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We investigate the thermodynamic uncertainty relation (TUR), i.e., a tradeoff between entropy production rate
and relative power fluctuations, for nondegenerate three-level and degenerate four-level maser heat engines. In
the nondegenerate case, we consider two slightly different configurations of the three-level maser heat engine
and contrast their degree of violation of the standard TUR. We associate their different TUR-violating properties
to the phenomenon of spontaneous emission, which gives rise to an asymmetry between them. Furthermore, in
the high-temperature limit, we show that the standard TUR relation is always violated for both configurations.
For the degenerate four-level engine, we study the effects of noise-induced coherence on the TUR. We show
that, depending on the parametric regime of operation, noise-induced coherence can either suppress or amplify
the relative power fluctuations.
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I. INTRODUCTION

Since the dawn of the industrial revolution, heat engines
have played an important role in the development of classical
thermodynamics on both theoretical and experimental fronts.
Even with the rise of quantum thermodynamics [1–7]—which
extends the study of heat and work to the quantum regime—
heat engines remain among the central research topics. In
order to harness quantum resources such as entanglement,
coherence, and quantum fuels to our advantage (which is at
the heart of the flourishing area of quantum technologies), it
is important to understand the energy conversion process at
the nanoscale. However, thermal machines operating at the
nanoscale are subject to thermal as well as quantum fluctua-
tions due to their small size, which may negatively affect their
performance. Hence, it is crucial to develop a fundamental
understanding of these fluctuations characterizing the perfor-
mance of quantum thermal machines. Recently, a conceptual
advance has been made in this direction by Barato and Seifert
[8] by introducing the thermodynamic uncertainty relation
(TUR). In the context of steady-state classical heat engines,
the TUR states that there is always a tradeoff between the
relative fluctuation in the power output and the thermody-
namic cost (rate of entropy production 〈σ 〉) of maintaining the
nonequilibrium steady state (in the following, we will work in
units having h̄ = kB = 1):

Q ≡ 〈σ 〉 �P

〈P〉2
� 2, (1)

*varinder@ibs.re.kr

where 〈P〉 denotes the mean power of the engine while �P =
limt→∞〈[P(t ) − 〈P〉]2〉t is the rescaled variance of the power
in the steady state. Finally, P(t ) is the power averaged from
time t = 0 to t [9–13]. Equation (1) was originally discovered
for biomolecular processes [8] and proved by using the for-
malism of large deviation theory [14].

The original TUR, Eq. (1), which we will refer to as the
standard thermodynamic uncertainty relation (STUR) from
now on, is applicable to systems in nonequilibrium steady
state obeying a Markovian continuous-time dynamics with
explicit time-independent driving [15]. Later, it was shown to
hold in finite time [16,17]. Without any one of the assumptions
mentioned above, Eq. (1) can be violated [15]. Thus, a num-
ber of generalizations have been proposed in various settings
[9,18–43]. Additionally, there has been a considerable amount
of effort to probe the validity and extensions of the STUR in
quantum systems [10,11,44–65]

Recently, the role of quantum coherence in the violations
of TURs has been explored in detail [66,67]. Specifically,
it has been shown that fluctuations are not encoded in
the steady state alone and STUR violations can be seen as
the consequence of coherent dynamics going beyond steady-
state coherence [66,67]. In these papers, attention is put on
the effect of drive-induced coherence on TURs. On the other
hand, the effect of noise-induced coherence (NIC) on TURs
is usually left unaddressed, with just a couple of notable
exceptions (which actually refer to models of quantum ab-
sorption refrigerators) [51,68]. We recall that the phenomenon
of noise-induced coherence—arising due to interference be-
tween different transition paths from the degenerate energy
levels to a common level—has been shown to drastically
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FIG. 1. (a) Model I of the three-level laser heat engine continuously coupled to two reservoirs of temperatures Th and Tc having coupling
constants �h and �c, respectively. The system is interacting with a classical single mode field. λ represents the strength of matter-field coupling.
(b) Model II is slightly different from model I. Here, the cold reservoir is connected to two upper levels instead of two lower levels as in model I.
Similarly, the power mechanism is coupled to the lower two levels instead of the upper two levels. (c) Four-level degenerate maser heat engine
having degeneracy in the upper level.

increase the power output of quantum heat engines [69,70].
Therefore, it is interesting to explore the effects of noise-
induced coherence on the power fluctuations in a quantum
heat engine.

In this paper, we explore the role of quantum coherence,
both drive induced and noise induced, in the violations of the
STUR in different variants of maser heat engines, introduced
by Scovil and Schulz-Dubois (SSD) back in 1959 [71]. The
SSD engine converts the incoherent thermal energy of heat
reservoirs into a coherent maser output [71–79] and it is one of
the very few experimentally realizable quantum heat engines
[80].

Given its prominence—both at the experimental and
theoretical level—it is therefore of great interest to curb
fluctuations in the power output of the SSD engine, thus
motivating a detailed study of the model in the context of
TURs. With this motivation in mind, we will first show that
the violation of the TUR is highly sensitive to the sponta-
neous emission phenomenon. To reach such a conclusion, we
will consider two slightly different variants of the three-level
SSD model, differing just by the direction of the spontaneous
emission term. We will show that such a small difference
is sufficient to give very different results when evaluating
the TUR quantifier Q. After this result, we will perform a
systematic study of the effect of noise-induced coherence on
the violation of the STUR. To this end, we will consider
a four-level variant of the SSD model with two degenerate
energy levels, and we will compute the STUR quantifier
Q for this model. We will see that the violation of the
STUR is nontrivially dependent on the specific values taken
by the parameters of the model, thus showing the intricacy
of the violation patterns and the complex role that noise-
induced coherence plays in determining the violation of the
STUR.

The paper is organized as follows. In Sec. II we review
the SSD model. In Sec. III we study the violations of the
STUR for two slightly different variants of the SSD model and
compare their respective degrees of violation. In Sec. IV we
introduce a variant of the SSD model having two degenerate
levels, leading to a scenario suitable to study the effect of
noise-induced coherence on violations of the STUR. Such an
analysis is then performed in Sec. V. In Sec. VI we conclude
our paper.

