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Device-independent witness for the nonobjectivity of quantum dynamics
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Quantum Darwinism offers an explanation for the emergence of classical objective features (those we are used
to at macroscopic scales) from quantum properties at the microscopic level. The interaction of a quantum system
with its surroundings redundantly proliferates information to many parts of the environment, turning it accessible
and objective to different observers. However, given that one cannot probe the quantum system directly, only
its environment, how to determine whether an unknown quantum property can be deemed objective? Here
we propose a probabilistic framework to analyze this question and show that objectivity implies a Bell-like
inequality. Among several other results, we show quantum violations of this inequality, a device-independent
proof of the nonobjectivity of quantum correlations. We also implement a photonic experiment where the
temporal degree of freedom of photons is the quantum system of interest, while their polarization acts as the
environment. Employing a fully black-box approach, we achieve the violation of a Bell-like inequality, thus
certifying the nonobjectivity of the underlying quantum dynamics in a fully device-independent framework.

DOI: 10.1103/PhysRevA.108.032201

I. INTRODUCTION

Understanding how the quantum information encoded into
a microscopic system leads to classical features, those ob-
served at the macroscopic scales, remains a central question
in quantum foundations. In the early days of quantum theory,
the comprehension of the quantum-classical boundary relied
on arguably vague notions such as wave-particle duality [1],
complementarity [2,3], and even that of a human observer
[4]. Nowadays, the tools and concepts of quantum informa-
tion offer a more-well-grounded framework to address those
questions.

The study of decoherence [5,6], for instance, shows that
quantum properties, such as coherence and entanglement,
are degraded due to the interaction of a quantum system
with its surrounding environment, a process that becomes
more noticeable the larger the quantum system is [7],
beautifully explaining some crucial aspects of the quantum to
classical transition [8–10]. Simply put, decoherence selects
the so-called pointer states [11], which are natural candidates
for the macroscopically observed classical states obtained
after a measurement, while coherent superpositions of those
states are suppressed. Decoherence by itself, however, does
not solve the problem of how information contained in the
pointer states becomes available to different measurement
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apparatuses, nor how this is turned into objective information,
that is, independent of observers.

That spreading of objective information is the central topic
that gave rise to the idea of quantum Darwinism [11–26].
In quantum Darwinism, the environment, the same entity re-
sponsible for decoherence, is also seen as a special carrier of
information about the quantum system insofar as it redun-
dantly propagates the information of the naturally selected
pointer states to many external observers. Crucially, the emer-
gence of a classical notion of objectivity is a generic feature of
quantum dynamics [22]. Irrespective of the specific modeling
for the interaction with the environment, whenever the infor-
mation about the pointer states is accessible to sufficiently
many observers, the evolution will gradually resemble one
where a specific observable is measured by all of them.

However, what if other measurements, not necessarily
those related to a pointer observable, are performed? In partic-
ular, if the system-environment dynamics is not known, how
can one test for objectivity or rather the absence of it? Those
are precisely the questions we address in this work.

Building on the results of [22], we propose a probabilistic
framework to address the question of an emergent notion
of objectivity. In this probabilistic setting, we associate an
observer with each part of the environment (see Fig. 1) and we
show that the ability of each observer to encode and retrieve
classical information about a quantum system translates into
the emergence of an objective value for a measurement out-
come. Objectivity here ought to be understood in the sense
that it reflects a sort of common knowledge among the ob-
servers: A property of a quantum system is objective when
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FIG. 1. General quantum Darwinism scenario. One central sys-
tem A interacts with the environment described by n systems
B1, . . . , Bn. As a result of this interaction, part of the information
contained in A is transferred to the environment and replicated in
each system Bi.

it is simultaneously agreed upon by all agents. From that,
considering a particular case of two observers, we show that
the Clauser-Horne-Shimony-Holt (CHSH) inequality [27], a
paradigmatic Bell inequality in the study of quantum nonlo-
cality [28], also can be turned into a witness of nonobjectivity.

More precisely, in our probabilistic setup, the violation of a
CHSH inequality implies that several observers can mutually
agree upon their outcome for the measurement of a given
observable; still, that outcome can be completely uncorrelated
from the property of the quantum system it should be related
to. We also prove that if objectivity is demanded for all mea-
surements performed by the observers in the CHSH scenario,
then it implies true objectivity, reflecting agreement not only
between observers but also to properties of the quantum sys-
tem under scrutiny. Finally, we provide a proof-of-principle
experimental realization of our framework. Employing bire-
fringent plates placed inside a Sagnac interferometer, the
temporal degree of freedom of photons gets entangled with
their polarization, the first being the quantum system of inter-
est while the latter acts as its environment within the quantum
Darwinism scenario.

II. EMERGENCE OF OBJECTIVITY
IN QUANTUM DARWINISM

In the following, we review the basic notions of quantum
Darwinism. We give special emphasis to the standpoint of
[22], where the authors proved that a well-defined notion of
objectivity is a generic property of any quantum dynamics. We
then prove our first result, a generalization of the findings of
[22] in a general probabilistic setting, that is, not necessarily
relying on (but certainly including) quantum theory.

