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Extreme violation of the Leggett-Garg inequality in nonunitary dynamics with complex energies
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We study the Leggett-Garg inequality (LGI) of a two-level system (TLS) undergoing coherent dynamics
described by a non-Hermitian Hamiltonian and Lindblad equation with no quantum jumps. The nonlinear
Bloch equation for the TLS density matrix predicts violations of LGI above the TLS Lüders bound of 3/2,
approaching the extremal case of LGI parameter K3 = 3 in the PT -symmetric region and the PT -broken region.
We show that these findings are reproduced by using postselection to remove instantaneous quantum jumps from
a three-level system described by the Lindblad equation with a single spontaneous emission dissipator. We trace
the K3 excesses beyond the standard quantum limit of 3/2 to a nonuniform speed of evolution on the Bloch
sphere. Finally, we consider the effects of competing Lindblad dissipators on the postselected non-Hermitian
dynamics and the viability of observing K3 exceeding the Lüder bound and approaching its algebraic maximum
of three in current experimental setups.
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I. INTRODUCTION

Our intuition of the classical world is embodied by
twin postulates of macroscopic realism and noninvasive
measurability [1]. The first relates to the assumption that
for macroscopic systems, observables—position, momentum,
energy—have pre-existing values. The second encodes the
assumption that these observables can be measured to an
arbitrary accuracy without affecting their values. The in-
applicability of these two postulates signals the transition
from a classical system to the quantum domain, and it can
be identified through spatiotemporal correlation functions of
different observables for the system in question. Traditional
Bell inequalities reference correlations between spatially sep-
arated, equal-time measurements of a multipartite quantum
system with at least two qubits [2,3]. On the other hand,
the “quantumness” or quantum-to-classical transition of a
minimal quantum system (a single qubit) is characterized
by Leggett-Garg inequalities (LGIs) which utilize temporal
correlations [4–6]. Violation of a suitable set of Leggett-
Garg inequalities is one of the well-established markers of
quantum dynamics [2,3,7–9], when supplemented with no
signaling in time and arrow of time conditions [10,11]. These
inequalities have been exploited to test quantum mechanics
at macroscopic scales in experimental platforms such as a
superconducting circuit [12,13], light-matter interface [14],
and heralded single photons [15].

The simplest LGI describes a three-time protocol where
a dichotomic observable Q with outcomes a = {+1,−1} is
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measured at times t0 � t1 � t2 in a pairwise fashion. The
LGI then provides a bound on the parameter K3 ≡ C01 +
C12 − C02, where Ci j = ∑

ab abPi j (a, b) is the correlation
function and Pi j (a, b) is the joint probability of obtain-
ing the result a at time ti and result b at a later time t j .
For a quantum system with Hermitian Hamiltonian H0 =
H†

0 initialized in the state |ψ (0)〉, the two-time correlation
function is related to the anticommutator of the Heisenberg-
picture observable Q(t ) = eiH0t Qe−iH0t (h̄ = 1) by Ci j =
〈ψ (0)|{Q(ti), Q(t j )}|ψ (0)〉/2 [16]. Since each |Ci j | � 1, the
LGI metric K3 is algebraically bounded by ±3. The postulates
of macroscopic realism and noninvasive measurability imply
that K3 � 1 for a classical system. This classical bound is vio-
lated when operators Q(ti) and Q(t j ) do not commute, leading
to a maximum value K3 = 3/2 for the three-time protocol
and KN = N cos(π/N ) for its N-time generalization [9,16].
For a two-level system (TLS) undergoing unitary dynamics,
the Lüders bound KL

3 = 3/2 saturates the K3 value; the corre-
sponding bound is higher in an M > 2-level system, with the
algebraic limit K3 → 3 achieved in the M → ∞ limit [17].

When a small (M-dimensional) quantum system is cou-
pled to an environment, the dynamics for the reduced density
matrix of the system (not the environment) is given by a
completely positive trace preserving (CPTP) map [18–24].
This map is characterized by M2 Kraus operators and, in
the most common case of an environment with no memory,
is equivalent to the time evolution generated by the Gorini-
Kossakowski-Sudarshan Lindblad equation (henceforth the
Lindblad equation) for the reduced density matrix [25]. The
CPTP maps can be divided into unital (which leaves a
maximally mixed state unchanged) and nonunital ones. For
two-level systems, M = 2, the maximal violation of the LGI
is constrained to the Lüders bound (KL

3 = 3/2) for unitary dy-
namics [4,9,16] and decoherence-inducing unital maps [26].

