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Simulations of quantum nonlocality with local negative bits
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(Received 18 April 2023; accepted 28 August 2023; published 6 September 2023)

We propose a simple simulation of nonlocal quantum correlations among N qubits using a local hidden
variable source with a positive probability distribution, given that each of the N observers has access to a local
negative bit. Notably, unlike the Toner-Bacon protocol, no exchange of classical bits between the observers is
required. Moreover, our simulation can be extended to include Popescu-Rohrlich box correlations.
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I. INTRODUCTION

Consider an experiment where a quantum source emits two
qubits in some state ρAB to two spatially separated observers,
Alice and Bob. Each observer measures their qubit in two
randomly chosen bases, given by unit Bloch vectors â0 and
â1 for Alice and b̂0 and b̂1 for Bob. For each basis choice
âi or b̂ j , Alice’s and Bob’s outcomes ai, b j = ±1 are dis-
tributed with probabilities p(ai, b j |âi, b̂ j ) = Tr[ρABP(ai|âi ) ⊗
P(bj |b̂ j )], where P(x|x̂) = 1

2 (1 + xx̂ · σ̂ ), x = ±1, is the stan-
dard projective measurement operator for a qubit in the x̂
direction and σ̂ = (σx, σy, σz ) is the vector of Pauli operators.
Throughout the paper we denote normalized vectors by cir-
cumflexes â and unnormalized ones by arrows �a.

The local hidden variable (LHV) hypothesis, first proposed
by Einstein, Podolsky, and Rosen [1], postulates that the
quantum source ρAB can be replaced with a source emit-
ting particles carrying deterministic information λ of what
outcome to produce for the randomly chosen bases. For
instance, λ = (a0, a1; b0, b1) instructs the particles to give
outcomes a0 for Alice’s basis â0 and a1 for her basis â1,
and b0 and b1 for Bob’s respective bases. We can easily see
that only 16 such instructions are needed, i.e., we have λi

(i = 0, 1, 2, . . . , 15). To account for quantum randomness,
these deterministic instructions λi must be distributed by the
source with some positive joint probability distribution (JPD)
ρ(λi ) = ρ(a0, a1; b0, b1) such that (i) ρ(a0, a1; b0, b1) � 0,
(ii)

∑
a0,a1,b0,b1

ρ(a0, a1; b0, b1) = 1, and (iii) the marginals
p(ai, b j ) = ∑

�ai,�b j
ρ(a0, a1; b0, b1) should reproduce quantum

probabilities; here
∑

�ai,�b j
denotes a summation over the out-

comes that are not ai and not b j . Note that the instructions
λi can be viewed as bit strings if we identify −1 → 0 and
+1 → 1. This observation will be used later in the paper.

Bell proved [2] that there are entangled states ρAB and
choices of measurement bases such that observed quantum
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probabilities p(ai, b j |âi, b̂ j ) cannot be simulated with LHVs
distributed via some JPD ρ(a0, a1; b0, b1) if (i)–(iii) are sat-
isfied. Although he showed it for a two-qubit singlet state,
other researchers followed with sweeping generalizations for
an arbitrary number of qubits, measurement settings, and
higher-dimensional quantum states [3–5]. Subsequently, it
was noticed that if one relaxes (i) and admits a joint quasiprob-
ability distribution (JQD), LHV simulations are possible [6,7].
Let us give a simple example.

Consider a singlet state |ψ−〉AB and measurement set-
tings â0 = x̂ and â1 = ẑ for Alice and b̂0 = 1√

2
(x̂ + ẑ) and

b̂1 = 1√
2
(x̂ − ẑ) for Bob. They yield a simple set of quantum

probabilities p(ai, b j |âi, b̂ j ) = 1
4 (1 − mi j

aib j√
2

), where mi j =
1 − 2δi,1δ j,1. These probabilities cannot be simulated with any
JPD. However, the following JQD mimics these probabilities
perfectly:

ρ(a0, a1; b0, b1) = 1

16

⎛
⎝1 −

∑
i, j

mi j√
2

aib j

⎞
⎠. (1)

Note that some joint probabilities ρ(a0, a1; b0, b1) are nega-
tive, but only the positive marginals p(ai, b j ) can be observed.
This constraint defines the rules of a general simulation
game: Negative probabilities can never appear for probabilis-
tic events we can observe in the laboratory.