II. THE SSD MODEL

The SSD engine [71] is one of the most well-known ex-
amples of quantum heat engines. In this model, a three-level
system is simultaneously coupled to two thermal reservoirs
at different temperatures Tc and Th, with Tc < Th. In a first
implementation of the model, that we will call model I [see
Fig. 1(a)], the hot reservoir supplies heat to induce a transition
between the states |g〉 and |1〉, whereas the cold reservoir
deexcites the transition between the states |0〉 and |g〉. The
power output mechanism between states |0〉 and |1〉 is mod-
eled by coupling the transition between them to a single-mode
classical field. H0 = ∑

ω j | j〉〈 j| is the free Hamiltonian of
the system, where ω′

js represent the atomic frequencies. The
following semiclassical Hamiltonian describes the interaction
between the system and the classical field of frequency ω

in the rotating wave approximation: V (t ) = λ(e−iωt |1〉〈0| +
eiωt |0〉〈1|); λ is the field-matter coupling constant. When deal-
ing with three-level masers, we will restrict to the case in
which the single-mode field is in resonance with the energy
gap between the lasing levels |0〉 and |1〉, i.e., ω = ω1 − ω0.

In a reference frame rotating with respect to the system
Hamiltonian H0, the dynamics of the three-level system is
described by the following Lindblad master equation:

ρ̇ = −i[VR, ρ] + Lh[ρ] + Lc[ρ], (2)

where ρ is the density matrix for the three-level system,
the coherent part of the dynamics is controlled by VR =
λ(|1〉〈0| + |0〉〈1|), and Lh(c)[ρ] describes the interaction be-
tween the system and the hot (cold) reservoir. In detail, we
have

Lh[ρ] = �h(nh + 1)
(
σg1ρσ

†
g1 − 1

2 {σ †
g1σg1, ρ})

+ �hnh
(
σ

†
g1ρσg1 − 1

2 {σg1σ
†
g1, ρ}), (3)

Lc[ρ] = �c(nc + 1)
(
σg0ρσ

†
g0 − 1

2 {σ †
g0σg0, ρ})

+ �cnc
(
σ

†
g0ρσg0 − 1

2 {σg0σ
†
g0, ρ}), (4)

where σgk = |g〉〈k| and k = 0, 1. �c and �h are system-bath
coupling constants for cold and hot reservoirs, respectively.
Finally, nh = 1/(exp[ωh/Th] − 1) and nc=1/(exp[ωc/Tc]−1)
represent the average number of photons with mode
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frequencies ωh and ωc in the hot and cold reservoirs, respec-
tively (ωc = ω0 − ωg, ωh = ω1 − ωg).

III. TUR FOR THE SSD MODEL

In this section, we analyze the SSD model from the view-
point of the TUR and we will compare two slightly different
implementations of it. These two implementations differ by
which energy levels in the three-level systems are connected
by the cold reservoir: in the first implementation, the cold
reservoir connects |g〉 with |0〉, while in the second the cold
reservoir connects |0〉 with |1〉. These two configurations are
often considered interchangeable in the literature and they

are both referred to as the SSD model [71,72,74–77,80,81].
Despite their similarities, as we will discuss in the following
by explicitly studying the TUR, these two configurations give
nonequivalent results. We will see that such a difference can
be entirely traced to the quantum phenomenon of spontaneous
emission and to the nonequivalent role that it plays in the two
configurations. The TUR in the first implementation has not
been analyzed before while the second implementation is the
focus of Refs. [66,67].

A. Model I

First, we will investigate the TUR in model I as shown
in Fig. 1(a). The TUR quantifier Q = 〈σ 〉�P/〈P〉2 is eval-
uated using the method of full counting statistics; see

Appendix C for details. The calculations yield the following result:

QI(�h, �c, λ, nh, nc) = 1

A(nh − nc)

[
A(nh + nc + 2nhnc) + 8(nh − nc)2 λ2 �c�h

A B �c�h + C λ2

(
2 − D + F + G + H

A B �c�h + C λ2

)]
ln

[
nh(nc + 1)

nc(nh + 1)

]
,

(5)

where A = �c(1 + nc) + �h(1 + nh), B = 1 + 2nh +
nc(2 + 3nh), C = 4 [�c(1 + 3nc) + �h(1 + 3nh)], D =
(1 + 2nc)�c[(1 + nc)2 �2

c + 16λ2], F = (1 + 2nh)�h[(1 +
nh)2 �2

h + 16λ2], G = (1 + nc)[7 + 13nc + 6(2 + 3nc)]�2
c �h,

and H = (1 + nh)[7 + 13nh + 6(2 + 3nh)]�2
h�c. We

note that the first term, Qpop = ln{nh(nc + 1)/nc(nh +
1)}(nh + nc + 2nh nc)/(nh − nc), given in Eq. (5) depends
on the bath populations only. Using the inequalities
a/(a − b) ln(a/b) � 1 and b/(a − b) ln(a/b) � 1, we can
show that Qpop � 2. Thus we can associate the possible
violations of the STUR to negative values of remaining terms
in Eq. (5). We also notice that at the verge of the population
inversion (threshold condition for the masing) nh = nc. Thus,
we have Q = 2, i.e., the STUR is saturated. Finally, we
numerically studied Eq. (5) outside the equilibrium condition
and for various values of the parameters. As an example, in
Fig. 2 (dashed blue curve) we report Eq. (5) as a function of
matter-field coupling strength λ for fixed values of the other
parameters. We note a very weak violation of the standard
TUR for a certain range of parameter λ. We checked that upon
further increasing of λ, Q gets saturated (not shown). It should
be noticed that, no matter how large the value of λ is, the
engine can be always taken as working in the weak-coupling
regime (λ/ω � 1). This is because QI, given in Eq. (5),
depends on nh,c = 1/(eωh,c/Th,c − 1) and not explicitly on ωh,c.
Hence, for any given value of nh(c) and by increasing Th and
Tc, we can always choose large enough ωh and ωc such that
ωh, ωc, ω = ωh − ωc 	 λ, and thus we always remain in the
weak-coupling regime.