In this article, we show that for a two-level sys-
tem governed by a non-Hermitian Hamiltonian, the LGI
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parameter K3(t0, t1, t2; Q, H, |ψ (0)〉), optimized over the pa-
rameter space, exceeds the Lüder bound and reaches its
algebraic maximum of three over a wide parameter range.
Such a Hamiltonian is experimentally realized in minimal
quantum systems undergoing nonunital CPTP evolution by
postselecting to no-quantum-jump trajectories [27]. With a
three-level superconducting circuit in mind, we obtain the
analytical expressions for the dynamics of the postselected
two-level system that evolves with a non-Hermitian Hamil-
tonian. In the special case when the resultant non-Hermitian
Hamiltonian has an antilinear symmetry, traditionally called
the parity-time (PT ) symmetry, the energy spectrum of H is
either real or complex-conjugate pairs. The transition from a
PT -symmetric phase (real energies) into PT -broken phase
(complex conjugate energies) occurs across an exceptional
point (EP) degeneracy where the corresponding eigenvectors
also coalesce. When the spectrum of H is real, max K3 → 3 in
the vicinity of the EP, but only at divergent times, �t01 ≡ t1 −
t0 → ∞ [28–30]. Here we show that K3 exceeds the Lüder
bound and approaches three at moderate times �t over a broad
range of parameters in the PT -broken region. These extreme
correlations are understood by calculating the maximum and
minimum speed of state evolution under trace-preserving,
nonlinear, non-Hermitian dynamics that occur in the postse-
lected manifold in the absence of quantum jumps. Lastly, by
comparing the results of coherent, non-Hermitian dynamics
with those from the three-level system Lindblad analysis, we
show that the extremal correlations are only weakly affected
by additional dissipation channels or coherent drives.

The article is organized as follows. In Sec. II, we present
the model and obtain two-time joint probabilities Pi j (a, b) for
a two-level, non-Hermitian system, as well as the underlying
three-level, open dissipative quantum system that undergoes
Lindblad evolution. This is followed by numerical results
for the optimized K3 values across the parameter space. The
dynamics of the non-Hermitian TLS is discussed in Sec. III,
along with the role of the nonlinear Bloch equation of mo-
tion in generating nonuniform speed of evolution (SOE). We
present the effects of hitherto ignored, experimentally relevant
dissipators on the Leggett-Garg (LG) parameter K3 in Sec. IV,
and present conclusions in Sec. V.

II. NON-HERMITIAN AND LINDBLAD MODELS

Consider a two-level system (a qubit) governed by a
non-Hermitian Hamiltonian H = H0 − i� where H0 = H†

0
denotes its Hermitian part and i� = −(i�)† denotes its
anti-Hermitian part. When � is positive definite, such a
Hamiltonian arises naturally from a larger, open quantum sys-
tem and represents lossy dynamics. On the other hand, when
� has zero trace, it represents a balanced gain and loss sys-
tem whose dynamics can be mapped onto the lossy-dynamics
systems by a time-dependent rescaling of the density matrix.
As an explicit example, we will use the classic, balanced
gain-loss Hamiltonian

H (γ ) = −J

2
σx + i

γ

2
σz ≡ �A · σ + i �B · σ. (1)

It is straightforward to check that H (γ ) is PT sym-
metric with parity operator P = σx and canonical complex

conjugation, i.e., T = ∗. The eigenvalues of H (γ ) are given
by ε± = ±

√
J2 − γ 2/2 and therefore change from purely

real for J � γ to complex-conjugate pair for J < γ . The
corresponding Dirac-normalized right eigenvectors |ε±〉 have
equal weight in both levels when J > γ , indicating a PT -
symmetric phase. For J < γ , the ratio of weights in the two
levels is exponentially amplified or suppressed for the two
eigenvectors. Therefore, in the PT -symmetry broken region,
the action of the PT operation maps one eigenvector into
another. The Dirac inner product of the two linearly indepen-
dent eigenvectors is given by |〈ε+|ε−〉| = min(γ /J, J/γ ). It
reaches unity at the EP γ = J .

In order to calculate the LGI parameter K3(t0, t1, t2), we
use a measurement operator Q = σy that is orthogonal to the
Hermitian and the anti-Hermitian parts of the Hamiltonian.
Incidentally, we also note that the Hamiltonian H = H0 −
i� is PT symmetric if and only if the operators H0 and
� are orthogonal to each other (under the Frobenius inner
product), i.e., �A · �B = 0. For a Hermitian system, the joint
probabilities Pi j (a, b) would ordinarily be constructed from
the inner products between the time-evolved states |ψ (ti −
t0)〉 or |ψ (t j − ti )〉 and the measurement states |a〉 and |b〉, re-
spectively. However, when the time-evolution operator Gi j ≡
exp[−iH (γ )(t j − ti )] is not unitary, we must normalize each
measurement accordingly. Doing so yields

