0 ≡ n(ω0), the average
occupation of the mode at frequency ω0, for ω0 = 0.45. The plots
have been evaluated for a chain with N = 104 oscillators and inte-
grating over the time tend = 106. The qubits are initially in the same
initial state with Bloch angles θa = θb = π/4 and φa = φb = 0.

where tend is the integration time. In order to capture a suffi-
ciently large number of oscillations, the dynamics is evolved
over times tend, which are generally longer than the Poincaré
time tP. We show in Appendix B that the behavior found at
tend is in qualitative agreement with the one found for t < tP.
The results we are going to discuss, hence, give a reliable
indication of the behavior in the thermodynamic limit at finite
γ . The behavior in the region at γ → 0, instead, is determined
by finite-size effects, as we will argue below.

Figure 5(a) displays the entanglement phase diagram as
a function of the coupling strength γ and of the character-
istic frequency ω0 of the chain. The diagram qualitatively
corresponds to the steady state (tend → ∞) with the excep-
tion of the small stripe at γ → 0. In this region the average
concurrence vanishes because the time scale, at which entan-
glement is generated, is larger than the integration time tend

(in Appendix B we show that the size of this region shrinks

0 5 10
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0.2

0.4

0.6

0.8

C

(a)γ = 0.04

γ = 0.25

0 100 200

0.0

0.2

0.4

0.6

0.8 (b)D = 1

D = 3

D = 5

D = 7

FIG. 6. Concurrence as a function of time (a) for different values
of γ when the qubits are at distance D = 10 and (b) as a function of
D for γ = 0.04. The chain is composed by N = 104 oscillators with
ω0 = 0.45 and β = 105. The qubits are initially in a separable, pure
state with Bloch angles θa = θb = π/4 and φa = φb = 0. It can be
observed that there is a finite time tgen after which entanglement is
generated.

as tend increases). Outside of this region, the concurrence is
maximum deep in the weak-coupling regime, while it de-
cays as γ is increased. More specifically, the contour lines
correspond to good approximation to the constant values
γ 2/ω3

0: the average concurrence monotonically decreases to
zero as the ratio γ 2/ω3

0 grows and with it the role of dissipa-
tion and dephasing on the dynamics.

Figure 5(b) shows the effect of the initial chain tempera-
ture, given here by the mean occupation n0 ≡ n(ω0), on the
asymptotic behavior of entanglement. At low temperatures,
n0 < 1, the average concurrence is almost independent of
the temperature: it decays to zero as γ reaches the strong-
coupling regime. By increasing n0 above unity the system
enters the thermal damping regime: entanglement vanishes
at lower values of γ . The contour lines, in particular, follow
the functional behavior γ

√
n0 = const and show that damping

is majorly responsible for the disappearance of the average
concurrence.

B. Entanglement as a function of the distance

We now analyze the features of entanglement as a function
of the distance D. Figure 6(a) displays the time evolution
of the concurrence for D = 10 and for two different values
of γ . Because of the relatively large distance, the effective
coupling strength of the function ϕ is reduced, so that the
dynamics determined by ϕ is the one corresponding to the
weak-coupling regime: the concurrence oscillates at the fre-
quency �0. Due to the different scaling with D the effect of
the attenuation becomes relevant at γ = 0.25 and significantly
reduces the maximal value that the concurrence can attain. At
larger values of γ we do not observe entanglement.

Whenever we find entanglement, we observe that at short
time the concurrence starts to grow after a finite time tgen has
elapsed, while for t < tgen there is no entanglement between
the qubits. Figure 6(b) compares the concurrence at relatively
short times and for different distances D, showing that tgen

increases monotonically with D. This result suggests that en-
tanglement propagates at a finite velocity.
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FIG. 7. Relation between the distance D and the delay time tgen

after which the concurrence grows. tgen is extracted from the numeri-
cal data and corresponds to the time for which the concurrence starts
to grow continuously. The data have been evaluated for γ = 0.04
(orange triangle) and γ = 0.1 (blue dot). The other parameters are
the same as in Fig. 6. The red stars report the values predicted by
the estimate of Eq. (23). The green diamonds give the propagation
time of the light cone with the Lieb-Robinson bound velocity vLR

and are plotted for comparison. The threshold was set such that
C(tgen ) = 0.001, corresponding to the maximal value that the con-
currence reaches in the universal regime, where the decoherence
function in the propagator scales with t3. In this regime, in particular,
C has no monotonous behavior but fluctuates between 0 and 0.001.