Abramsky and Brandenburger [6] showed that quantum
probabilities p(ai, b j |âi, b̂ j ) can always be simulated with a
JQD if a JPD simulation is not possible. We need to stress
here that they place negativity necessary for the simulation
right in the LHV source, replacing the quantum state ρAB. In
this paradigm, quantum measurements on Alice’s and Bob’s
sides are direct readouts of instructions carried by the LHVs,
i.e., if Alice chooses to measure in the basis âi and Bob
in b̂ j , they get ai and b j from the distributed LHV variable
λ = (a0, a1; b0, b1). Because of the complementarity and the
irreversible nature of the measurement process, they ignore
the rest of the information contained in λ.
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Later Al-Safi and Short [7] reproduced the Abramsky-
Brandenburger result and also provided a proof of the
principle that all no-signaling correlations can be simulated
with an LHV source distributed with a JPD and local mea-
surement strategies with negative probabilities. They were not
concerned about the cost of their simulation.

Toner and Bacon [8] considered a different simulation
protocol for bipartite quantum correlations for qubits. They
used a source of LHVs distributed with a JPD, but Alice and
Bob have to exchange approximately 0.85 bits of classical
communication on average to simulate quantum correlations.
They traded negativity in a JQD for an exchange of classical
bits, setting a different paradigm from the previous one.

Here we propose a concrete algorithm implementing Al-
Safi and Short’s paradigm for an LHV simulation that recovers
all observable quantum probabilities between N qubits in an
arbitrary quantum state ρA1A2···AN generated by N spatially sep-
arated observers A1, A2, . . . , AN , each measuring their qubits
with an arbitrary number of measurement settings. Similarly
to Toner and Bacon’s simulation, ours uses a source of LHVs
distributed with a JPD (not a JQD), but we replace the
exchange of classical bits with local negative bits used to
locally process the observers’ LHV data. Unlike in Al-Safi
and Short’s approach, we can optimize the amount of local
negativity and thus find a cost of nonlocality simulation.

II. NEGATIVE BIT

We introduce here a negative bit, previously discussed
in [9]. It is a binary system whose values n = ±1 appear
with quasiprobabilities w(n) = 1

2 (1 + n
λ

), where |λ| < 1 (if
|λ| � 1 we have a non-negative random bit). If 0 < λ < 1
then w(+1) > 1 and we call it an inflated probability, while
w(−1) < 0 is a negative probability. Similarly, if −1 < λ < 0
then w(−1) is inflated and w(+1) is negative.

A negative bit is a natural unit of quasiprobability since ev-
ery quasiprobability distribution {p1, p2, . . . , pk, q1, . . . , qn},
where pi � 0 and q j < 0 can be written as

w(+1)∑k
i=1 pi

{p1, p2, . . . , pk, 0, . . . , 0}

+ w(−1)∑n
j=1 |q j | {0, 0, . . . , 0, |q1|, . . . , |qn|} (2)

for w(+1) = ∑k
i=1 pi and w(−1) = ∑n

j=1 q j . From this we
can evaluate

λ = 1

2
(∑k

i=1 pi
) − 1

. (3)

This negative bit decomposition is significant when one deals
with quasibistochastic processes that are quasiprobabilisitic
versions of bistochastic processes, as discussed in detail in
Appendix A.