Pi j (a, b) = |〈b|Gi j |a〉|2
|〈a|G†

i jGi j |a〉|
|〈a|G0i|ψ0〉|2

|〈ψ0|G†
0iG0i|ψ0〉|

. (2)

The two-point correlations Ci j = ∑
ab abPi j (a, b) and the LGI

parameter K3 = C01 + C12 − C02 are then calculated from
the joint probabilities, Eq. (2). Equivalently, we seek a
trace-preserving dynamical equation for the Dirac-Hermitian
density matrix ρ(t ) = ρ(t )† of the system that is undergoing
a coherent but nonunitary evolution generated by H0 − i�. It
is given by [31]

∂tρ(t ) = −i[H0, ρ(t )] − {�, ρ(t )} + 2Tr[ρ(t )�]ρ(t ), (3)

where {·, ·} denotes the anticommutator, and its solution is
given by

ρ(t ) = I + �S(t ) · �σ
2

= G(t )ρ0G†(t )

Tr[G(t )ρ0G†(t )]
, (4)

where t represents the time interval ti − t0 or t j − ti.
Figure 1(a) shows the K3 values for a system initialized

in |ψ (0)〉 = (1, i)T /
√

2, i.e., an eigenstate |+y〉 of the mea-
surement operator Q = σy, obtained by choosing t0 = 0, t j =
2t = 2ti as a function of dimensionless time γ t and inverse
non-Hermiticity J/γ . We choose γ as the energy (frequency)
scale because in experimentally accessible minimal quantum
systems such as a superconducting circuit [27], it is deter-
mined by parameters that are not easily tunable, whereas the
Hermitian Rabi drive strength J can be dynamically varied at
will.

In the Hermitian limit (J/γ � 1), we observe the expected
periodic behavior of the K3 value, where the possible quantum
mechanical behavior characterized by 1 � K3 � 3/2 is
obtained in the first and last quarter of the period. As the
drive strength is decreased, in the PT -symmetric region
(J/γ > 1), the system undergoes periodic behavior with
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(a)

(b)

FIG. 1. LGI parameter K3(0, t, 2t ) for a fixed observable Q = σy

and initial state |ψ (0)〉 = |+y〉 as a function of unit less time γ t
and inverse non-Hermiticity J/γ . (a) Equation of motion approach,
Eq. (3), for a two-level system with Hamiltonian H (γ ) shows K3

varying periodically in time with a period that diverges as the system
approaches the EP at J = γ from the Hermitian-limit side. Regions
of K3 that exceed the Lüder bound of 3/2 are clearly seen with
K3 → 3 at the transition point. In the PT -symmetry broken region
J/γ < 1, the nonoptimized LGI parameter K3 reaches zero at long
times γ t � 1. (b) The LGI parameter K3 is calculated using Lindblad
dynamics for a three-level system, Eq. (5), and shows a rapid decay
to zero at times γ t ∼ 1.

period T (γ ) = 2π/(ε+ − ε−) = 2π/
√

J2 − γ 2 and the
resultant oscillations in K3 also reach values that exceed the
Lüders bound. It is important to note that the time at which
such violation occurs increases monotonically as the system
gap ε+ − ε− is suppressed. As we approach the exceptional
point γ = J , the LGI parameter K3 reaches its algebraic
maximum, K3 → 3, albeit at divergingly long times. In
the PT -broken region, on the other hand, for this choice of
measurement operator Q = σy and initial state |ψ (0)〉 = |+y〉,
the K3 rapidly decreases towards zero, indicating complete
decoherence. The results in Fig. 1(a) show that a
non-Hermitian two-level system violates the Lüders bound
that has been well established for unitary dynamics (isolated
quantum systems) as well as unital CPTP maps (open
quantum systems with specific system-bath couplings or
dissipators). However, this violation occurs at long times
γ t � 1 where the validity of the non-Hermitian Hamiltonian
description of the system becomes increasingly tenuous.

To understand the limits of non-Hermitian Hamiltonian de-
scription for a two-level system with no classical counterpart
(not a two-mode system), we start with a three-level quantum
system coupled to an environment. The three-dimensional
density matrix ρ3(t ) for this system is obtained by unitary
evolution of the system plus environment density matrix, fol-
lowed by tracing out the environment degrees of freedom [25].
In the presence of a memoryless environment, this generates
decoherence for the (reduced) density matrix ρ3(t ) whose
dynamics are described by the Lindblad equation,

∂tρ3(t ) = −i[H3, ρ] − 1

2

32−1∑
α=1

γαDα (ρ3) ≡ L(ρ3), (5)

Dα (ρ3) = {L†
αLα, ρ} − 2LαρL†

α. (6)

Here, H3 = H†
3 is the Hermitian Hamiltonian that acts only

on the three-level system, and Lα are the Lindblad dissipa-
tors with strengths γα > 0 that result from the partial-trace
operation. Dα are traceless, nonlinear operators, Eq. (6), that
represent coherent, non-trace-preserving dynamics generated
by the anticommutator term {·, ·} and trace-correcting quan-
tum jump terms that generate decoherence.