We are interested in a general scenario where n + 1 quan-
tum systems interact arbitrarily, being described at a certain
instant of time by a density operator ρAB1,...,Bn ; at this level of
generality, it is irrelevant whether we refer to a closed system

or a part of a larger system. The subsystem A describes the
quantum system of interest and Bi stands for the different
fractions of the environment. Each fraction Bi interacts with
A and also possibly among themselves in such a way that the
quantum information originally contained in A can be redun-
dantly spread over the joint system. In a quantum description
of the process, this information spreading is represented by
a completely positive and trace-preserving map � : D(A) →
D(B1 ⊗ · · · ⊗ Bn), where D(A) is the set of density operators
on the Hilbert space associated with system A (similarly to the
Bi’s). The scenario is illustrated in Fig. 1.

Within this context, Ref. [22] makes a distinction between
two notions of objectivity, that of observables and that of
outcomes. The former states that the observers should extract
information about the same observable of the system by prob-
ing parts of the environment, which would be associated with
the pointer basis selected by the system-environment interac-
tions. The latter considers that not only should the observable
be the same, but also the value of the measurement outcome
should be agreed upon by the observers.

Regarding the objectivity of observables, it follows that,
quite generally, the map � can be well approximated by a
measure-and-prepare map such that the reduced map for most
subsets of observers is given by

EB(ρA) =
∑

k

tr(ρAFk )σ k
B, (1)

where B is the subset of observers (or degrees of freedom of
the environment being observed), {Fk}k is a positive-operator-
valued measure (POVM) which should be the same for all
subsets B of the same size, σ k

B is the (joint) quantum state
for the observers in B, prepared according to the outcome k of
Fk , and ρA = TrB1...,Bn (ρA,B1,...,Bn ). More precisely, the results
in [22] (i) provide an upper bound for how close a family of
measure-and-prepare maps sharing the same POVM are to the
true reduced evolution EB of smaller portions B and (ii) show
that for a suitable fraction of the observers and for a large
enough number of total observers, the bound gets closer to
zero, meaning that all observers would agree they are obtain-
ing information about the same property of ρA, determined by
the observable described via the POVM {Fk}k .

Regarding the objectivity of outcomes, Ref. [22] intro-
duced the guessing probability of the outcome k obtained with
Fk for all observers in the subset B, tacitly assuming that
the dynamics for each environment’s fraction of interest has
exactly the form of Eq. (1). Consider a distribution {pi} and a
set of states {σi} for i ∈ {1, . . . , m} and let pguess(pi, σi ) be the
guessing probability defined as

pguess(pi, σi ) = max
{Ei}

∑
i

pitr(Eiσi ), (2)

representing the capability of the ensemble of states {σi}i∈[m]

to properly encode m classical states distributed according to
{pi}i∈[m]. It follows that if there exists a positive 0 < δ < 1
such that for every observer Bk , with k ∈ {1, . . . , n},

min
ρ∈D(A)

[
pguess

(
tr(Fiρ), σ i

Bk

)]
� 1 − δ, (3)
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then there exists some POVM {Ek
i } for each Bi such that

min
ρ∈D(A)

∑
i

tr(Fiρ)tr

[(
n⊗

k=1

Ek
i

)
σ i

B1,...,Bn

]
� 1 − 6nδ1/4, (4)

where {Fi} is an appropriate POVM and σ i
Bk

the density matrix
relative to the party Bk only. Qualitatively, Eq. (3) combined
with Eq. (4) shows that if each Bi is capable of properly
encoding the outcomes of a measurement on the A system,
then one can assign an objective value to it, shared by all the
Bi, in the sense that experimenters probing each single Bi will
all get the same value, with high probability.

Our first goal is to extend this notion of objectivity beyond
quantum-mechanical algebra machinery and instead rely on
a purely probabilistic approach.1 There are two main reasons
for that. The first is that properties often seen as inherently
quantum mechanical are in fact also features of general-
ized probability theories, including, for example, monogamy
of correlations [30] and the impossibility of broadcasting
information [31]. Understanding informational principles in
such generalized settings often leads to deeper insights about
quantum theory itself [32,33]. The other main reason for
our approach is of practical relevance and relates to what
is often called the device-independent approach to quantum
information [34], the paradigmatic examples of which are
violations of a Bell inequality and noncontextuality inequality
violations and their use in cryptographic protocols [35–37].
In the device-independent setting, one can reach nontrivial
conclusions about the quantum states being prepared or the
measurements being performed by simply relying on the
classical information obtained by measurement outcomes,
without resorting to a detailed description of the experimental
apparatus. In the particular case of quantum Darwinism, as
we will see, it will allow us to not only define the concept
of objectivity irrespective of any underlying dynamics or
measurement setups, but also derive testable constraints on
whether or not the statistics observed in the experiment can
be deemed objective.

In our proposed setting, each agent i has access to a por-
tion Bi of the environment surrounding A. Additionally, each
agent i is free to independently choose to measure one out
of many possible observables xi ∈ {x1

i , x2
i , . . . , xmi

i }, obtaining
the corresponding outcome bi ∈ {b1

i , b2
i , . . . , boi

i }. If we focus
only on the aggregated statistics involved in this process, the
scenario is thus described by a joint probability distribution

p(b1, . . . , bn|x1, . . . , xn) =
∑

a

p(a, b1, . . . , bn|x1, . . . , xn),

(5)

where a is the outcome one would observe if a direct mea-
surement of the system A [that measurement corresponding to
the pointer-state observable (assuming it exists) defined by a

1A possible route to generalization of quantum Darwinism to
generalized probabilistic theories (GPTs) was proposed in [29].
Unfortunately, the authors were concerned with defining what an
idealized quantum Darwinism process would look like in GPTs,
more precisely, a general version of a fan-out gate, and did not
consider the noisy version of such a process.

given dynamics] had been performed. Each xi represents the
random variable parametrizing the choice of which observable
the ith agent having access to the portion Bi of the environ-
ment measures in a given run of the experiment.