It is also interesting to note that, as a consequence of being
dimensionless, the TUR quantifier Q remains invariant if we
scale system-bath and matter-field coupling constants by the
same factor. In other words, simultaneous transformations of
�c → k�c, �h → k�h, and λ → kλ leave Q invariant. Math-
ematically,

QI(k�h, k�c, kλ, nh, nc) = QI(�h, �c, λ, nh, nc). (6)

This property allows us to work in units of �c or �h.
Now, we turn our attention to the high-temperature limit. In

the high-temperature limit, Eq. (5) can be further simplified.
In this regime, we can approximate nh(c) = Th(c)/ωh(c) 	 1.
Then, Eq. (5) reduces to the following form:

QHT

= 2−16(nh−nc)2�h�cλ
2
(
�2

c n2
c+�2

hn2
h+5�c�hnhnc+4λ2

)
9nhnc(�cnc + �hnh)2(4λ2 + �h�cnhnc)2

.

(7)

It is clear from Eq. (7) that, unless nh = nc, QHT is al-
ways smaller than 2, which implies that the STUR is always
violated in the maser heat engine operating in the high-
temperature regime. The STUR violations can be thought of
as arising from the coherent quantum dynamics which go

FIG. 2. TUR quantifier Q vs matter-field coupling parameter λ.
Dashed blue and dotted red curves correspond to model I and model
II, respectively. Here, we use the invariance of Q to further set �c = 1
which, together with the choice h̄ = kB = 1, fully specifies the units
used in this plot. We also take �h = 0.1, nh = 5, nc = 2.
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beyond the steady-state coherences as shown in Refs. [66,67].
Though it is usually considered that systems are classical at
high temperatures, this is not sufficient per se to claim all the
quantum character of the system is vanished. The resolution
of the quantum energy levels can be smaller than thermal
energy scales at high temperatures so that any spectral dis-
tinction of discreteness of the energy becomes impossible.
However, there can be still coherence among some energy
levels. In the case of a three-level maser engine, this is the
case as drive-induced coherence between the energy levels
|0〉 and |1〉 is always there. As a result, the expression power
output of the engine explicitly depends on the coherence be-
tween energy levels |0〉 and |1〉 and is given by P = iλ(ωc −
ωh)(ρ01 − ρ10) [70,73,76]. In fact, coherence is the neces-
sary ingredient to generate finite-power output in continuous
quantum heat engines [74,82]. Further, the STUR violations
in the high-temperature limit have already been reported in
Refs. [45,60,61].

B. Model II

In this subsection, we consider a slight modification of
model I, which we refer to as model II and which is depicted
in Fig. 1(b). Certain aspects of TUR violations in this model
have already been discussed in Ref. [66]. Here and in the next
subsection, we will show that, although the two configurations
are very similar (and, as already mentioned previously, they
can be seen as the same SSD model for different arrange-
ments of the energy levels), they give quite different results
when dealing with violations of the TUR. We will also show
that this difference is coming from the spontaneous emission
contribution which is not symmetric in the two configurations.

For model II, we have the following expression for the
TUR quantifier QII:

QII = ln

[
nh(nc + 1)

nc(nh + 1)

]{
nh + nc + 2nhnc

nh − nc

+ 8(nh − nc)�c �h λ2

A′(A′ B′ + 4D′ λ2)

[
2 − A(4B + AC) + 16Cλ2

A′(A′ B′ + 4D′ λ2)

]}
,

(8)

where A′ = �cnc + �hnh, B′ = nc + nh + 3nc nh, C′ =
�c(1 + 2nc) + �h(1 + 2nh), and D′ = �c(2 + 3nc) + �h(2 +
3nh). The TUR relation for model II given in Eq. (8) is
different from the TUR relation given in Eq. (5) for model I.
In Fig. 2, we plot Eq. (8) (dotted red curve) in terms of
matter-field coupling constant λ. Also for this model, we see
a violation of the STUR for certain values of λ.

C. Comparison between model I and model II

We are now at the position to perform a comparison be-
tween the two models just analyzed. As clear from Fig. 2,
model II yields a lower TUR ratio for smaller values of λ as
compared to model I, whereas for the larger values of λ model
II yields better results.

Although both models yield different expressions for
the TUR ratio, the first term, Qpop = ln{nh(nc + 1)/nc(nh +
1)}(nh + nc + 2nh nc)/(nh − nc), is the same. Qpop depends
only on the bath populations and is always greater than 2 [66].

Hence, in both models, the second term is responsible for the
observed STUR violations. Although STUR violations are not
uncommon in our three-level models, still they adhere to the
quantum mechanical bound found in Ref. [11], which is two
times looser than the STUR. Further, it should be noticed that
most of the values of QI and QII given in Eqs. (5) and (8) lie
very close to 2.

In the high-temperature regime, Eq. (8) reduces to Eq. (7).
Hence, in the high-temperature limit, both models lead to the
same TUR ratio. This can be traced back to the identical
dynamical rate equations for both models. In the high-
temperature limit, spontaneous emission can be ignored.
Therefore the asymmetry between the two models, due to
the presence of spontaneous emission, is no longer there.
In such a case, model I and model II share a reflection
symmetry, thereby yielding identical results. Mathematically,
this can be seen as follows. Interchanging the indices g → 1
in Eqs. (A6)–(A10) and ignoring �h,c as compared to �h,cnh,c,
we obtain the exact same set of equations as given in
Eqs. (A1)–(A5). Thus, the contribution coming from sponta-
neous emission is the only contribution breaking the otherwise
symmetry between the two configurations. Hence, we con-
clude that the two configurations are inequivalent by the
presence of the spontaneous emission term only.

To make the comparison between the two models more
concrete, we also plot the histograms of sampled values of
QI and QII for random sampling over a region of the para-
metric space (see Fig. 3). In both cases, for the great majority
of sampled operational points, the TUR ratio stays close to
the conventional STUR limit Q = 2. This can be explained
as follows. As the three-level system is driven by thermal
sources, steady-state photon distribution is expected to be
close to a thermal state [83], and the second-order coherence
function [g2(τ )] is equal to 2 for a thermal state, i.e., g2(τ ) = 2
[84,85]. TUR quantifier Q is, up to some factors, directly
expressed in terms of the ratio of the power fluctuations to
the square of the mean power. As the radiated power of the
atom is given in terms of the photon number operator, such
an expression can be written in terms of the zero-time delay
second-order coherence function [g2(0)]. Thus, our results
suggest that radiated photons in steady state are approximately
in thermal states. However, it is clear from the histograms in
Fig. 3 that STUR violations are more common in model II.
Additionally, as far as the minimum numerical value of the
TUR ratio is concerned, model II attains a lower minimum
value as compared to model I, i.e., QII

min < QI
min.