Since Eq. (5) is linear in the density matrix, it is solved
most easily by vectorizing the density matrix ρ → |ρv〉. We
convert the density matrix ρ3 by stacking its columns into
a 32-dimensional vector |ρv〉 [32]. As a result, the operator
bilinears Aρ3B are mapped to BT ⊗ A|ρv〉 and the Frobe-
nius inner product on the matrix space devolves to a Dirac
inner product for their vectorized counterpart, Tr(ρ†

1ρ2) =
〈ρv

1 |ρv
2 〉 [32]. Thus, Eq. (5) becomes ∂t |ρv (t )〉 = L|ρv (t )〉,

where the matrix L is given by

L = −i
[
1 ⊗ H3 − HT

3 ⊗ 1
]

−
∑

α

γα

2
[1 ⊗ L†

αLα + (L†
αLα )T ⊗ 1 − 2L∗

α ⊗ Lα]. (7)

Therefore, the time-dependent density matrix is obtained
as |ρv (t )〉 = exp(Lt )|ρv (0)〉 ≡ G(t )|ρv〉. The relevant joint
probabilities Pi j (a, b) are obtained by projecting onto or-
thonormal density matrices ρa ≡ |a〉〈a| and ρb = |b〉〈b|, re-
spectively. To connect this general theory to a non-Hermitian
two-level system, we consider a superconducting junction that
is dispersively coupled to a cavity, with the three energy levels
labeled as |g〉 (ground state), |e〉 (first excited state), and | f 〉
(second excited state). When the levels |e〉 − | f 〉 are driven
on resonance by a microwave drive with strength J , in the
rotating wave approximation, the Hamiltonian H3 is given by

H3 = −J

2
(|e〉〈 f | + | f 〉〈e|) + Eg|g〉〈g|, (8)

where the average of the two excited state energies is the
zero of the energy, and Eg < 0 denotes the ground state en-
ergy. In principle, the Lindblad description of this system
has 32 − 1 = 8 possible dissipators Lα . We focus on the case
where spontaneous emission (quantum jump) from the |e〉 to
the |g〉 is the most dominant one. The dissipator corresponding
to this process is given by Lge ≡ |g〉〈e| and we will denote
its strength as γ . We note that the CPTP map produced by this
dissipator is not unital [26]. We use Q = i(|e〉〈 f | − | f 〉〈e|) as
the measurement operator and |ψ (0)〉 = (|e〉 + i| f 〉)/

√
2 as

the initial state, thereby mimicking a two-level system in the
|e〉 − | f 〉 manifold.

Figure 1(b) shows the numerically calculated LGI parame-
ter K3 for this system as a function of inverse non-Hermiticity
J/γ and a shorter range of dimensionless time γ t . As is
expected for an open system that will end up in the ground
state due to spontaneous emission at times γ t ∼ 1, the K3(t )
rapidly approaches zero.

How does one then obtain coherent, non-Hermitian dynam-
ics in such a qutrit undergoing Lindbald evolution? It is by
ignoring the quantum jumps. In experiments, this means we
only keep quantum trajectories where the single-shot mea-
surement of the qutrit’s energy registers it in the manifold
of the two excited states [27,33]. Since the qutrit eventually
decays to the ground state by spontaneous emission, the
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fraction of eligible trajectories reduces exponentially with
time [34]. Theoretically, the no-quantum-jump condition is
given by Lgeρ3(t )L†

ge = 0. Under this constraint, the equa-
tion of motion for the density matrix becomes ∂tρ3 =
−i(H ′

3ρ3 − ρ3H ′†
3 ) with an effective, non-Hermitian Hamil-

tonian H ′
3 = H3 − iγ |e〉〈e|. When the density matrix ρ3 and

all relevant operators including Heff are projected onto the
subspace spanned by the | f 〉 − |e〉 manifold, the dynamics
of the resultant 2×2 density matrix ρ(t ) are described by the
lossy version of the PT -symmetric Hamiltonian Eq. (1),

Heff = H (γ ) − i
γ

2
I. (9)

The results for the LGI parameter K3 are obtained by cal-
culating |ρv (t )〉 and using it to obtain the joint probabilities
as

Pi j (a, b) =
〈
ρv

b

∣∣Gi j

∣∣ρv
a

〉
1 − 〈

ρv
g

∣∣Gi j

∣∣ρv
a

〉
〈
ρv

a

∣∣G0i

∣∣ρv (0)
〉

1 − 〈
ρv

g

∣∣G0i

∣∣ρv (0)
〉 . (10)

As expected, the results obtained are identical to those
in Fig. 1(a). The contrast between the full-Lindblad re-
sults, Fig. 1(b), and those obtained from no-quantum-jump
postselection shows that the coherent, nonunitary dynamics
generated by a non-Hermitian Hamiltonian provides an alter-
nate avenue to maximize temporal quantum correlations. We
remind the reader that K3 values in Fig. 1 are for a fixed mea-
surement operator and initial state, and thus are not optimized.