According to the Born rule, a quantum description of the
same scenario is given by

p(a, b1, . . . , bn|x1, . . . , xn)

= Tr
[(

Fa ⊗ E1,x1
b1

· · · ⊗ En,xn
bn

)
ρA,B1,...,Bn

]
, (6)

where ρA,B1,...,Bn is the density operator representing the
quantum state shared by all the environments Bi plus the
central system A and {Ei,xi

bi
}bi is the POVM representing a

possible choice of measurement that the ith agent can realize
on their fraction of the environment. It is exactly Eq. (6) that
motivates a general probabilistic description where the joint
distribution p(a, b1, . . . , bn|x1, . . . , xn) has to fulfill three
natural assumptions.

The first, called no superdeterminism, states that

p(a|x1, . . . , xn) = p(a) (7)

for every i ∈ [n] and for every xi ∈ {x1
i , x2

i , . . . , xmi
i }. In other

words, the choice of which observable to measure can be
made by each agent independently of how the system A has
been prepared or which are the pointer observables defined
by a given dynamics. This is reminiscent of the measurement
independence (also called free-will assumption) in Bell’s the-
orem [38,39].

The second assumption, named no signaling, states that

p(bi|a, x1, . . . , xn) = p(bi|a, xi ) (8)

for all i ∈ [n] and for all bi ∈ {b1
i , b2

i , . . . , boi
i }. This condition

imposes that even if we would have access to variable a
defining the quantum system being probed, the statistics of
what is observed by observer i should not depend on the
choice of which measurement is performed by any other
observer. In particular, note that this is different from the
condition of locality in Bell’s theorem that would state
(considering the case of two observers for simplicity) that

p(b1|a, b2, x1, x2) = p(b1|a, x1) (9)

and similarly for b2. Specifically, locality in Bell’s theorem
makes the stronger assumption that the correlations
between b1 and b2 are screened when we condition on
the value of a. Together with the no-superdeterminism
condition (7), only after eliminating the variable a from
our description do we obtain the observational no-signaling
typically considered in a Bell-like scenario, defined as
p(b1|x1) = ∑

b2
p(b1, b2|x1, x2) = ∑

b2
p(b1, b2|x1, x′

2) and
similarly for b2.

Our final assumption, which we name δ objectivity, is
structured as follows. Let δ > 0 represent an error parameter.
For each agent i, denote by x∗

i their choice of measurement
corresponding to the case where their outcome should be
correlated with the outcome a. In a quantum description, that
would precisely correspond to the pointer state observable on
system A, that is, corresponding to a POVM {Ek}k reproduc-
ing as reliably as possible the observable {Fk}k emerging in
the effective measure-and-prepare dynamics in Eq. (1). The
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outcome bi is δ objective if for each observer we have that∑
a

p(a)p(bi = a|a, x∗
i ) � 1 − δ. (10)

The fact that this assumption introduces a clearer notion of
objectivity will become justified after our first result below.
For now, note that as there is always a POVM attaining the
optimal value for the guessing probability, we can create a
parallel involving Eq. (6), the equation defining pguess, and the
quantity in Eq. (4) as shown by

pguess(tr(FiρA), σi ) = max
{Ei}

∑
i

tr(FiρA)tr(Eiσi )

↔
∑

a

p(a)p(bi = a|a, x∗), (11)

min
ρA

∑
i

tr(FiρA)tr

(⊗
k

Ek
i σ 1,...,n

i

)

↔
∑

a

p(a)p(b1 = b2 = · · · = bn = a|a, x∗
1, . . . , x∗

n ).

(12)

With that, we can state our first result, proven in Sec. I of
the Supplemental Material [40], justifying our δ-objectivity
assumption.

Result 1. If there exists a positive δ � 1 such that for every
k ∈ {1, . . . , n},∑

a

p(a)p(bk = a|a, x∗
k ) � 1 − δ, (13)

then we have∑
a

p(a)p(b1 = · · · = bn = a|a, x∗
1, . . . , x∗

n ) � 1 − nδ.

(14)

Remark. Result 1 says that a result analogous to Eq. (4)
continues to hold, even in a fully probabilistic setting, and
gives a stricter bound despite not using any assumption on
the dynamic of the systems. Put another way, the inequality∑

a p(a)p(b1 = b2 = · · · = bn = a|x∗
1, . . . , x∗

n ) � 1 − nδ ex-
presses the possibility of assigning an objective nature to the
outcome obtained by each observer. Recall that objectivity
here means that regardless of the outcome obtained by each
agent, that outcome is agreed upon among all the Bi’s, that is,
p(b1 = b2 = · · · = bn|x∗

1, . . . , x∗
n ) = 1. Furthermore, it also

reflects a property related to an observable described by a
POVM {Fk}k acting on the subsystem A. In particular, when
there is perfect local agreement, i.e., when δ = 0, implying∑

a p(bk = a|x∗
k ) = 1 for every agent, Result 1 guarantees that∑

a p(b1 = b2 = · · · = bn = a|x∗
1, . . . , x∗

n ) = 1. One can read
this implication as saying that perfect local agreement implies
perfect global agreement.