Summarizing the results of this section, we presented a
clear case where the physics of the TUR is highly controlled
by the spontaneous emission phenomenon: the two models
just differ by the spontaneous emission term and this small
difference makes them inequivalent in the way in which they
violate the STUR.

IV. A FOUR-LEVEL VERSION OF THE SSD MODEL

In this section, we consider a variant of the SSD model [see
Fig. 1(c)], originally introduced in Ref. [69]. In this model,
the upper levels |1〉 and |2〉 are degenerate. The Hamiltonian
of the system in the rotating wave approximation is given
by H0 = ∑

ωk|k〉〈k| where the summation runs over all four

032203-4



THERMODYNAMIC UNCERTAINTY RELATION IN … PHYSICAL REVIEW A 108, 032203 (2023)

FIG. 3. Histograms of sampled values of QI, QII, and QNIC for random sampling over a region of the parametric space. The insets show
the subset of the sampled data for which STUR violations are happening. The parameters are sampled over the uniform distributions �h,c ∈
[10−4, 5], nh,c ∈ [0, 10], and λ ∈ [10−4, 1]. For plotting the histograms, we choose a bin width of 0.01 to arrange 108 data points.

states. The interaction Hamiltonian takes the following form:
V (t ) = λe−iωt (|1〉〈0| + |2〉〈0|) + H.c. The time evolution of
the system is described by the following master equation:

ρ̇ = −i[H0 + V (t ), ρ] + Lh[ρ] + Lc[ρ], (9)

where Lh(c) represents the dissipative Lindblad superoperator
describing the system-bath interaction with the hot (cold)
reservoir:

Lc[ρ] = �c(nc + 1)

(
AcρA†

c − 1

2
{A†

cAk, ρ}
)

+ �cn

(
A†

cρAc − 1

2
{AcA†

c, ρ}
)

, (10)

Lh[ρ] =
∑

k=1,2

�hk

[
(nh + 1)

(
AkρA†

k − 1

2
{A†

kAk, ρ}
)

+ nh

(
A†

kρAk − 1

2
{AkA†

k, ρ}
)]

+� cos θ

[
(nh + 1)

(
A1ρA†

2 − 1

2
{A†

2A1, ρ}
)

+ nh

(
A†

1ρA2 − 1

2
{A2A†

1, ρ}
)]

+� cos θ

[
(nh + 1)

(
A2ρA†

1 − 1

2
{A†

1A2, ρ}
)

+ nh

(
A†

2ρA1 − 1

2
{A1A†

2, ρ}
)]

(11)

where Ac = |g〉〈0| and Ak = |g〉〈k| (k = 1, 2) are jump oper-
ators between the relevant transitions. θ is the angle between
the dipole transitions |1〉 → |g〉 and |2〉 → |g〉. � = √

�h1�h2,
where �h1 and �h2 are Wigner-Weisskopf constants for transi-
tions between |g〉 → |1〉 and |g〉 → |2〉, respectively. To make
the discussion analytically traceable, from now on we set
�h1 = �h2 = �h; thus we have � = �h.

Physically, the phenomenon of noise-induced coherence
arises due to the interference of two indistinguishable decay
paths |1〉 → |g〉 and |2〉 → |g〉 to the same level |g〉 [69]. As
customary when dealing with noise-induced coherence, we
define p ≡ cos θ as the noise-induced coherence parameter,
lying in the range (−1, 1). For the values of p lying in the
range (p,−1, 0), destructive interference takes place between
the dipole transitions, whereas in the range (p, 0, 1) dipole
transitions interfere constructively.

V. TUR IN THE FOUR-LEVEL DEGENERATE MASER
HEAT ENGINE

Having presented the model of a four-level maser heat en-
gine with degenerate upper levels, we are ready to discuss the
effects of noise-induced coherence on the thermodynamic un-
certainty relation. Noise-induced coherence has been shown
to amplify the power of a four-level maser heat engine by
a factor of 2 as compared to the three-level nondegenerate
model [69,70]. Therefore, it is natural to explore the effects

of noise-induced coherence on relative power fluctuations.
In this case, the resulting form of TUR quantifier QNIC is
presented in Eq. (C26) in Appendix C. Equation (C26) is
plotted in Fig. 4 as a function of λ for different values of

FIG. 4. TUR quantifier QNIC as a function of λ for different
values of noise-induced coherence parameter p. The dot-dashed blue
curve, dashed orange curve, and dotted green curve represent the
cases for p = −0.945, 0, and 0.7, respectively. The solid violet curve
represents the TUR ratio for the three-level engine, model I. Here,
we fix units by setting �h = 1, and we consider the case �c = 0.1,
nh = 6, and nc = 3.
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noise-induced coherence parameter p. The solid purple curve
in Fig. 4 represents the TUR ratio for the three-level engine,
model I. It is clear from Fig. 4 that, depending upon the
numeric value of noise-induced coherence parameter p, noise-
induced coherence can either suppress or amplify the relative
fluctuations in the power output of the degenerate four-level
engine as compared to its three-level counterpart. For p =
−0.945, the dot-dashed violet curve always lies below the
solid brown curve for the three-level engine, thereby showing
the advantage of noise-induced coherence in suppressing the
relative power fluctuations. For p = 0, the dashed blue curve
representing QNIC(p = 0) lies below its three-level counter-
part (solid brown curve) for smaller values of λ. However,
for relatively higher values of λ, noise-induced coherence is
not helpful and amplifies the relative power fluctuations in
the engine. For p = 0.7, we have a different story altogether.
In this case, the dotted red curve (representing the case p =
0.7) always lies above the solid brown curve (for a three-
level engine), which implies that noise-induced coherence
amplifies the power relative fluctuations in the engine for the
entire range of λ. Thus, we can conclude that, depending on
the parametric operation regime, the noise-induced coherence
phenomenon can either suppress or amplify the relative power
fluctuations in a degenerate maser heat engine compared to its
nondegenerate counterpart. This is in contrast to the earlier
studies in which noise-induced coherence has been shown
to have only detrimental effects on the TUR in quantum
absorption refrigerators [51,68]. In both the above-mentioned
studies, the STUR is always satisfied in the presence of noise-
induced coherence. The main message of our paper is that, by
fine tuning the system-bath parameters involved in the study
of the degenerate maser heat engine (or choosing the proper
parametric regime), noise-induced coherence can be used to
suppress relative power fluctuations along with amplifying the
power of the engine at the same time [69,70]. In conclusion,
noise-induced coherence can be treated as a quantum resource
in enhancing the performance of quantum heat engines and it
is free of cost, unlike drive-induced coherence.