Figure 7 shows tgen as a function of D. The time scale of
entanglement generation is relatively independent of γ and
scales exponentially with the distance. We compare tgen with
the time scale tLR = D/vLR that an excitation needs for cover-
ing the distance D at the velocity of the Lieb-Robinson bound,
Eq. (10). The comparison shows that tgen is consistent with
the Lieb-Robinson bound, but cannot be related to cone-light
propagation across the chain. The dependence of tgen on D can
be understood by considering that entanglement is generated
by the collective Lamb shift. Therefore, it is generated at
times where the coherent term in the imaginary part of the
propagator, �0(D)t , exceeds the dephasing term. For short
times dephasing is dominant, while for t � tmax the dephas-
ing term starts to oscillate with the upper bound 4γ 2/ω3

0.
We identify the time scale for entanglement generation using
an equation that overestimates its value, �0tgen = 4γ 2/ω3

0. It
gives

t est
gen ∼ 2π/ω3

0∫ 2π

0 dk cos(kD)
ω(k)2

, (23)

where we have taken the continuum limit of Eq. (18),
�0(D) � 4γ 2

2π

∫ 2π

0 dk cos(kD)
ω(k)2 . The resulting expression is inde-

pendent of γ and is reported in Fig. 7: t est
gen overestimates the

time extracted from the numerical data but has the same func-
tional dependence on the distance D. These considerations
also clarify why we do not observe entanglement deep in the
strong-coupling regime for D > 0. In this case, in fact, the

FIG. 8. Color plot of the average concurrence C̄ (a) as a function
of γ and ω0 when the qubits are at distance D = 1 and (b) as a
function of the distance D and of γ for J0 = 0.8 (ω0 = 0.45). The
chain is composed by N = 104 and is initially at inverse temperature
β = 105. The two qubits are in a separable, pure state, Eq. (20) with
Bloch angles θa = θb = π/4 and φa = φb = 0. The concurrence was
averaged over tend = 106.

density matrix decays to a statistical mixture at a faster time
scale than tgen or, in other words, the lifetime of entanglement
is shorter than the time scale at which it can be generated.

Figure 8(a) displays the average concurrence as a function
of the coupling strength γ and of the frequency ω0 when the
qubits are at distance D = 1. By comparing with Fig. 5(a) for
D = 0, we observe the same qualitative behavior with two
salient differences. (i) For the same value of γ and ω0 the
concurrence is generally smaller, which we attribute to the fact
that D > 0 leads to an effectively reduced coupling strength.
Moreover, (ii) the concurrence decreases to zero for ω0 � 0.9.
This latter behavior is due to the fact that the bandwidth
becomes very small, �ω � 0.1, the band becomes flatter, and
the collective Lamb shift, which is essential for generating
entanglement, vanishes as �0 ∼ ∫ 2π

0 dk cos(2kD) = 0.
The average concurrence as a function of D and γ is

shown in Fig. 8(b). Deep in the weak-coupling regime we
observe that entanglement is generated when γ exceeds a
threshold value that depends on D and, more specifically, it
increases monotonically with the distance. This behavior is a
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consequence of the scaling of tgen with the distance D: in the
region where the concurrence vanishes, tgen is larger than the
total evolution time (simulations performed for smaller tend

show, in fact, that this threshold moves towards larger values
of γ ; see Appendix B). Entanglement vanishes again at large
γ , when the coupling strength reaches the strong-coupling
regime and damping suppresses quantum coherence.