To optimize the LG parameter K3 across the excep-
tional point, we numerically obtain its dependence on an
arbitrary initial state |ψ (θ, φ)〉 = (cos θ

2 , eiφ sin θ
2 )T and a

dichotomous measurement operator Q = m̂ · �σ with m̂ =
(sin θm cos φm, sin θm sin φm, cos θm). We also assume that
t0 = 0 and t1 − t0 = t2 − t1 = t , where the measurements
are made at three time instants t0 = 0, t1 = t , and t2 = 2t .
We then numerically optimize the expression of K3(t ) over
the complete parameter space comprised of four parameters
{θ, φ, θm, φm}, for a fixed value of γ /J . Figure 2 shows the
results of this calculation.

For γ /J > 0, we find that max K3 is always greater than the
Lüders bound of 3/2 for a two-level system. Moreover, as we
move across the exceptional point γ /J = 1, it is possible to
reach the algebraic maximum, i.e., max K3 = 3. We now focus
on the initial state and measurement operator dictating the
optimization of the temporal correlations leading to this max-
imization of the LG parameter K3. For all γ /J , the optimized
K3 values occur when the initial state and the measurement
operator are in the ŷ − ẑ plane, i.e., φ = π/2 = φm. This fact
implies that all the trajectories followed by the state upon evo-
lution that maximizes K3 lie on the geodesic in the ŷ − ẑ plane
on the Bloch sphere. Figure 2 shows that the max K3 → 3 is
achieved in narrow slivers of time (deep yellow regions) that
bound broad, classical regions with −3 � K3 � 1 (deep blue
regions). As one approaches the EP, the time at which max K3

exceeds the traditional quantum bound of 3/2 also diverges.
This divergent time constrains the feasibility of observing
these excess correlations in the experiments.

In the PT -symmetric regime, γ /J < 1, the trajectories on
the Bloch sphere are periodic. In this case, we numerically
find that the optimal measurement operator Q = σy is fixed
irrespective of non-Hermiticity strength γ /J . Thus, θm = π/2

FIG. 2. Optimized K3 for a non-Hermitian qubit as a function of
inverse non-Hermiticity J/γ and unitless time γ t . We use the gain-
loss strength γ as the frequency scale because in the superconducting
circuit setup, dynamically tuning it is not easy. In the PT -symmetric
region J/γ > 1, the results are identical to Fig. 1(a), meaning the
Lúders bound violation occurs for a fixed dichotomous observable
Q = σy and initial state |ψ (0)〉 = |+y〉. Below the EP at J = γ , K3(t )
is no longer periodic in time and is maximized when we choose Q ≈
|ε−〉 〈ε−| − |ε+〉 〈ε+| along the and |ψ0〉 ≈ |ε−〉 in the PT -broken
region. Note that the small variance is necessary to perturb |ψ (0)〉
off the fixed point |ε−〉 where K3(t ) = 1 is time independent. Larger
perturbations lead to max K3(t ) occurring at longer times, albeit with
a small decrease in the max K3 values.

gives the optimal dichotomous observable for all γ /J � 1.
Fixing the measurement operator establishes a one-to-one
correspondence between the choice of the initial state |ψ〉
dictated by θ and the maximum value of K3. Moreover, as we
approach the EP at γ = J , the optimal initial state converges
to the sole eigenvector of the Hamiltonian H (γ ) at the EP.

In the PT -broken region, using this choice of the Q and
|ψ〉 gives classical K3(t ) values, as seen in Fig. 1(a). In this
region, the two right eigenstates |ε±〉 of H (γ )—fixed points
of the dynamics—act as the source and the sink, respectively.
We find that in this regime it is always possible to access
the algebraic maximum of K3. A remarkable feature of the
optimized K3(t ) in the PT -broken region is the broad window
of time, near γ t ∼ π , where max K3(t ) > 3/2 is observed.
Traditionally, the PT -symmetry broken region is associated
with classical behavior due to the presence of amplifying
modes. However, our results in Fig. 2 show that strong tempo-
ral quantum correlations exist deep in the PT -broken region
where they might be more easily accessible.

In the next section, we present an analytical approach for
optimizing K3 by looking at the Bloch-ball trajectories of
quantum states undergoing non-Hermitian dynamics.