III. BELL-LIKE INEQUALITIES
WITNESSING NONOBJECTIVITY

The conditions of no superdeterminism, no signaling, and
δ objectivity [Eqs. (7), (8), and (10), respectively] clearly
define a notion for objectivity of outcomes in the probabilistic
setting. Notwithstanding, note that those conditions involve
the outcome a that by assumption is not directly observable,

as any information about it can only be obtained indirectly,
by correlations of it with the outcomes bi. Thus, similarly to
Bell’s theorem, a plays the role of a latent or hidden variable.
However, the conjunction of assumptions (7), (8), and (10)
does imply testable constraints, exactly Bell-like inequalities,
for the observed correlations among the outcomes bi.

The fact that Bell inequalities emerge as testable con-
straints is a natural consequence of using a probabilistic
framework. More generally, Bell inequalities emerge when-
ever two ingredients are put together: (i) a probabilistic
description of physical processes based on measurement out-
comes and (ii) the fact that some of the events or variables
relevant to the underlying dynamics are not empirically ac-
cessible and thus have to be eliminated from the description
of the problem. The first point is precisely what defines the
device independence of the approach. The second is at the
core of local hidden variable models (and hence in Bell’s
theorem) but is much more general in what is called marginal
problems. In the case of quantum Darwinism, the marginal
problem emerges due to the fact that we cannot access the
quantum system directly but rather indirectly, measuring the
environments that have interacted with it.

Within this context, we consider the particular case of
only two observers (n = 2). Each observer has two possible
measurements available to them and each measurement is di-
chotomic, that is, x1, x2, b1, b2 ∈ {0, 1}. Moreover, we specify
x∗

1 as x1 = 0 and x∗
2 as x2 = 0 (recall that each x∗

i corresponds
to the special case where the outcome should be correlated
with the outcome a). We can then state our second result.

Result 2. Any observed correlation p(b1, b2|x1, x2) compat-
ible with the conditions (7), (8), and (10) fulfills the inequality

CHSHδ,ε = 〈
B0

1B0
2

〉 + 〈
B0

1B1
2

〉 − 〈
B1

1B0
2

〉
+ 〈

B1
1B1

2

〉
� 2 + 4δ − 2ε, (15)

with 〈B0
1B0

2〉 = 1 − 2ε, where 〈Bx1
1 Bx2

2 〉 = ∑
(−1)b1+b2 p(b1,

b2|x1, x2) is the expectation value of the observables corre-
sponding to inputs x1 and x2.

Note that Eq. (15) is a relaxed version of the CHSH
inequality [27] with one additional constraint. In Eq. (15)
we impose that 〈B0

1B0
2〉 = 1 − 2ε to mean that both ob-

servers are in agreement (up to a discordance factor of 2ε)
whenever they decide to measure the special inputs x∗

1 = 0
and x∗

2 = 0, respectively. It might appear curious that the
CHSH inequality also bounds the set of objective correla-
tions, which as discussed previously is defined by a different
set of assumptions compared to Bell’s theorem. We remark,
however, that the same inequality also appears in different
contexts, for instance, the study of the local friendliness [41],
a device-independent approach to the measurement problem
in quantum theory.

Result 1 implies that δ � ε/2, while δ � ε/2 would cor-
respond to the Darwinistic case,2 where the disagreement
δ between the observers and the latent variable A follows
directly from the disagreement ε between the observers them-
selves. Thus, any value CHSHδ,ε > 2 implies that δ > ε/2,

2Note that, in principle, one could always reduce to δ = ε/2 in this
case, by a suitable choice of the variable a.
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witnessing nonobjectivity even in the case of nonperfect
agreement between the observers (ε > 0).

Considering the case where δ = 0 and ε = 0, our next
result shows that quantum theory can violate the CHSH0,0

inequality while respecting 〈B0
1B0

2〉 = 1. In other words, we
may have apparent agreement between the observers, where
their outcomes do not reflect a property of the system A which
they assume to be fully correlated with.

Result 3. Quantum theory allows a violation of CHSH0,0 up
to the value 5

2 while respecting 〈B0
1B0

2〉 = 1. In particular, the
maximal violation allows us to self-test a maximally two-qubit
entangled state, which at the same time certifies one bit of
randomness and also implies a monogamy relation. In other
words, even though the observers agree among themselves,
the outcome of each one of them is completely uncorrelated
from system A.

It is worth noting that, in this case, the inequality (15) can
also be put in the form 〈B0

1B1
2〉 − 〈B1

1B0
2〉 + 〈B1

1B1
2〉 � 1 + 4δ,

which is similar to the original inequality that appeared in
Bell’s paper [42]. Here, contrary to the original derivation, ob-
tained assuming perfect anticorrelation for spin measurements
in the same direction, the bounds are recovered by means of
the objectivity assumption only.