C. Discussion

The analysis so far is based on the properties of the
propagator under the assumption that the symmetric and
the antisymmetric subspaces are decoupled. We discuss now
the case when this property, emerging from a symmetry of
the Hamiltonian, is no longer fulfilled. We now assume that
the qubits couple with different coupling strengths, denoted
by γa and γb, to the chain oscillator(s). In this case the
propagator for the symmetric and antisymmetric subspaces,
separately, is the same as for the symmetric case, now with
γ = (γa + γb)/2. Additionally, the two subspaces are now
coupled with one another with strength �γ = (γa − γb)/2.
In order to assess the effect of the asymmetry, we compare
different cases at constant γ and varying �γ .

In Appendix C we provide some details of our study.
The results show that when the qubits couple to the same
oscillator, then the analysis for �γ = 0 essentially applies
also for �γ > 0 as long as �γ 
 γ . In detail, in the weak-
coupling regime the entanglement is reduced by an amount
proportional to �γ/γ , while in the strong-coupling regime
the effects of the asymmetry �γ are irrelevant, since the
corresponding time scale is longer than the lifetime of entan-
glement. When the qubits couple to different oscillators, the
asymmetry can be neglected as long as the corresponding time
scale is longer than the time scale tgen at which entanglement
is generated and which depends solely on the chain spectral
properties.

V. CONCLUSIONS

In this work we have analyzed the dynamics of entan-
glement that is generated between two qubits coupled to a
non-Markovian bath, modeled here by a chain of oscillators
with a gapped spectrum. Using the exact solution for the
qubits’ propagator we could unravel the processes that lead
to entanglement between the two qubits and to its decay. En-
tanglement is generated for a certain class of initial, separable
states of the qubits by coherent, Hamiltonian processes, which
are reminiscent of the collective Lamb shift of dipolar sys-
tems. The dephasing mechanism leads to collapse and revival
of the concurrence, while damping tends to suppress entangle-
ment. Their interplay is controlled by the coupling strength
of the qubits to the chain and by the elastic constant cou-
pling the oscillators: large coupling strengths tend to suppress
entanglement, while instead a large elastic constant tends to
favor it. We emphasize that, in all situations discussed here,
the environment is initially in a thermal state. Its capability
to generate correlations requires that the initial temperature
is below an upper bound, which our model allows one to
determine.

Interestingly, entanglement is generated after a finite time
has been elapsed. This behavior is due to the interplay be-
tween the effective coherent dynamics and the dephasing
mechanism; the corresponding time scale is determined by the
spectral properties of the chain’s normal modes: entanglement
is generated on time scales where the propagator does not
exhibit the characteristic universal scaling with time. The scal-
ing of the velocity, with which the qubits become entangled,
is exponential with the qubit distance. This is consistent with
the Lieb-Robinson bound, but cannot be related to light-cone
propagation in the chain. This behavior seems at odds with the
picture developed by Calabrese and Cardy on the postquench
dynamics of entanglement as a consequence of ballistically
propagating quasiparticles [51]. Indeed, entanglement is gen-
erated by the effect of the collective Lamb shift, introducing
an additional characteristic frequency scale in the problem.
Moreover, the geometry of the coupling between chain and
qubit introduces a characteristic wavelength scaling with the
qubits distance D that has a similar effect as the free spectral
range of a Fabry-Pérot resonator [31,52].

Our findings provide important guidelines for design-
ing quantum steering protocols [53] which go beyond the
Markovian paradigm of projective measurements [54]. The
configuration considered here could be implemented in the
quantum optics experiment: the environment would be mim-
icked by coupled microcavities [55,56], by an optomechanical
array [57,58], or by the transverse modes of an ion chain
[59,60]. For the dynamics discussed here the qubits’ frequen-
cies shall be the smallest frequency scale of the problem.
Entanglement between the qubits could be detected using the
protocol discussed in Refs. [34,60] or the measures discussed
in Ref. [11].