III. SIMULATION

A. Two parties

Let us start with the singlet and two measurement settings
for the Alice and Bob example we described in the Introduc-
tion. We assume for now that the source produces LHVs with

FIG. 1. Simulation of quantum measurements with negative bits.
A local hidden variable source distributes instructions (a0, a1; b0, b1)
to local observers Alice and Bob. Each instruction to generate bits ai

and bj if Alice chooses to measure in the basis x = i and Bob in the
basis y = j is distributed with a joint positive probability distribution
ρ(a0, a1; b0, b1) that depends on to-be-simulated quantum state ρ.
Alice and Bob’s measuring apparatus execute a CNOT gate on the
incoming bits ai and bj , controlled by local negative bits n and m,
each generated with a negative probability wA(n) and wB(m). The
statistics of the outcomes aj and bj faithfully reproduces quantum
mechanical measurement probabilities for the bases i and j and the
state ρ.

a JPD

ρ(a0, a1; b0, b1) = 1
16

[
1 − 1

2 (a0b0 + a0b1 + a1b0 − a1b1)
]
.

(4)

Unlike the JQD we used before, the above distribution is
always positive and thus it cannot reproduce the quantum
probabilities, giving us ρ(ai, b j ) = 1

4 (1 − 1
2 mi jaib j ) � 0. We

are missing the right factor in front of mi jaib j , which should
be 1√

2
for a faithful mimicry. This is not a problem if we

realize that Alice and Bob use a measuring apparatus in the
laboratory. Such an apparatus is a device that amplifies and
irreversibly records a signal triggered by a microscopic entity
we call a qubit. Here the qubit is represented by the LHVs
and so for a successful simulation we need to design a proper
measuring apparatus. The simplest choice is a controlled-NOT

(CNOT) gate controlled by a negative bit as introduced in
[9] with the negative binary distribution (the same for Al-
ice and Bob because of the system’s symmetries) w(n) =
wA(n) = wB(n) = 1

2 (1 + n
√√

2), where n = ±1 (see Fig. 1).
For instance, Alice and Bob’s measurement probabilities in
the bases â0 and b̂1 are faithfully recovered:

p(a0, b1) =
∑

a1,b0,n0,m1

ρ(a0n, a1; b0, b1m)wA(n)wB(m). (5)

The above formula is clear if one notices that in our notation
GCNOT[p(a)w(n)] := p(an)w(n), i.e., a = ±1 is multiplied by
n = ±1. This is equivalent to XOR for bits represented by
0 → 1 and 1 → −1. Since we do not register all variables,
we sum over those we do not measure. In addition, another
property of our quantum measurement simulation is comple-
mentarity, i.e., Alice and Bob must commit to a measurement
basis because no one knows how to build an apparatus that
could measure two or more complementary observables si-
multaneously. Complementarity guarantees that Alice and
Bob negative bits’ negativities are never directly observed.

This simulation easily extends to an arbitrary state ρAB,
given by local Bloch vectors �sA and �sB, the correlation matrix
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TAB, and two arbitrary measurement bases for Alice and Bob.
We build a positive LHV distribution ρ(a0, a1; b0, b1) as

ρ(a0, a1; b0, b1) = 1

16

(
1 + λ

1∑
i=0

ai〈Ai〉 + λ

1∑
j=0

b j〈Bj〉

+ λ2
1∑

i, j=0

aib j〈AiBj〉
)

, (6)

where 〈Ai〉 = âi · �sA and 〈Bj〉 = b̂ j · �sB are the first-order and
〈AiBj〉 = âi · TAB · b̂ j the second-order quantum-mechanical
correlation functions. In the above �sX (X = A, B) is a local
Bloch vector of the corresponding qubit and TAB is a correla-
tion tensor of the two-qubit system.