In the following, we will discuss in more depth the conse-
quences of these results, while a detailed proof is presented
in Sec. III of [40]. Note that the violation CHSH0,0 = 5

2 is
achieved considering the state

|ψ〉B1B2 = 1√
2

(|00〉 + |11〉) (16)

and choosing B0
j = σz for j = 1, 2 and

B1
1 = −σz

2
−

√
3

2
σx, (17)

B1
2 = σz

2
−

√
3

2
σx. (18)

As detailed in Sec. III of [40], the proof that CHSH0,0 = 5
2

is the maximum quantum violation relies on the idea that
together with the agreement condition 〈B0

1B0
2〉 = 1, it allows

us to self-test the maximally entangled state. Recall that the
possibility of performing a self-test is a sufficient condition
to ensure that the quantum probability distribution achieving
CHSH0,0 = 5

2 is unique, as discussed in Ref. [43]. Combining
that uniqueness with the convex nature of the set of quantum
correlations, it thus follows that CHSH0,0 = 5

2 is the maximal
possible violation. Otherwise, if there was a distribution lead-
ing to a higher violation, there would be different manners
to mix it with other probability distributions (say, the ones
leading to maximal violation of other symmetries of this in-
equality) in order to obtain two different correlations reaching
CHSH0,0 = 5

2 , a situation that would forbid the possibility of
self-testing.

Furthermore, following the arguments of Ref. [44], we can
state that being an extreme point of the set of quantum behav-
iors ensures that any third party event is uncorrelated with the
outcomes of the observers, i.e., it holds that any realization
a of some third variable A is such that p(a, b1, b2|x1, x2) =
p(b1, b2|x1, x2)p(a). Finally, because the CHSH0,0 inequal-
ity is invariant under the transformation b′

1 = (b1 + 1)mod2

(the same holds for a similar transformation of b2) and the
behavior leading to its maximal violation is unique, we can
certify a bit of randomness [45], either b1 or b2. In particular,
the certification of a random bit and the fact that any third
party is uncorrelated implies that the probability of guessing
the outcome of one of the participants is always 1

2 .
It is worth noting that seen from the perspective of Bell’s

theorem, Result 3 also has interesting consequences for ran-
domness certification. Differently from the usual setup that
requires a violation of CHSH0,0 = 2

√
2 to certify one bit

of randomness, the agreement condition 〈B0
1B0

2〉 = 1 permits
the same to reach with a smaller CHSH inequality violation.
Furthermore, the standard scenario with CHSH0,0 = 2

√
2 re-

quires that a third input is measured by either of the parties
if one wishes to directly establish a common secret bit be-
tween them. This follows from the fact that in this case,
〈B0

1B0
2〉 = 〈B0

1B1
2〉 = −〈B1

1B0
2〉 = 〈B1

1B1
2〉 = 1/

√
2, that is, the

measurement outcomes are not completely correlated. In turn,
in our case, the condition 〈B0

1B0
2〉 = 1 already guarantees the

perfectly correlated secret bit.
Moving beyond the case of the maximal violation

CHSH0,0 = 5
2 , we can also probe, via a semidefinite program

detailed in Sec. IV of [40], the minimum value of δ required
to explain a given value of CHSHδ,ε , with the results shown
in Fig. 2. There we also consider the effect of imperfections
on the agreement between the observers, that is, we allow
〈B0

1B0
2〉 = 1 − 2ε, a condition of relevance for experimental

tests of our witness. Interestingly, we observe that for any
value of ε there is always a quantum violation of the CHSHδ,ε

inequality leading to δ = 1
2 , that is, the outcomes of the ob-

servers are completely uncorrelated from the outcome a of
the central system they are supposedly probing. Within the
range 0 � ε � 1

2 (1 − 1/
√

2), as we increase the ε we also
increase the maximum quantum violation of CHSH0,0. From
this point on, that corresponds to CHSHδ,ε = 2

√
2, and for

〈B0
1B0

2〉 = 1/
√

2 we see the opposite behavior, since the max-
imum possible violation of CHSHδ,ε decreases as we increase
ε in the range 1

2 (1 − 1/
√

2) � ε � 1
2 .

Generalizing our scenario, we can now consider the case
where system A has not only one but actually two properties,
corresponding to the outcomes a0 and a1, that we assume
to be correlated with the outcomes of measurements per-
formed by the two observers. In this case, the conditions
(7), (8), and (10) now assume a joint probability distribution
p(a0, a1, b1, b2|x1, x2) and in particular, assuming δ = 0 for
simplicity, the objectivity condition implies that

p(b1 = ai|x1 = i, x2) = 1,

p(b2 = ai|x1, x2 = i) = 1.
(19)

Put differently, if xi = 0 then the outcome bi should be cor-
related with a0; if xi = 1 then the outcome bi should be
correlated with a1. Similarly to the previous case, it follows
that CHSHδ,0 constrains the correlations compatible with this
scenario. However, as a corollary of our next result, proven
in Sec. V of [40], differently from the previous case, if we
impose a stronger notion of agreement among the observers
for all possible measurements, that is, p(b1 = · · · = bn|x1 =
· · · = xn = x) = 1 for all settings x, then there are no quantum
violations of the objectivity conditions.
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(c)(b)(a)

FIG. 2. (a) and (b) Minimal values possible for δ as a function of the value of CHSHδ,ε corresponding to the observable distribution
p(b1, b2|x1, x2). Results were obtained using the third level of the Navascues-Pironio-Acin hierarchy [46]. Different curves correspond to
different values for outcome agreement between observers, given by the constraint