The dynamics of entanglement shall change substantially
for a gapless spectrum, where the weight of damping and
dephasing terms in general increases with time. Future works
shall address how the velocity of entanglement propagation
behaves in the presence of disorder [61] and how it is modi-
fied when the oscillators interact with long-range interactions,
where the bound on the propagation of information follows a
different scaling [62].

To conclude, we have analyzed the entanglement generated
between two qubits by a non-Markovian quantum channel
and characterized the mechanisms that determine its onset,
stability, and/or decay. Our analysis can be extended to de-
termine quantum information scrambling in the chain by
considering a qubit chain where information is mediated by
the non-Markovian environment and the entanglement en-
tropy in order to analyze the dynamics of correlations [63].
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APPENDIX A: CORRELATION FUNCTIONS

Below we report the expectation value of the Pauli op-
erators and of the correlation functions at equal time and
at different times. These can be straightforwardly evalu-
ated using the propagator. We compute the correlations
with the reduced density matrix in the tensor product basis
{|++〉x, |+−〉x, |−+〉x, |−−〉x} (labeled from 1 to 4, respec-
tively, for notation purposes).

The time evolution for the expectation values of the Pauli
matrices are〈

σ a
x

〉 = ρ11(0) + ρ22(0) − ρ33(0) − ρ44(0),〈
σ a

y

〉 = 2 Re[ρ13(0)ei[φS (t )−φA(t )]] e− f S (t )− f A(t )

+ 2 Re[ρ24(0)e−i[φS (t )−φA(t )]] e− f S (t )− f A(t ),〈
σ a

z

〉 = 2 Im[ρ13(0)ei[φS (t )−φA(t )]] e− f S (t )− f A(t )

+ 2 Im[ρ24(0)e−i[φS (t )−φA(t )]] e− f S (t )− f A(t ). (A1)

The correlation functions at equal time read〈
σ a

x σ b
x

〉 = ρ11(0) − ρ22(0) − ρ33(0) + ρ44(0),〈
σ a

y σ b
y

〉 = 2 Re[ρ14(0)] e−4 f S (t ) + 2 Re[ρ23(0)] e−4 f A(t ),〈
σ a

z σ b
z

〉 = − 2 Re[ρ14(0)] e−4 f S (t ) + 2 Re[ρ23(0)] e−4 f A(t ),〈
σ a

x σ b
y

〉 = 2 Re[ρ12(0)ei[φS (t )−φA(t )]] e− f S (t )− f A(t )

− 2 Re[ρ34(0)e−i[φS (t )−φA(t )]] e− f S (t )− f A(t ),〈
σ a

x σ b
z

〉 = 2 Im[ρ12(0)ei[φS (t )−φA(t )]] e− f S (t )− f A(t )

− 2 Im[ρ34(0)e−i[φS (t )−φA(t )]]e− f S (t )− f A(t ),〈
σ a

y σ b
z

〉 = 2 Im[ρ14(0)] e−4 f S (t ) − 2 Im[ρ23(0)] e−4 f A(t ). (A2)

The correlation function at different times can be computed
by first evolving the density matrix [ρt = U (t )ρ0U †(t )] for
time t and then modifying it accordingly. We denote the mod-
ified density matrix as ρ̃α (t ) = ρt ( σ a

α ⊗ 1 ) and let t ′ = t + τ ;
then the correlation functions have the form〈

σ a
x (t )σ b

x (t ′)
〉 = ρ̃x

11(t ) − ρ̃x
22(t ) + ρ̃x

33(t ) − ρ̃x
44(t ),〈

σ a
y (t )σ b

y (t ′)
〉 = 2 Re

[
ρ̃

y
12(t )ei[φS (τ )−φA(τ )]

]
e− f S (τ )− f A(τ )

+ 2 Re
[
ρ̃

y
34(t )e−i[φS (τ )−φA(τ )]

]
e− f S (τ )− f A(τ ),〈

σ a
x (t )σ b

y (t ′)
〉 = 2 Re

[
ρ̃x

12(t )ei[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ )

+ 2 Re
[
ρ̃x

34(t )e−i[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ ),〈

σ a
z (t )σ b

z (t ′)
〉 = 2 Im

[
ρ̃z

12(t )ei[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ )

+2 Im
[
ρ̃z

34(t )e−i[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ ),〈

σ a
x (t )σ b

z (t ′)
〉 = 2 Im

[
ρ̃x

12(t )ei[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ )

+ 2 Im
[
ρ̃x

34(t )e−i[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ ),〈

σ a
y (t )σ b

z (t ′)
〉 = 2 Im[ρ̃y

12(t )ei[φS (τ )−φA(τ )]
]
e− f S (τ )− f A(τ )

+ 2 Im
[
ρ̃

y
34(t )e−i[φS (τ )−φA(τ )]]e− f S (τ )− f A(τ ).

(A3)

FIG. 9. Same as Fig. 5(a) but for tend = 103. Subplot (b) shows a
zoom into the region at small γ . Subplot (c) shows the zoom in the
same region for the propagation time of Fig. 5(a).

APPENDIX B: AVERAGE CONCURRENCE
FOR tend = 103

We report the average concurrence for tend = 103, which
for the considered chain size is below the Poincaré time.
Figure 9(a) shall be compared with Fig. 5(a): apart from
larger fluctuations, the qualitative behavior is the same. Sub-
plots (b) and (c) show the zoom in the region at small γ

for tend = 103 and tend = 106, respectively: For longer inte-
gration times entanglement is generated at smaller values
of γ .
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FIG. 10. Same as Fig. 8(b) but for tend = 103.

Figure 10 is calculated for the same parameter of Fig. 8(b)
but integration time tend = 103: entanglement is established
until distance D ∼ 6 due to the exponential scaling with the
distance of the velocity with which it propagates along the
chain.

APPENDIX C: EFFECT OF ASYMMETRIC COUPLING
STRENGTH IN THE INTERACTION HAMILTONIAN

In the main text we have used the uniform coupling
strength for the two qubits in the interaction Hamiltonian
(1); however, one may also ask how the results modify for
the case of asymmetric coupling strength. In order to ana-
lyze the role of asymmetry, we introduce the new interaction
Hamiltonian

Hint = −h̄
(
γ̄aσ

a
x xla + γ̄bσ

b
x xlb

)
. (C1)

Following the same treatment as in the main text, the inter-
action Hamiltonian can be written in the normal coordinates
as

Hint = −
∑

n

(
γ̃ S

a,n + γ̃ S
b,n

2
x̃S

n

(
σ a

x + σ x
b

)
/2

+ γ̃ A
a,n + γ̃ A

b,n

2
x̃A

n

(
σ a

x − σ x
b

)
/2

+ γ̃ A
a,n − γ̃ A

b,n

2
x̃A

n

(
σ a

x + σ x
b

)
/2

+ γ̃ S
a,n − γ̃ S

b,n

2
x̃S

n

(
σ a

x − σ x
b

)
/2

)
, (C2)

where the coupling constant reads as (9) with γ replaced with
γ j , with j = a, b. One can easily recover the case of the same
coupling strength (8) by using the condition γa = γb = γ . In
the interaction Hamiltonian, the first two terms are analogous
to the case of uniform coupling strength. For understanding
the role of asymmetry, the last two terms containing the differ-
ence between coupling strength have to be analyzed. For the
same we keep the sums γ S,A

+ ≡ γ̃ S,A
a,n + γ̃ S,A

b,n constant and vary

the differences γ S,A
− ≡ γ̃ S,A

a,n − γ̃ S,A
b,n . Following the same recipe

as discussed in [38,39], the reduced density-matrix elements
in the same subspace evolve as〈

bα
i

∣∣ρd (t )
∣∣bα

j

〉 = 〈
bα

i

∣∣ρd (0)
∣∣bα

j

〉
× exp

( − [ f α
+ (t ) + f β

− (t )]
(
bα

i − bα
j

)2)
,

(C3)

where α, β = S, A, α 	= β, and

f α
± (t ) = 1

2

∑
n

γ̃ α 2
n,±

ωα 3
n

[
2n̄

(
ωα

n

) + 1
][

1 − cos
(
ωα

n t
)]