III. SPEED OF EVOLUTION ON THE BLOCH SPHERE
AND max K3 DETERMINATION

Note that the two eigenstates of the Hamiltonian H (γ ),
Eq. (1), are fixed points of this dynamics, irrespective of
whether the system is in the PT -symmetric phase or PT -
broken phase. The nonlinear Bloch equation governing the
dynamics of the Bloch vector �S = Tr[�σρ(t )] corresponding
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to Eq. (3) is given by

d �S(t )

dt
= �A × �S(t ) − �B + Tr[ �B · �S(t )]�S(t ). (11)

Here, we have used the generic form of H (γ ) with arbitrary,
real, orthogonal vectors �A, �B. It represents a TLS with differ-
ent Rabi drives and dissipation channels. To obtain analytical
solutions of Eq. (11), we use the coordinate system defined by
the unit vectors Â, B̂ and n̂ = Â × B̂ and obtain

dSA(t )

dt
= |B|SASB (12)

dSB(t )

dt
= −|A|Sn − |B| + |B|S2

B (13)

dSn(t )

dt
= |A|SB + |B|SBSn, (14)

where SA(t ) = �S(t ) · Â, SB(t ) = �S(t ) · B̂, Sn(t ) = �S(t ) · n̂. It
follows that SA = 0 is constant of motion, and numerical
scans shows that max K3 occurs in the B̂ − n̂ plane. Therefore,
we now work in the SA = 0 subspace. In this subspace, the
solutions of Eqs. (13) and (14) are

SB(t ) = − � sin(�t + C)

A − B cos(�t + C)
(15)

Sn(t ) = −B − A cos(�t + C)

A − B cos(�t + C)
, (16)

where � = ±ε± = √
A2 − B2 is the eigenvalue scale and the

constant C is determined by initial conditions SB(0), Sn(0).
We note that when � is real (PT -symmetric phase), the
dynamics are periodic, whereas when � becomes purely
imaginary, the periodicity of SB(t ) and Sn(t ) is lost and they
reach steady-state values at long times.

We can now obtain the SOE of the Bloch vector �S.
Using the definition by Anandan and Aharonov [35], we
write the change in the state |ψ (t )〉 in a small time dt as
|〈ψ (t )|ψ (t + δt )〉|2 ≡ 1 − v2(t )δt2 + O(δt3), where v(t ) ≡√

v2
1 (t ) + v2

2 (t ) + v2
3 (t ) is the speed of evolution. Note that

this speed has units of frequency (or inverse time) because
the “distance” it covers on the Bloch sphere is dimensionless.
For the non-Hermitian Hamiltonian H (γ ), Eq. (1), we obtain
v2

1 = (� �A · �σ )2, v2
2 = (� �B · �σ )2 and v2

3 = −i〈[ �A · �σ , �B · �σ ]〉
[28,31]. We note that although v1, v2 are symmetric individual
reflections for �A or �B, v3 is not. Specializing to our case of a
superconducting three-level system, we obtain

v1(t ) = J

2

√
1 − S2

x (t ) (17)

v2(t ) = γ

2

√
1 − S2

z (t ) (18)

v3(t ) =
√

Jγ

2

√
Sn(t ), (19)

where n̂ = x̂ × ẑ = −ŷ. Using Eqs. (17)–(19) above, we ob-
tain the maximum and minimum values for the SOE, namely,
vmax = J + γ and vmin = max(J − γ , 0). Figure 3 shows the
unitless speed of the evolution v(t )/J as a function of the unit-
less time Jt , with the value of γ /J shown on its corresponding
peak, in the PT -broken region. We see that as the system
goes deeper into the PT -broken region, the speed increases

FIG. 3. Speed of evolution v(t ) in the PT -broken region shows
that its maximum becomes higher and shifts to shorter times as
γ /J > 1 is increased. The value of γ for each curve is shown at
its peak. The inset shows vmax(γ ) = J + γ increases linearly with γ ,
whereas vmin(γ ) linearly reaches zero at the exceptional point γ = J .

and its maximum occurs at shorter times. The inset in Fig. 3
shows vmax(γ ) and vmin(γ ) are consistent with the analytical
results.