To make our analysis more complete, we also study the
case when the driving field is not at resonance with the energy
gap between the levels |0〉 and |1(2)〉. By fixing all other
parameters, we plot TUR quantifier QNIC given in Eq. (C26)
as a function of detuning parameter � [� = ω − (ω1 − ω0)]
in Fig. 5. The effect of detuning � on the TUR in the degen-
erate four-level maser heat engine is the same as that for the
nondegenerate three-level engine [66]. When plotted against
the detuning parameter �, QNIC is minimum for � = 0, and
symmetric around the point � = 0.

Having discussed the behavior of QNIC as a function of
matter-field coupling parameter λ, we move to discuss the
behavior of QNIC as a function of noise-induced coherence
parameter p with all other parameters kept fixed at constant
values. It is evident from Fig. 6 that QNIC exhibits a minimum
at a certain numerical value of p lying in the range [−1, 1]. We
note that, for p = −1, QNIC is always greater than 2 regardless
of the choice of all system-bath parameters. This can be seen
analytically. For p = −1, we derive following form of TUR

FIG. 5. QNIC as a function of detuning parameter � [� = ω −
(ω1 − ω0)]. Here, �h = 1, �c = 0.5, p = −0.97, λ = 0.7, nh = 40,
and nc = 3.

quantifier QNIC:

QNIC(p = −1) = ln

[
nh(nc + 1)

nc(nh + 1)

]
nh + nc + 2nhnc

nh − nc
, (12)

which is nothing but the already introduced term Qpop. We
have already shown in Sec. III that Qpop � 2.

In the high-temperature limit, we have an interesting result.
In this case, we can show that QNIC is always equal to 2
regardless of the choice of other system-bath parameters:

QHT
NIC = 2. (13)

This is in contrast to the case with the three-level engine. In
that case, the TUR ratio QHT is always less than 2 unless
nh = nc. It implies that in the high-temperature regime the
phenomenon of noise-induced coherence always amplifies the
relative power fluctuations.

One more comment is in order here. As clear from Fig. 6,
the QNIC diverges for p = 1. As mean power output is finite

FIG. 6. QNIC as a function of noise-induced coherence param-
eter p for different values of λ. Solid red, dashed blue, and dotted
brown curves represent the cases for λ = 1, λ = 0.5, and λ = 0.15,
respectively. Here, �h = 1, �c = 0.5, nh = 5, and nc = 2.
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at p = 1, this implies that power fluctuations (scale variance
of power) diverge at p = 1. This is an important point, as in
Refs. [69,70] it was shown that the power of the engine can be
doubled for p = 1. However, our result shows that it is not a
good idea to operate a maser heat engine exactly at p = 1 but
rather at a lower value of p.

Finally, we plot the histogram of sampled values of QNIC

for random sampling over a region of the parametric space
[see Fig. 3(c)]. Similar to the three-level case, for the great
majority of sampled operational points, the TUR ratio stays
close to 2. However, the minimum value of QNIC extracted
from the histogram [see inset of Fig. 3(c)] is 1.985, which is
greater than the corresponding case of the three-level engine
(model I), i.e., QI

min < QII
NIC.

VI. CONCLUSIONS

We have presented a detailed analysis of thermodynamic
uncertainty relations in nondegenerate three-level and degen-
erate four-level maser heat engines. For the nondegenerate
three-level maser heat engine, we studied two slightly dif-
ferent configurations of the engine and obtained analytical
expressions for the TUR ratio. We have shown that, although
very similar, the two configurations have very different viola-
tion patterns of STUR, and they agree in the high-temperature
regime only. We used this result to uncover the very subtle
and nontrivial role that spontaneous emission plays in deter-
mining the violation of the STUR. Further, for the degenerate
four-level engine, we studied the effects of noise-induced
coherence on the TUR. We showed that, depending on the
parametric regime of operation, the phenomenon of noise-
induced coherence can either suppress or amplify the relative
power fluctuations. In this way, we have shown also the
intricacy of the role that noise-induced coherence plays in
determining the violation of the STUR.

As noted in Sec. III, the violation of the STUR might be
traced back to contributions (sometimes positive, sometimes
negative) coming from coherence. Hence, it would be very
interesting to calculate the exact contribution of coherences in
the violation of the standard TUR. To this end, it is necessary
to go beyond the steady state and use the quantum trajectory
approach to unravel the master equation [67]. We hope to
address this point in the near future.
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APPENDIX A: DENSITY-MATRIX EQUATIONS FOR
THREE-LEVEL MASER HEAT ENGINE

Here, we will present the density-matrix equations for the
two different variants of the SSD engine.

1. Model I

For the three-level system shown in Fig. 1(a), the time
evolution of the elements of the density matrix is governed
by the following equations [70,73,76]:

ρ̇gg = �h(nh + 1)ρ11 + �c(nc + 1)ρ00 − (�hnh + �cnc)ρgg,

(A1)

ρ̇11 = iλ(ρ10 − ρ01) − �h[(nh + 1)ρ11 − nhρgg], (A2)

ρ̇00 = −iλ(ρ10 − ρ01) − �c[(nc + 1)ρ00 − ncρgg], (A3)

ρ̇10 = iλ(ρ11 − ρ00) − 1
2 [�h(nh + 1) + �c(nc + 1)]ρ10,

(A4)

ρ̇01 = ρ̇∗
10. (A5)

2. Model II

For the three-level system shown in Fig. 1(b), the dynam-
ical equations for different density-matrix elements are given
by

ρ̇11 = �hnhρgg + �cncρ00 − [�h(nh + 1) + �c(nc + 1)]ρ11,

(A6)

ρ̇00 = �c(nc + 1)ρ11 − �cncρ00 + iλ(ρ0g − ρg0), (A7)

ρ̇gg = �h(nh + 1)ρ11 − �hnhρgg − iλ(ρ0g − ρg0), (A8)

ρ̇g0 = iλ(ρ00 − ρgg) − 1
2 (�hnh + �cnc)ρg0, (A9)

ρ̇0g = ρ̇∗
g0. (A10)

Notice that, by interchanging the indices g → 1 in Eqs. (A6)–
(A10) and ignoring �h,c as compared to �h,cnh,c, i.e., the term
related to spontaneous emission, we obtain the exact same set
of equations as given in Eqs. (A1)–(A5).