∑
b1

p(b1 = b2|x1 = x∗, x2 = x∗) = 1 − ε or equivalently

〈B0
1B0

2〉 = 1 − 2ε. A change in the behavior for the maximal violation of the CHSH inequality can be seen between values (a) 〈B0
1B0

2〉 � 1/
√

2
and (b) 〈B0

1B0
2〉 � 1/

√
2, where the former increases with increasing ε while the latter decreases with increasing ε. At the same time, the

restriction δ � ε/2 from Eq. (14) can be observed throughout the graphics, with saturation occurring in all cases for CHSHδ,ε = 2. It also
can be seen that a sharp rise in δ occurs near maximal violation for each ε, which leads to numerical instabilities in these regions. For
this reason, no curve reaches δ = 0.5 and terminal points are different for each curve. (c) Optimal values for the violation of the CHSH
inequality with the constraint 〈B0

1B0
2〉 = 1 − 2ε, with explicit quantum realizations found numerically. The points achieve the self-testing

criterion of [47], satisfying arcsin(〈B0
1B0

2〉) + arcsin(〈B0
1B1

2〉) + arcsin(〈B1
1B0

2〉) − arcsin(〈B1
1B1

2〉) = π , together with the constraints 〈B0
1B1

2〉 =
〈B1

1B0
2〉 = −〈B1

1B1
2〉. The analytical curve is obtained by combining the equations, resulting in CHSHδ,ε = 1 − 2ε + 3 sin[ π

3 − 1
3 arcsin

(1 − 2ε)].

Result 4. For any number n � 2 of observers, if we impose
that p(b1 = · · · = bn|x1 = · · · = xn) = 1 for all possible val-
ues of x, then all quantum correlations are compatible with the
assumptions (7), (8), and (19).

This shows that if the observers agree on the outcomes of
all measurements being performed, then the observed correla-
tions are necessarily compatible with the underlying statistics
where the observed outcomes are correlated with the property
of the system they are probing, represented by the probability
distribution p(a).

It is worth remarking here that such nonobjectivity bounds
can also serve as witnesses of postquantum correlations. Dif-
ferently from Result 4 for quantum correlations, no-signaling
correlations, those respecting Eqs. (7) and (8), a set of corre-
lations that includes the quantum set, do allow for violations
even in the case where the observers agree on the outcomes
of all measurements being performed. To illustrate this, it is
enough to consider the paradigmatic Popescu-Rohrlich (PR)
box [32], given by

p(b1, b2|x1, x2) = 1
2δb1⊕b2,x1 x̄2 . (20)

The PR box is such that the observers agree on the outcomes
of both possible measurement inputs but at the same time can
violate the CHSH inequality up to its algebraic maximum
of CHSH0,0 = 4. In general, via Result 4, the violation of
the CHSH inequality under the constraint of concordance
between the observers implies directly the postquantum nature
of the correlations.

IV. PROOF-OF-PRINCIPLE EXPERIMENTAL SETUP

In the following, we describe a proof-of-principle photonic
experiment realizing a physical interaction dynamics whose
output state can be naturally mapped into the quantum Dar-
winism scenario. In the spirit of Bell’s theorem, the constraints

we want to test do not depend on any specific dynamics and
do not need to assume any precise physical description.

In our scheme, we identify the temporal degree of freedom
of photons as the observed system A, while the polarization
of two photons represents a pair of observer systems B1 and
B2, identified with the environment [see Fig. 3(a)]. The two
photons interact with a birefringent crystal, thus coupling the
polarization and the temporal delay. Both the generation and
the interaction occur within a Sagnac interferometer, after
which the photons are spatially separated and their (possibly)
entangled polarization carries information on the temporal
delay.

Consider the scheme in Fig. 3(b). A nonlinear crystal is
placed within the interferometer and a laser pump beam en-
ters the interferometer along an input of a dual-wavelength
polarizing beam splitter (DPBS) and its interaction with the
crystal generates pairs of photons with orthogonal polariza-
tions. The pump passes through the interferometer in the
clockwise and counterclockwise directions and the relative
amplitude of these contributions depends on the polarization
state of the pump beam at the input of the DPBS. Note
that this represents a common scheme for the generation of
polarization-entangled photon pairs [48]. A birefringent plate
is inserted in a Sagnac interferometer after (seen from the
counterclockwise path) the crystal. In the clockwise direction,
the pump is unaffected by the plate, inducing only an inconse-
quential phase shift on the pump beam, which has a coherence
time much larger than the introduced delay. In particular,
the maximum delay introduced inserting the plates is around
4 ps, which is five order of magnitude smaller than the pump
coherence time of approximately 100 ns. On the other hand,
the counterclockwise generated photon pair has a coherence
time of the same order of magnitude as of the introduced
time shift and thus it is affected by the polarization-dependent
delay, whereas the clockwise term is not.
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FIG. 3. Proof-of-principle experimental setup. (a) Conceptual scheme of the experiment, where the polarization of photons represents
the environments while the temporal delay represents the quantum system of interest. (b) Experimental setup. A Sagnac-based polarization
entangled photon source generates pairs of degenerate photons at 808 nm. Inside the Sagnac interferometer, the interaction of the photons
generated in the counterclockwise direction interacts with the birefringent plates which couple the polarizations with the temporal degree of
freedom. The strength of the interaction is parametrized by 	, indicating the overlap between the temporal wave functions of the horizontal
and vertical polarizations, and is varied by changing the thickness of the birefringent plates. Finally, the photons are collected and detected by
single-photon detectors, where M denotes mirror; PBS, polarizing beam splitter; HWP, half waveplate; QWP, quarter waveplate; DM, dichroic
mirror; DHWP, dual-wavelength half waveplate; and APDs, avalanche photodiode detectors.