The positivity of this distribution is guaranteed by a proper
choice of λ. In this case, the λ can be found by making sure
that all CHSH inequalities are satisfied, i.e.,

λ2(|〈A0B0〉 + 〈A0B1〉| + |〈A1B0〉 − 〈A1B1〉|) � 2, (7)

giving us

|λ| �
√

2

|〈A0B0〉 + 〈A0B1〉| + |〈A1B0〉 − 〈A1B1〉| . (8)

If we do not care to get the largest possible λ, we can simply
grossly underestimate the lower bound of Eq. (6) as

ρ(a0, a1; b0, b1) � 1
16 [1 − 2λ(sA + sB) − 4λ2‖TAB‖],

(9)

where sA = |�sA|, sB = |�sB|, and ‖TAB‖ =
√∑

m,n(TAB)2
nm .

Now we demand that this lower bound is non-negative. In
particular, if it is zero, we get a quadratic equation for λ, from
which we find

λ = −2(sA + sB) +
√

(2sA + 2sB)2 + 16‖TAB‖2

8‖TAB‖ . (10)

The measurement apparatuses are, like before, the CNOT

gates with a negative bit w(n) = 1
2 (1 + n

λ
) for both Alice and

Bob. We can see that the largest possible λ minimizes the
negative bit’s negativity 1

2 (1 − 1
λ

) and it matters if we are
interested in the cost of the simulation. If we are not, the
suboptimal λ shown above will do.

We remark that negative bits appear in quantum theory
so they are not something entirely exotic. To see it, let us
consider a symmetric, informationally complete, positive-
operator-valued measure quasiprobability representation of
a qubit [10,11]. (i) The qubit’s density matrix ρ with a
Bloch vector �s is represented as a positive probability dis-
tribution ρk = 1

4 (1 + n̂k · �s), k = 1, 2, 3, 4, where the n̂k are
tetrahedron spanning vectors, i.e.,

∑
k n̂k = 0, n̂k · n̂l = δkl −

1
3 (1 − δkl ). (ii) Unitary operations are represented by quasi-
bistochastic matrices S = [Skl ]kl with its elements given by
Skl = 1

4 + 3
4 O(U )n̂k · n̂l , where O(U ) is the three-dimensional

orthogonal representation of a unitary U . Now, any such S
can be represented as two positive bistochastic processes S0

and S1 controlled by a suitably chosen negative bit, i.e., the
process S0 is activated with the probability 1

2 (1 + η) and S1

with the probability 1
2 (1 − η), where η is greater than one if

S is not a permutation matrix (see Appendix A for details).

(iii) Quantum measurement is represented as an effect �ma

that is a suitably chosen linear combination of the n̂k . The
measurement probability is then obtained via p(a|�a) = �ma · �ρ,
where �ρ = [ρ1, ρ2, ρ3, ρ4]. Thus, this quasiprobability repre-
sentation of a qubit’s mechanics can be viewed as an example
of a negative bit simulation. The crucial difference is that in
our simulation we do not need effects as the measurement
outcomes are directly encoded in the initial probability dis-
tribution.

Finally, we need to stress that the negative bits used in the
simulation are local, no exchange of classical bits is necessary,
and the whole model is a no-signaling one. This remark is
related to the Toner-Bacon model [8], where Alice and Bob
simulate bipartite quantum correlations with LHVs and an
exchange of one bit of classical information.

Our simulation can be easily extended to Popescu-Rohrlich
(PR) box correlations [12]. We start with the same positive
distribution we used to simulate the singlet correlations (4) but
increase the negative bit’s negativity to w(n) = 1

2 (1 + n
√

2).
This procedure can be pushed farther to extend quantum-
mechanical correlations for an arbitrary two-qubit state ρAB

beyond quantum theory (see Appendix B).