APPENDIX B: MASTER EQUATION FOR THE
FOUR-LEVEL MASER HEAT ENGINE

Consider a modified version of the SSD engine where
we have replaced a single upper level |1〉 by a pair of two
degenerate states |1〉 and |2〉. Then the bare Hamiltonian of
the four-level system and the semiclassical system-field inter-
action Hamiltonian are given by [70]

H0 =
∑

i=g,0,1,2

ωi|i〉〈i|, (B1)

V (t ) = λ[e−iωt (|1〉〈0| + |2〉〈0|) + eiωt (|0〉〈1| + |0〉〈2|)].
(B2)

In a rotating frame with respect to H0, the time evolution of
the system is described by the following master equation:

ρ̇ = −i[H0 + V (t ), ρ] + Lh[ρ] + Lc[ρ], (B3)

where Lh(c) represents the dissipative Lindblad superop-
erator describing the system-bath interaction with the hot
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(cold) reservoir, Eqs. (10) and (11), that we repeat here for convenience:

Lc[ρ] = �c(nc + 1)

(
AcρA†

c − 1

2
{A†

cAk, ρ}
)

+ �cnc

(
A†

cρAc − 1

2
{AcA†

c, ρ}
)

, (B4)

Lh[ρ] =
∑

k=1,2

�hk

[
(nh + 1)

(
AkρA†

k − 1

2
{A†

kAk, ρ}
)

+ nh

(
A†

kρAk − 1

2
{AkA†

k, ρ}
)]

+ � cos θ

[
(nh + 1)

(
A1ρA†

2 − 1

2
{A†

2A1, ρ}
)

+ nh

(
A†

1ρA2 − 1

2
{A2A†

1, ρ}
)]

+ � cos θ

[
(nh + 1)

(
A2ρA†

1 − 1

2
{A†

1A2, ρ}
)

+ nh

(
A†

2ρA1 − 1

2
{A1A†

2, ρ}
)]

(B5)

where Ac = |g〉〈0| and Ak = |g〉〈k| (k = 1, 2) are jump operators between the relevant transitions. The time evolution of the
density-matrix equations is given by

ρ̇11 = iλ(ρ10 − ρ01) − �h[(nh + 1)ρ11 − nhρgg] − 1
2 p�h(nh + 1)(ρ12 + ρ21), (B6)

ρ̇22 = iλ(ρ20 − ρ02) − �h[(nh + 1)ρ22 − nhρgg] 1
2 p�h(nh + 1)(ρ12 + ρ21), (B7)

ρ̇00 = iλ(ρ01 + ρ02 − ρ10 − ρ20) − �c[(nc + 1)ρ00 − ncρgg],

ρgg = 1 − ρ11 − ρ22 − ρ00, (B8)

ρ̇12 = iλ(ρ10 − ρ02) − 1
2 [�h(nh + 1) + �h(nh + 1)]ρ12 − 1

2 p�h[(nh + 1)ρ11 + (nh + 1)ρ22 − (nh + nh)ρgg], (B9)

ρ̇10 = iλ(ρ11 − ρ00 + ρ12) − 1
2 [�c(nc + 1) + �h(nh + 1)]ρ10 − 1

2 p�h(nh + 1)ρ20, (B10)

ρ̇20 = iλ(ρ22 − ρ00 + ρ21) − 1
2 [�c(nc + 1) + �h(nh + 1)]ρ20 − 1

2 p�h(nh + 1)ρ10. (B11)

APPENDIX C: FULL COUNTING STATISTICS

In order to calculate Q, we first need to calculate the
mean and the variance of the power along with the rate of
entropy production. For the steady-state heat engines obey-
ing the strong-coupling condition (no heat leaks between the
reservoirs), the relation between the energy flux (heat and
work fluxes) IE and matter flux (here photon flux) 〈I〉 (〈I〉 > 0)
is given by [86]

〈IE 〉 = ε〈I〉. (C1)

The above equation implies that the energy is transported
by the particles of a given energy ε. Here, we have applied
the tight-coupling condition on the average currents. Such a
coupling can be achieved in nanoscale devices [87–91] and
masers [86]. In maser heat engines, the tight-coupling con-
dition is naturally obeyed as energy from the reservoirs to
the system is transported at a single frequency. The heat flux
entering into the system from the hot reservoir carries photons
of frequency ωh only and the heat flux dumped into the cold
reservoir contains photons of frequency ωc only.

In this paper, we are using a sign convention in which all
the incoming fluxes entering (leaving) into (out of) the three-
level system are taken to be positive (negative). Applying the
first law of thermodynamics, we have 〈P〉 + 〈Q̇h〉 + 〈Q̇c〉 = 0.
For heat engines, 〈Q̇h〉 > 0, 〈Q̇c〉 < 0, and 〈P〉 < 0. Applying
the tight-coupling condition to the heat fluxes and then using

the relation 〈P〉 = −(〈Q̇h〉 + 〈Q̇c〉), we have

〈Q̇h〉 = ωh〈I〉, 〈Q̇c〉 = −ωc〈I〉, 〈P〉 = (ωc − ωh)〈I〉.
(C2)

Since all the fluxes are proportional to each other, the TUR
will be exactly the same for all currents. Similarly, the vari-
ance of the power is given by var(P) = (ωh − ωc)2 var(I ).
Using these relations, the TUR ratio Q can be written as

Q = 〈σ 〉 �P

〈P〉2
= 〈σ 〉 �I

〈I〉2
. (C3)

Further, the average rate of entropy production is given by

〈σ 〉 = − Q̇c

Tc
− Q̇h

Th
. (C4)

By using the relations nh = 1/(eωh/Th − 1) and nc =
1/(eωc/Tc − 1), the temperatures of the reservoirs can be ex-
pressed in terms of the average number of photons nh and nc

as follows:

1

Th
= 1

ωh
ln

[
nh + 1

nh

]
,

1

Tc
= 1

ωc
ln

[
nc + 1

nc

]
. (C5)