To understand the role played by the SOE in max-
imizing the LG parameter K3(t ), we start with the ex-
treme case, the algebraic bound K3 = 3. Saturating the
algebraic bound imposes stringent conditions on the joint
probabilities and can only occur when C01 = 1 = C12

and C02 = −1. This, in turn, translates to joint probabil-
ities P01(+1,−1) = 0 = P01(−1,+1), P12(+1,−1) = 0 =
P12(−1,+1), and P02(+1,+1) = 0 = P02(−1,−1). A typical
gedanken experiment leading to the LG parameter K3 → 3 is
shown in Fig. 4. Starting from |+〉, the state |ψ (t )〉 evolves
very little in time t before being projectively measured,
leading to C01 ≈ 1. After projective measurement at time t ,

(a)

(b)

(c)

FIG. 4. Schematic of the dynamical process corresponding to the
case K3 → 3. In each correlation C01, C12, or C02, only one of the
four joint probabilities survives and the rest are approximated to zero.
Black thick arrows represent orthogonal eigenstates of the dichoto-
mous measurement operator Q. In the PT -symmetric phase, Q = σy

is sufficient to maximize K3 for all γ , whereas in the PT -broken
region, the optimal Q is dependent on γ /J .
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(a) (b) (c)

FIG. 5. Time-evolved state |ψ (t )〉 plotted in the ŷ − ẑ plane at times Jtk = k(Jt )/70 for a total time interval of Jt = 10.5 (blue arrows).
Polar plot (orange) shows the corresponding SOE v(tk )/vmax. (a) In the PT -symmetric phase (γ /J = 0.95), the two fixed points of the
dynamics are not along the ŷ − ẑ great circle. Nonetheless, the speed of evolution is maximum when |ψ (t )〉 = |−y〉. (b and c) In the PT -broken
region, γ /J = 3, the fixed points of the dynamics in the ŷ − ẑ plane are shown by “source” (|ε−〉) and “sink” (|ε+〉). The initial state is on the
longer arc joining them (θ = 0.728 and φ = 3π/2) in (b) and it is along the shorter arc (θ = 0.732 and φ = 3π/2) in (c). Polar plots: Also
plotted are the respective SOEs v(t )/vmax.

it evolves further to time 2t , where another projective mea-
surement leads to C12 ≈ 1. On the other hand, when the initial
state is allowed to evolve uninterrupted to time 2t , anticorre-
lated dynamics are observed when projectively measured at
time 2t , i.e., C02 ≈ −1. This sort of nonuniform in time dy-
namics, made possible by rapidly varying SOE, underpins the
extreme temporal correlations in the PT -symmetric region,
shown in Fig. 1(a) [28].

The more-than-Lüder correlations in the PT -symmetry
broken regions arise as follows. The |ε+〉 eigenstate in the
PT -broken region denotes an “amplifying mode,” and there-
fore a stable fixed point (sink) towards which all states on the
Bloch sphere flow to. In contrast, the |ε−〉 state, denoting the
“decaying mode,” represents an unstable fixed point (source).
Starting with |ψ (0)〉 ≈ |ε−〉, the system slowly departs the
neighborhood of the source and its speed on the Bloch sphere
increases as the system gets farther away from the source fixed
point to the sink fixed point.

In order to illustrate the above points we consider explicit
examples where K3 → 3 in the PT-symmetric regime and PT
broken regime. As mentioned earlie,r the trajectories followed
by the initial state lie on the ŷ − ẑ plane geodesic of the
Bloch sphere. In Fig. 5, we show the time-evolved state |ψ (t )〉
(blue arrows) at times Jtk = k(10.5/70) for k = 0, . . . , 70,
with initial state (k = 0) in black and final state (k = 70)
in red. Overlaid on it is the polar plot of the correspond-
ing SOE v(t ) normalized to its maximum value vmax(γ ).
Figure 5(a) shows representative results in the PT -symmetric
phase (γ /J = 0.95). In the PT -broken region, there are two
unequal arcs that connect the source (“lossy”) state |ε−〉 to
the sink (“gain”) state |ε+〉. Figure 5(b) shows representative
results when the initial state is along the longer arc, whereas
results for an initial state along the shorter arc are in Fig. 5(c).
These results are for γ /J = 3, i.e., deep in the PT -broken
region. It is important to note that the LG parameter K3 is
very sensitive to location of the initial state |ψ〉 ≈ |ε+〉; in

particular, choosing any initial state on the shorter arc cannot
lead to max K3 → 3.

IV. EFFECTS OF OTHER LINDBLAD DISSIPATORS

Until now, we have focused on the coherent dynamics of an
effective two-level system that arises from a non-Hermitian
Hamiltonian and a norm-preserving nonlinearity, Eq. (3).
In reality, however, a dispersively coupled superconducting
circuit with three levels, postselected to the top two levels
{| f 〉 , |e〉}, is affected by spontaneous emission decay from | f 〉
to |e〉, as well as phase noise affecting the two levels. In the
Lindblad formalism, these correspond to dissipators

Le f = |e〉 〈 f | =
⎛
⎝0 0 0

1 0 0
0 0 0

⎞
⎠, (20)

Lφ = | f 〉 〈 f | − |e〉 〈e| =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, (21)

with strengths γe f and γφ , respectively. We obtain the 2×2
density matrix ρ(t ) by solving for the full 3×3 density matrix
ρ3(t ) and postselecting on trajectories with no quantum jumps
from |e〉 to the ground state |g〉.