B. N parties

Extension to an arbitrary number of Alice’s and Bob’s
local measurements âi (i = 0, 1, . . . , NA − 1) and b̂ j ( j =
0, 1, . . . , NB − 1) is straightforward. The initial positive LHV
distribution ρ(a0, a1, . . . , aNA−1; b0, b1, . . . , bNB−1) is

ρ(a0, a1, . . . , aNA−1; b0, b1, . . . , bNB−1)

= 1

2NA+NB

(
1 + λ

NA−1∑
i=0

ai〈Ai〉 + λ

NB−1∑
j=0

b j〈Bj〉

+ λ2
NA−1∑
i=0

NB−1∑
j=0

aib j〈AiBj〉
)

. (11)

The largest possible λ (|λ| � 1) for which this distribution is
positive can be obtained numerically. In any case, setting

λ = 1

2NANB‖TAB‖ [−sANA − sBNB

+
√

(sANA + sBNB)2 + 4NANB‖TAB‖] (12)

suffices to make it a positive LHV distribution, although this
λ is grossly suboptimal (small). Measuring apparatuses are
the same as before, i.e., local CNOT gates with the negative
bit w(n) = 1

2 (1 + n
λ

). Another way to understand this proof
is to observe that the CNOT gate with the negative bit w(n)
can reverse noise λ on any probability distribution p(a) =
1
2 (1 + aλ〈A〉), i.e.,

∑
n p(an)w(n) = 1

2 (1 + a〈A〉).
We now consider N qubits measured by N observers,

where the kth (k = 0, 1, . . . , N − 1) observer has Nk dif-
ferent measurement directions â(k)

ik
(ik = 0, 1, . . . , Nk − 1).

The simulation protocol starts with a positive N-party LHV
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distribution

ρ
(
a0

0, a0
1, . . . , a0

N0−1; . . . ; aN−1
0 , aN−1

1 , . . . , aN−1
NN−1−1

)
= 1

2N0+N1+···+NN−1

(
1 + λ

N−1∑
k=0

Nk−1∑
ik=0

a(k)
ik

〈
A(k)

ik

〉

+λ2
N−1∑

k �=l=0

Nk−1∑
ik=0

Nl −1∑
il =0

a(k)
ik

a(l )
il

〈
A(k)

ik
A(l )

il

〉 + · · ·

+λN
N0,N1,NN−1∑

i0,i1,...,iN−1=0

a0
i0 · · · aN−1

iN−1

〈
A(0)

i0
· · · A(N−1)

iN−1

〉)
, (13)

where λ is chosen to make it positive. This requires finding
roots of an N th degree polynomial and it can only generally be
done numerically. Since for λ = 0 the distribution is positive
and for λ = 1 it can be negative, there must exist a range
of λ for which the distribution is positive as the problem is
continuous in λ. As long as this λ is strictly positive, a CNOT

gate with the negative bit w(n) = 1
2 (1 + n

λ
) for each observer

will recover quantum-mechanical measurement probabilities.
We illustrate this with a Mermin inequality for (N = 3 and

Nk = 2, k = 0, 1, 2) [3]. One possible form of the Mermin
inequality is

M = a0b0c0 − a0b1c1 − a1b0c1 − a1b1c0 (14)

and the maximal value achieved by any JPD
ρ(a0, a1; b0, b1; c0, c1) is |〈M〉LHV| � 2. An instance of
such a JPD is

ρ(a0, a1; b0, b1; c0, c1)

= 1
26

(
1 + 1

2 (a0b0c0 + a0b1c1 − a1b0c1 − a1b1c0)
)
. (15)

Implementing the local CNOT gates with each party using
the negative bit w(n) = 1

2 (1 + n21/3) yields the measurement
probabilities

p(ai, b j, ck )

=
∑

�ai,�b j ,�ck
nA,nB,nC

GCNOT[ρ(a0, . . . , c1),wA(nA)wB(nB)wC (nC )]

=
∑

nA,nB,nC

GCNOT[ρ(ai, b j, ck ),wA(nA)wB(nB)wC (nC )]

=
∑

nA,nB,nC

ρ(nAai, nBb j, nCck )wA(nA)wB(nB)wC (nC ).