Combining Eqs. (C2), (C4), and (C5), after a little algebra we
obtain

〈σ 〉 = ln

[
nh(nc + 1)

nc(nh + 1)

]
〈I〉 > 0. (C6)
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Further, using Eq. (C6) in Eq. (C3), we have

Q = ln

[
nh(nc + 1)

nc(nh + 1)

]
�I

〈I〉 . (C7)

Now we will evaluate the expression for the photon flux
〈I〉. In open quantum systems, particle statistics can be de-
termined by using the formalism of full counting statistics,
where counting fields are incorporated in the master equation.
For our purpose, it is sufficient to introduce a counting field
for either the hot or the cold reservoir. Here, we choose to
introduce the counting field (χ ) for the cold reservoir [92,93].
The modified Lindblad master equation takes the following

form:

ρ̇ = −i[VR, ρ] + Lh[ρ] + Lχ
c [ρ], (C8)

where the modified Lindblad superoperator

Lc[ρ] = �c(nc + 1)
(
e−iχσg0ρσ

†
g0 − 1

2 {σ †
g0σg0, ρ})

+ �cnc
(
eiχσ

†
g0ρσg0 − 1

2 {σg0σ
†
g0, ρ}). (C9)

By vectorizing the density-matrix elements into a state vector
ρR = (ρgg, ρ00, ρ11, ρ10, ρ01)T , we can write the above Lind-
blad master equation as a matrix equation with the Liouvillian
supermatrix L(χ ):

ρ̇ = L(χ )ρ, (C10)

where

L(χ ) =

⎡
⎢⎢⎢⎢⎣

−(�hnh + �cnc ) �c(nc + 1)e−iχ �h(nh + 1) 0 0
�cnceiχ −�c(nc + 1) 0 −iλ iλ
�hnh 0 −�h(nh + 1) iλ −iλ

0 −iλ iλ − 1
2 [�h(nh + 1) + �c(nc + 1)] 0I

0 iλ −iλ 0 − 1
2 [�h(nh + 1) + �c(nc + 1)]

⎤
⎥⎥⎥⎥⎦.

(C11)

For χ → 0, Eq. (C11) reduces to the original Liouvillian
operator [given in Eq. (4)] for standard time evolution.

In the long-time limit, the kth cumulant of the integrated
number of quanta (number of photons here) emitted into the
cold reservoir can be determined by [93]

Ck (t ) = (i∂χ )k[ξ (χ )t]|χ=0 ≡ (i∂χ )kλ′(t )|χ=0, (C12)

where ξ (χ ) is the eigenvalue of L(χ ) with the largest real part
and λ′(t ) = ξ (χ )t in Eq. (C12) is the cumulant generating
function for the integrated current (total charge). In order to
get the cumulants for the average current in the long-time
limit, we define the following scaled cumulant generating
function [12,93]:

λ′
scaled = lim

t→∞
λ′(t )

t
= ξ (χ ). (C13)

The first cumulant of λ′
scaled corresponds to the mean current

〈I〉 and the second cumulant corresponds to the scaled vari-
ance �I = limt→∞〈[I (t ) − 〈I〉]2〉t :

〈I〉 
 i∂χξ (χ )
∣∣
χ=0, �I 
 −∂2

χξ (χ )
∣∣
χ=0

. (C14)

To obtain the expressions for the mean and variance, we
follow the method explained in Ref. [92]. Consider the char-
acteristic polynomial of L(χ ):

∑
n

cnξ
n = 0, (C15)

where the terms cn are functions of χ . Define

c′
n = i∂χcn|χ=0, c′′

n = (i∂χ )2cn|χ=0 = −∂2
χu

cn|χ=0. (C16)

Differentiating Eq. (C15) with respect to the counting param-
eter χ , and then evaluating the resulting equation at χ = 0,
we have[

i∂χ

∑
n

cnξ
n

]
χ=0

=
∑

n

[c′
n + (n + 1)cn+1ξ

′]ξ n(0) = 0.

(C17)
By taking the second-order derivative of Eq. (C15), we find

[
(i∂χ )2

∑
n

cnξ
n

]
χ=0

=
∑

n

[c′′
n + 2(n + 1)c′

n+1ξ
′ + (n + 1)cn+1ξ

′′

+ (n + 1)(n + 2)cn+2ξ
′2]ξ n(0) = 0. (C18)

As the zeroth term ξ 0 = 1 should vanish, hence Eq. (C17)
implies

c′
0 + c1ξ

′ = 0, (C19)

from which we obtain the expression for the current:

〈I〉 = ξ ′ = −c′
0

c1
. (C20)

Similarly, from Eq. (C18), we obtain the following expression
for the variance:

�I = ξ ′′ = −c′′
0 + 2I (c′

1 + c2I )

c1
= 2

c′
0c1c′

1 − c′2
0 c′

1

c3
1

− c′′
0

c1
.

(C21)
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Applying the above-mentioned procedure to the Liouvillian given in Eq. (C11), we obtain

c′
0 = (nh − nc)�h�c�

′λ2,

c′′
0 = (2nhnc + nh + nc)�h�c�

′λ2,

c1 = 1
4�′{(3nhnc + 2nh + 2nc + 1)�c�h�

′ + 4[�h(3nh + 1) + �c(3nc + 1)]λ2
}
,

c′
1 = 2(nh − nc)�h�cλ

2,

c2 = − 1
4 {(nh + 1)2(2nh + 1)�3

h + (nc + 1)2(2nc + 1)�3
c + (nh + 1)[7 + 13nh + 6(2 + 3nh)nc]

+ (nc + 1)[7 + 13nc + 6(2 + 3nc)nh]} − 4[(2nh + 1)�h + (2nc + 1)�c]

(C22)

where �′ = �h(nh + 1) + �c(nc + 1). This provides the current:

〈I〉 = 4(nh − nc)�h�cλ
2

4λ2[�h(3nh + 1) + �c(3nc + 1)] + (3nhnc + 2nh + 2nc + 1)[�h(nh + 1) + �c(nc + 1)]�h�c
. (C23)

In a similar manner, using Eq. (C21) we can obtain the expression for var(I ), and further using this expression in Eq. (C7) we
finally obtain the expression for TUR ratio QI as given by Eq. (5) in the main text.