Figure 6(a) reproduces the optimized max K3(J/γ , γ t ) in
Fig. 2 when γe f = 0 = γφ . When γe f /γ = 10−2 is nonzero,
the EP at γ = J is washed out [27], and correspondingly
the max K3 that occurs along that line is suppressed from its
algebraic maximum [Fig. 6(b)]. It is remarkable, however,
that the K3 excess deep in the PT -broken region remains
robust. Qualitatively similar behavior is observed in the pres-
ence of phase noise with γφ/γ = 10−2 [Fig. 6(c)]. These
results suggest that the best chance of observing beyond-
Lüder temporal correlations, quantified by K3 > 3/2, is not
in the PT -symmetric region or at the EP, but instead in the
PT -broken region.
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(a) (b) (c)

FIG. 6. Effects of spontaneous emission dissipator Le f and the phase noise dissipator Lφ within the {|e〉 − | f 〉} submanifold on the
optimized LG parameter K3(J/γ , γ t ). (a) Optimized max K3 from Fig. 2 in the “clean limit.” (b) When γe f /γ = 10−2, the temporal correlations
near the EP γ = J are suppressed while those in the deep PT -broken region survive. (c) When γφ/γ = 10−2, again, the temporal correlations
near the EP are suppressed. In both cases, the larger-than-Lüder K3 values remain robust deep in the PT -broken region with J/γ ∼ 0.4 and
γ t ∼ π , thereby supporting the feasibility of observing them in experiments.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the temporal cor-
relations quantified in terms of LG parameter K3 for a
single two-level system governed by a non-Hermitian, PT -
symmetric Hamiltonian across its exceptional point. We found
that max K3(J/γ , γ t ) exceeds the Lüder bound of 3/2 and
approaches its algebraic bound of 3 over wide domain in
the PT -broken region given by J/γ < 1. In contrast, earlier
studies have predicted beyond-Lüder max K3 only in the PT -
symmetric region, approaching the algebraic limit at divergent
times γ t � 1 at the EP J = γ .

We have shown that the extreme violation of LGI is caused
by a nonuniform speed of evolution SOE that results from
the nonlinear equation of motion, Eq. (2). More precisely, a
dynamics where a state evolves with minimum SOE during
the initial time t and then maximum SOE during time between
t and 2t gives rise to extreme temporal correlations. Our
findings thus also imply that vmin = max(0, J − γ ) can act as
an “order parameter” that indicates PT -symmetric phase.

We note that our key result—LG parameter K3 exceed-
ing the Lüder bound of 3/2 due to the nonuniform SOE on
the Bloch sphere—is independent of whether violation of
LGI, defined by K3 > 1, is a signature of quantum behav-
ior. For completeness, we recall the loopholes accompanying
the interpretation K3 > 1 as a marker of quantum dynamics.
Recently, alternative approaches have been proposed to deal
with the noninvasive measurability loophole [36,37] and the
clumsiness loophole [38]. Our discussion here is restricted
to only the statistical version of noninvasive measurability
(NSIT) and arrow of time (AoT) conditions.

Recall that simultaneous nonviolation of NSIT and AoT
conditions guarantees the existence of a global probability

distribution [11] that implies macroscopic realism. In uni-
tary dynamics, (one or more of) NSIT conditions are
violated, while all the AoT conditions are satisfied. Con-
sider the dynamical process, governed by the coherent,
non-Hermitian evolution, in Fig. 4. In this case, through
explicit calculations we find that (a) all two-time AoT con-
ditions are satisfied, (b) three-time AoT conditions of types
AoT01(2) : P01(a, b) = ∑

c=±1 P012(a, b, c) and AoT0(12) :
P0(a) = ∑

b,c=±1 P012(a, b, c) are also satisfied, and (c)
all the NSIT conditions of type NSIT(0)12 : P12(b, c) =∑

a=±1 P012(a, b, c) are also satisfied owing to the preparation
of the initial state as an eigenstate of the measurement opera-
tor. However, the NSIT conditions of type

NSIT0(1)2 : P02(a, c) =
∑

b=±1

P012(a, b, c) (22)

are not satisfied in general. Following the necessary and suffi-
cient conditions for macroscopic realism (MR) [11],

MR ⇔ NSIT(0)1 ∧ NSIT0(1)2 ∧ NSIT(0)12 ∧ AoT01(2), (23)

we find that postselected non-Hermitian dynamics presented
here is inconsistent with MR, just as unitary quantum dynam-
ics is inconsistent with MR.
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