In order to map the experimental scheme into a quantum
Darwinism scenario, we can interpret the interferometer with
the birefringent plate as a device mediating the interaction
between the temporal degree of freedom of the photons, i.e.,
our system, and the polarization of the outgoing modes, i.e.,
the environment where information proliferates. More specif-
ically, consider the joint temporal state of the two photons
generated inside the interferometer. This can be described by
a certain amplitude function f (tH , tV ) = g(tH − tV ) = g(	t )
which depends only on the time difference between the pho-
tons in the two modes if the pump is monochromatic. Let us
call |0〉A the state associated with the temporal mode g0(	t )
of the photons in the standard case with no birefringent plate.
When the birefringent plate is present it inserts a delay τ

between the horizontal and vertical polarization modes, so
that we will simply have gτ (	t ) = g0(	t + τ ), that we can
associate with the state |gτ 〉A. This state will in general have
some overlap with |0〉A, which we can quantify as

	 = A〈0|gτ 〉A ∝
∫

d	t g∗
0(	t )g0(	t + τ ). (21)

We will call |1〉A = (I − |0〉A〈0|)|gτ 〉A the orthogonal compo-
nent of |gτ 〉A to |0〉A. After the interferometer the two photons
are split in two directions B1 and B2. The state of the photons
can now be described by the polarization in each mode B1

and B2 and the temporal mode A. For the counterclockwise
generation, the effective temporal state will be in a superposi-
tion 	|0〉A + √

1 − 	2|1〉A and, consequently, the state at the

output of the interferometer will be

1√
2

(	|H〉B1 |V 〉B2 − |V 〉B1 |H〉B2 )|0〉A

+
√

1 − 	2

2
|H〉B1 |V 〉B2 |1〉A. (22)

Tracing out the temporal degree of freedom A, the final state
of the two observer systems is given by

ρf = |	|2|�−〉〈�−| + (1 − |	|2)ρmix, (23)

where |�−〉 is the singlet polarization state and ρmix is the
mixed state ρmix = (|HV 〉〈HV | + |V H〉〈V H |)/2.

In this way, an interaction occurs between the polarization
of the two photons and their time degree of freedom by means
of the same birefringent plate. After such an interaction, the
polarization of the photons, i.e., the environment systems B1

and B2, carry information about the time degree of freedom
defined as the observed system A. The strength of this interac-
tion can be tuned by changing the thickness of the birefringent
plates. To illustrate this, we describe two extremal conditions.
When no birefringent plate is present no interaction occurs;
thus the temporal state of the photons is uncorrelated with
respect to the polarization. In this case, 	 = 1 and, from
Eq. (23), the final polarization state of the photons is a maxi-
mally entangled state 1√

2
(|HV 〉 − |V H〉).

Conversely, when the thickness of the birefringent plate
introduces a temporal delay much greater than the coherence

032201-7



DAVIDE PODERINI et al. PHYSICAL REVIEW A 108, 032201 (2023)

time of the photons, 	 → 0 and then the global state,
from Eq. (22), will be (|HV 〉 ⊗ |1〉A − |V H〉 ⊗ |0〉A)/

√
2.

From Eq. (23), tracing out the time degree of free-
dom, the polarization state will be the mixed state
(|HV 〉〈HV | + |V H〉〈V H |)/2.

To resume, considering the state of the photonic polar-
izations in Eq. (23), we have that when there is maximum
coupling (	 = 0) the polarization values of the two photons
effectively correspond to the presence (|H〉 for the first photon
and |V 〉 for the second one) or absence (|V 〉 for the first
photon and |H〉 for the second one) of a temporal delay.
Conversely, when no coupling is present, no information on
the presence of temporal delay is stored in the polarization
of the photons. From our perspective, polarization plays the
role of an environment, mediating the interactions between
the (indirectly) observed system, here the temporal delay, and
the measurement apparatus.

V. EXPERIMENTAL RESULTS

We performed the measurements using four different de-
lays. For each delay, there is a corresponding strength of
the interaction, parametrized by the overlap 	i, with i =
1, 2, 3, 4, from Eq. (22). The trivial case with 	 = 1 is
obtained using the standard quantum source without the ne-
cessity of inserting delay plates. On the other side, by inserting
birefringent plates with two different lengths, we inserted
polarization dependent delays of t ≈ 0.9 and 2.17 ps, reaching
overlaps of 	 = 0.91 and 0.59, respectively. The extreme case
with 	 → 0 is reached using a potassium titanyl phosphate
crystal of 6 mm length, which implies a time delay of approx-
imately 4 ps.

Once the overlap 	i is fixed, the measurements are per-
formed by varying the agreement 〈B0

1B0
2〉 = 1 − 2ε between

the measurements of the two observers. For each agree-
ment, the violation of the CHSH inequality is optimized,
using information from quantum state tomography [49]. More
specifically, from the tomography, we extract the values of
the rotation angles of the measurement waveplates, able to
reach, within experimental errors, the desired agreement and
the corresponding maximum CHSH parameter achievable by
the generated state.