, (C4)

with the mean thermal occupation of the αth symmetric
(antisymmetric) mode of the chain being given by the Bose-
Einstein statistics n̄(ω) = 1/(eβω − 1). The dynamics leads
to additional damping (with respect to uniform coupling
strength) of the off-diagonal elements within the same sub-
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FIG. 11. Concurrence C for different values of difference in
coupling strength �γ while keeping the sum (γa + γb)/2 fixed for
the case when qubits are coupled to the same oscillator. Subplot
(a) shows the dynamics of concurrence in the weak-coupling regime,
(γa + γb)/2 
 ω

3/2
0 . Here we chose (γa + γb)/2 = 0.04. The plot for

the concurrence dynamics in strong-coupling regime [(γa + γb)/2 �
ω

3/2
0 ] is shown in subplot (b) with (γa + γb)/2 = 0.6. The qubits are

initially prepared in the same pure state (20) with θa = θb = π/4 and
φa = φb = 0. The chain is composed by N = 104 oscillators with
ω0 = 0.45 and inverse temperature β = 105.
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space, which scales linearly with the differences γ S,A
− , while

the diagonal elements are still constant in time.
The time evolution of the matrix elements between the

symmetric and the antisymmetric subspaces takes instead the
form〈

bα
i

∣∣ρd (t )
∣∣bβ

j

〉
β 	=α

= 〈
bα

i

∣∣ρd (0)
∣∣bβ

j

〉
β 	=α

× exp(− f α
+ (t ) − f α

− (t ) − f β
+ (t ) − f β

− (t )

− (−1)i+ j[Fα + Fβ] + i[ϕα
+(t )

+ ϕα
−(t ) − ϕ

β
+(t ) − ϕ

β
−(t )]), (C5)

where the time-dependent phases read

ϕα
±(t ) = 1

2

∑
n

(
γ̃ α 2

n,±
ωα 2

n

t − γ̃ α 2
n,±

ωα 3
n

sin
(
ωα

n t
) )

(C6)

and the additional decay term

Fα (t ) = 1

2

∑
n

γ̃ α
n,+γ̃ α

n,−
ωα 3

n

[
2n̄

(
ωα

n

) + 1
][

1 − cos
(
ωα

n t
)]

.

(C7)

The same site dynamics can be recovered by putting all
the antisymmetric coupling vector to zero. In contrast to the
uniform strength case, here the antisymmetric subspace is
not protected from decoherence due to difference in coupling
strength. The damping in the antisymmetric subspace decays
linearly with the difference.

One can identify the same coupling regimes as before with
a modified coupling strength. The weak-coupling regime is
when (γa + γb)/2 
 ω

3/2
0 . This regime is mainly governed by

coherent oscillations with negligible decoherence and damp-
ing. The strong-coupling regime is the opposite limit when
both decoherence and damping effects become dominant, that
is, (γa + γb)/2 � ω

3/2
0 . In this framework, we plot below the
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FIG. 12. Concurrence as a function of time for different distances
with constant different coupling strength. Here, γa = 0.05 and γb =
0.03. The qubits are initially prepared in the same pure state (20) with
θa = θb = π/4 and φa = φb = 0. The chain is composed by N = 104

oscillators with ω0 = 0.45 and inverse temperature β = 105.

dynamics of entanglement by keeping the sum (γa + γb)/2
fixed and vary the difference �γ = |γa − γb|/2.

For the case of D = 0, we observe in Fig. 11(a) that in
the weak-coupling regime the difference in coupling strength
benefits the concurrence to grow quicker and this is due to
the additional frequency in the collective Lamb shift �0,
which scales with �γ . For the case of strong-coupling regime
Fig. 11(b), we observe additional decay of concurrence max-
ima, but it retains the collapse and revival type of dynamics.

As a function of distance, the entanglement generation time
has the same behavior even with the difference in coupling
strength, which is clearly visible in Fig. 12.
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