(16)

It can be check easily that this corresponds to the quantum
measurement probabilities on the state |SGHZ3〉 = 1√

2
(|000〉 +

|111)〉) and measurement settings â0 = [1, 0, 0], b̂0 = ĉ0 =
[−1, 0, 0], â1 = [0, 1, 0], and b̂1 = ĉ1 = [0,−1, 0] achieving
a violation of |〈M〉Q| = 4. Generalization to any forms of
Bell-type inequalities follow the same idea.

IV. DISCUSSION

In this paper we have focused on N-qubit correlations
generated by N spatially separated observers, each measur-
ing an arbitrary number of complementary observables. We

have explicitly demonstrated how to simulate this setup using
(i) a source dispatching local hidden variables with positive
probabilities and (ii) a logical CNOT gate controlled by a local
negative bit.

This local negative bit modifies the JPD of LHVs to repli-
cate faithfully quantum-mechanical measurements or even PR
boxes, given the availability of a sufficient amount of local
negativity. We need to stress that, unlike in the Toner-Bacon
model [8], we do not require an exchange of classical bits
between observers. It is an open question how the negative
bit’s mathematical negativity relates to the amount of physical
classical bits in the Toner-Bacon model. In order to make
a meaningful comparison it is necessary to minimize the
amount of negativity of each local negative bit. This is not a
trivial task, but it can be accomplished numerically if required.
However, a more in depth enquiry is necessary to find this
connection, which extends beyond the scope of this paper.

We would like to stress that negative bits appear naturally
in quasiprobability representations of quantum mechanics as
we pointed out in Sec. III. However, our simulation uses them
in a different way. The situation is similar to simulations in
[6,7], where the JQDs used are not equivalent to discrete
Wigner-Wootters functions [13,14]. This different usage of
the negative bit allows us to simulate PR boxes that extend
beyond quantum theory.

Note that in our simulation we never “see” negative prob-
abilities just like we never see them in quantum theory. They
are hidden in the measuring apparatus and this is an important
feature of our simulation because so far no one has found a
commonly accepted operational meaning of negative proba-
bilities (see, for instance, [6]).
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APPENDIX A: GENERALIZED BIRKHOFF–VON
NEUMANN DECOMPOSITION OF A

QUASIBISTOCHASTIC MATRIX

Here we show, using Birkhoff–von Neumann (BvN)
decomposition [15], how to decompose any d × d quasibis-
tochastic matrix S = [Skl ]d

k,l=1 to two non-negative bistochas-
tic processes controlled by a negative bit. A quasibistochastic
matrix is a quasiprobabilistic generalization of a bistochastic
matrix. Entries of a bistochastic matrix are non-negative and
all rows and columns sum to one. Analogously, entries of a
quasibistochastic matrix can be any real numbers, but all rows
and columns must still sum up to one: Skl ∈ R,

∑
k Skl = 1 ∀ l ,

and
∑

l Skl = 1 ∀ k.
First we find the bistochastic matrix from S,

B = 1

1 + d�
(S + �1), (A1)
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where 1 is the matrix made of all ones and � =
max {0,− minkl{Skl}}. This gives us

S = (1 + d�)B − �1. (A2)

Next we apply the BvN algorithm to S and 1 to obtain

B =
N∑

i=1

pB(i)	B
i , 1 =

r∑
j=1

	1
j , (A3)

where 	i is some permutation matrix and p = [p(i)]i is a pos-
itive probability distribution satisfying

∑
i p(i) = 1. Here the

superscript in {	B
i } and {	1

j} is to clarify which decomposi-
tion it originates from. Note that the number of decomposition
terms N is smaller than d2.