By repeating the steps from Eqs. (C8)–(C21) with VR = λ(|1〉 〈0| + |2〉 〈0| + |0〉 〈1| + |0〉 〈2|) and Lh[ρ] [given in Eq. (B5)],
we can obtain the expressions for power 〈P〉NIC and TUR ratio QNIC of the four-level maser heat engine as given below (see
Supplemental Material [94] for details):

〈P〉NIC = 8λ2(p + 1)�c�h(ωc − ωh)(nh + 1)(nh − nc)
/{(p + 1)(nc + 1)(nh + 1) + 8λ2(p + 1)�h(nh + 1)

× (4nh + 1)�2
c �h[nc(4nh + 2) + 3nh + 1] + �c[8λ2(4ncnh + 3nc + 2nh + 1) + (p + 1)2�2

h (nh + 1)2

× (4ncnh + 2nc + 3nh + 1)]}, (C24)

QNIC = ln

[
nh(nc + 1)

nc(nh + 1)

]{
4(p − 1)(p + 1)2n5

c (nh + 1)2(2nh + 1)3�2
h�

4
c + 4(p + 1)n4

c (nh + 1)�h�
3
c (32λ2{nh[4(p − 1)nh

+ (4nh + 7) + 14p − 15] + 2(p − 1)} + (p − 1)(p + 1)�c�h(nh + 1)(8nh + 3)(2nh + 1)2 + 2(p − 1)(p + 1)2

× �2
h (nh + 1)2(2nh + 1)3) + n3

c�
2
c

[
(p − 1)(p + 1)2�2

c �
2
h (nh + 1)2(2nh + 1)[nh(101nh + 74) + 13] + 16(p + 1)�c

× �h(nh + 1)[8λ2(nh{nh[44(p− 1)nh + 73p − 71] + 33p − 35} + 4(p − 1)) + (p − 1)(p + 1)2�2
h (nh + 1)2(2nh + 1)2

× (3nh + 1)] + 4(256λ4{4nh[8(p − 1)nh(nh + 2) + 10p − 11] + 9(p − 1)} + 16λ2(p + 1)2(nh + 1)2

× �2
h (nh(32(p − 1)nh(2nh + 3) + 33p − 35) + p − 1) + (p − 1)(p + 1)4�4

h (nh + 1)4(2nh + 1)3)
]

+ nh
[
(p − 1)(p + 1)2�4

c �
2
h (nh + 1)2(3nh + 1)2 + 1024λ4(p − 1)(p + 1)2�2

h (nh + 1)2(4nh + 1)2 + 64(p + 1)

× λ2�c�h(nh + 1)
(
(p − 1)(p + 1)2�2

h (nh + 1)2(3nh + 1)2 + 32λ2(nh(3 p nh − 5nh + 4p − 4) + p − 1)
)

+ 2(p + 1)�3
c �h(nh + 1)

(
(p − 1)(p + 1)2�2

h (nh + 1)2(3nh + 1)2 + 32λ2(nh(3 p nh − 5nh + 4p − 4) + p − 1)
)

+ �2
c

(
128λ2(p + 1)2�2

h (nh + 1)2(nh(3pnh − 4nh + 4p − 4) + p − 1) + (p − 1)(p + 1)4�4
h (nh + 1)4(3nh + 1)2

+ 1024λ4(2nh(p(nh + 2) − 3nh − 2) + p − 1)
)]

+ n2
c�c

{
(p − 1)(p + 1)2�3

c �
2
h (nh + 1)2(nh(nh(157nh + 168) + 57) + 6) + 2(p + 1)�2

c �h(nh + 1)

× [
32λ2

(
p(nh + 1)(7nh + 1)(12nh + 5) − 86n3

h − 123n2
h − 54nh − 5

) + (p − 1)(p + 1)2(nh + 1)2

× �2
h (2nh + 1)(nh(53nh + 34) + 5)

] + 64λ2(p + 1)�h(nh + 1)

× (
32λ2(nh(16(p − 1)nh(2nh + 3) + 17p − 19) + p − 1)+(p − 1)(p + 1)2�2

h (nh + 1)2(nh(8nh(4nh + 5) + 13) + 1)
)

+ 4�c{256λ4[nh(4nh(12(p − 1)nh + 21p − 19) + 39p − 43) + 6(p − 1)] + 32λ2(p + 1)2(nh + 1)2

× �2
h (nh[nh(64(p − 1)nh + 95p − 93) + 33p − 34] + 2(p − 1)) + (p − 1)(p + 1)4�4

h (nh + 1)4(2nh + 1)2(4nh + 1)}}
+ nc

[
1024λ4(p − 1)(p + 1)2�2

h (nh + 1)2(2nh + 1)(4nh + 1)2 + (p − 1)(p + 1)2�4
c �

2
h (nh + 1)2(3nh + 1)

× (nh(20nh + 11) + 1)

+ 2(p + 1)�3
c �h(nh + 1)

[
32λ2[nh(nh(31pnh − 35nh + 45p − 41) + 15(p − 1)) + p − 1] + (p − 1)(p + 1)2�2

h

× (nh + 1)2(3nh + 1)(nh(17nh + 10) + 1)
] + 64λ2(p + 1)�c�h(nh + 1)

(
�2

h{
[
nh

(
40n2

h + 44nh + 13
) + 1

]
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× (p − 1)(p + 1)2(nh + 1)2 + 32λ2{nh[2nh(16(p − 1)nh + 23p − 21) + 15(p − 1)] + p − 1})
+ �2

c

(
1024λ4(2nh[nh(11pnh − 13nh + 18p − 14) + 6(p − 1)] + p − 1) + 64λ2(p + 1)2(nh + 1)2

× �2
h{nh[nh(69pnh − 71nh + 99p − 95) + 32(p − 1)] + 2(p − 1)} + (p − 1)(p + 1)4(nh + 1)4(2nh + 1)

× (3nh + 1)(7nh + 1)�4
h

)]}/{
(p − 1)(nh − nc)

[
(p + 1)(nc + 1)(nh + 1) + 32λ2(p + 1)�h(nh + 1)(4nh + 1)

× �2
c �h(nc(4nh + 2) + 3nh + 1) + �c

(
32λ2(4ncnh + 3nc + 2nh + 1) + (p + 1)2�2

h (nh + 1)2

× (4ncnh + 2nc + 3nh + 1))
]2}

. (C25)
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