From (A3) we get our generalized BvN decomposition

S =
∑
i=1

qS (i)	S
i

=
∑

j

qS,+( j)	S,+
j −

∑
k

|qS,−(k)|	S,−
k , (A4)

where qS (i) ∈ R and
∑

i qS (i) = ∑
j qS,+( j) + ∑

k qS,−(k) =
1. We group qS (i) into {qS,+( j)} if it is positive and {qS,−(k)}
if it is negative. This gives us

S = n+S+ + n−S−, (A5)

where

n± =
∑

k

qS,±(k), n+ + n− = 1, (A6)

and

S± = 1

n±
∑

k

qS,±(k)	S,±
k . (A7)

Note that S± are positive bistochastic matrices. Since the
negative bit is the source of S’s negativity, we measure it as

N = |n−| (A8)

and call it the negative bit’s negativity. The maximum nega-
tivity happens for a decomposition with nonoverlapping {	B

j }
and {	1

k}. In that case, the maximal negativity is d�. If S rep-
resents a unitary U , the upper bound for � can be calculated
analytically [16]. This gives the upper bound on N as well.

APPENDIX B: NEGATIVE BIT SIMULATION
OF A NONMAXIMALLY ENTANGLED STATE

Here we show that one can use the simulation protocol to
extend any quantum-mechanical correlations of an arbitrary
two-qubit state ρAB to the maximal postquantum correlations.
Consider a pure quantum state |ψ〉 = α|01〉 − β|10〉, where
α, β � 0 and α2 + β2 = 1. The method to find the optimal
settings for the maximal violation of Bell-CHSH inequality
can be found in [17]. For completeness, we show explicitly
the direction of the optimal settings

â0 = [0, 0,−1],

â1 = [−1, 0, 0],

b̂0 = [sin θ, 0, cos θ ],

b̂1 = [− sin θ, 0, cos θ ], (B1)

FIG. 2. Maximal Bell-CHSH value attainable by non-maximally
entangled pure state. The solid red and dashed blue line indicates the
quantum bound and no-signaling (PR-box) bound, respectively.

where θ = arctan |2αβ|, and correspondingly the local aver-
ages and two-point correlations

〈A0〉 = β2 − α2,

〈A1〉 = 0,

〈B0〉 = β2 − α2√
1 + 4α2β2

,

〈B1〉 = β2 − α2√
1 + 4α2β2

(B2)

and

〈A0B0〉 = 1√
1 + 4α2β2

,

〈A0B1〉 = 1√
1 + 4α2β2

,

〈A1B0〉 = 4α2β2√
1 + 4α2β2

,

〈A1B1〉 = − 4α2β2√
1 + 4α2β2

. (B3)

Note that Ak = âk · �σ , �σ = [σx, σy, σz], is the spin operator
with the kth setting. Consequently, the maximal quantum
violation yields Q := 2

√
1 + 4α2β2 � 2. The quantum pair

probabilities that saturate Q read

p(ai, b j ) = 1
22 [1 + ai〈Ai〉 + b j〈Bj〉 + aib j〈AiBj〉]. (B4)

As mentioned in the main text, the upgrade is conducted lo-
cally by performing a CNOT gate with the negative bit wA(n) =
wB(n) = w(n) = 1

2 (1 + nη). The resulting pair probabilities
then yield

pη(ai, b j ) = 1
22 [1 + ηai〈Ai〉 + ηb j〈Bj〉 + η2aib j〈AiBj〉],

(B5)
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which gives us the PR boxlike distribution when η > 1. Thus,
we have the pair probabilities that could take the correlation
beyond the quantum bound by a factor of η2 (η > 1), i.e., η2Q.
It is easy to find the largest η such that η2Q is maximized
while satisfying the positivity condition of the pair probabili-

ties (B5), as this will give us the boundary of the PR box in the
no-signaling polytope [18]. We plot this maximal violation in
Fig. 2. As seen, the peak is achieved at α = 1√

2
(maximally

entangled state) with quantum behavior reaching a Tsirelson
bound of 2

√
2 and PR box reaching 4.
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[9] D. Kaszlikowski and P. Kurzyński, Found. Phys. 51, 55 (2021).
[10] S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res. 31, 211

(2010).
[11] E. O. Kiktenko, A. O. Malyshev, A. S. Mastiukova, V. I.

Man’ko, A. K. Fedorov, and D. Chruściński, Phys. Rev. A 101,
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