The results are shown in Fig. 4. For the case with maxi-
mum interaction 	 = 0, the polarization of the two photons
becomes maximally entangled with the time degree of free-
dom and consequently, from the monogamy of entanglement
[50], no entanglement is possible between the polarizations.
Thus, no violation of the CHSH inequality is observed (see
green points in Fig. 4). In this case, one can argue the
emergence of objectivity since not only do the observers
measuring the polarization of the two photons agree among
themselves, but their measurement outcomes can indeed cor-
respond to an objective property, in our proof-of-principle
experiment represented by the time degree of freedom of the
photons.

Conversely, when the interaction is absent (	 = 1), the
experimental entangled state is able to violate the CHSH
inequality up to a value Sexpt = 2.475 ± 0.008 with an
observed agreement 〈B0

1B0
2〉 = 1 − 2ε = 0.956 ± 0.002, that

is, ε = 0.022 ± 0.001. Using the CHSHδ,ε inequality (15),

FIG. 4. Experimental data. Optimal values of the experimental
CHSH parameter as a function of the constraint 〈B0

1|B0
2〉 = 1 − 2ε for

different values of temporal overlap 	 between the wave functions
of the two polarizations. The dashed lines represent the optimal
values calculated from the theoretical model of the experimental
state. Moreover, for 	 = 1 and 0.91, there are also reported re-
sults obtained using the ab initio approach, which are indicated by
squares. When no temporal overlap is present (	 = 0), we observe
S ≈ 1.94 < 2, due to an additional uncorrelated noise contribution,
i.e., ρdep ∝ 1/4, on the generated state. The error bars are calculated
assuming Poissonian statistics.

valid for general no-signaling correlations, we see that this
corresponds to δ � 0.124 ± 0.002. The effect becomes more
pronounced when assuming the validity of quantum theory for
all systems involved. A numerical computation approximating
the quantum set by a superset of allowed distributions [46]
returns δ = 0.49 ± 0.01, revealing that the observed variables
should be almost completely uncorrelated with any candidate
for the system A property. We thus obtain solid experimental
evidence of the (noisy) apparent agreement, where even if the
two observers have agreement on the supposedly measured
value, the latter cannot correspond to an objective property of
the quantum system of interest.

In order to shift our experimental evidence for nonobjec-
tivity closer to the spirit of the device-independent paradigm,
we also perform measurements using the ab initio approach
introduced in [51], where experimental violations of classical
constraints were found and optimized in a fully black-box
scenario, without any knowledge of the generated state and the
measurement apparatuses. More specifically, while usually in
an experiment one tries to violate some inequality using pre-
cise knowledge of the employed experimental apparatus, in an
ab initio approach one does not assume any prior information
and, based only on the (noisy) output statistics, adaptively
learns the optimal values of some controllable parameters, in
order to optimize a given cost function, such as the violation
of a Bell-like inequality.

In our experiment there are eight parameters to be opti-
mized by the algorithm, corresponding to the values of the
angles of pairs of waveplates (one pair for each measurement
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station) for each of the four measurements needed to evalu-
ate the CHSH parameter. In particular, the optimization first
reaches the target value of the agreement 〈B0

1B0
2〉 = 1 − 2ε

tuning the four involved waveplate parameters and then it
reaches a global optimum for the CHSH value tuning the
other four parameters associated with the remaining CHSH
measurements {B1

1, B1
2}. Details on the ab initio optimization

protocol can be found in Sec. VII of [40]. The results on the
values of the CHSH experimentally achieved with the ab initio
approach are shown in Fig. 4.

The experimental points collected with the ab initio ap-
proach can reach values higher than the ones achieved
using quantum state tomography information. This is pos-
sible because within an ab initio framework errors in the
characterization of the optical setup, such as the optical
axes of waveplates, can be compensated automatically by
the optimization process. For all the curves with 	 �= 0, for
each value of the observed agreement, the CHSH is vio-
lated, consequently witnessing a degree of nonobjectivity in
a device-independent way.

We remark that our work is not the first to explore quantum
Darwinism experimentally; see, for instance, [52–54]. Those
experiments, however, relied on the computation of the mutual
information between the quantum system and its environment.
Our framework allows us to reason about the emergence of
Darwinism simply by observing the correlations induced by
the quantum system into the environment. As detailed above
and also in [40], in our experiment the quantum system of
interest is encoded in the temporal degree of freedom of
single photons, while the interacting environment is repre-
sented by the polarization degree of freedom of the single
photons.

In such a picture, we can interpret the Sagnac interferome-
ter, as a whole, as a black box through which we can control
the correlation between the system and the environment. In
this black-box picture, it is possible to modify the system
state, i.e., the temporal degree of freedom of single photons,
only by inserting a birefringent plate. The whole interaction
between time and polarization is carried out inside the in-
terferometer. At its output, we wish to infer if the photons
have been delayed or not by measuring the polarization of the
photon pair, i.e., the environment which previously interacted
with the system and towards which such information prolif-
erates. As we show, we can estimate the degree of objectivity
of the dynamics without knowing anything about the inner
working of the black box, that is, only from the observed
correlations between the environments. This stresses the de-
vice independence of our experiment, in the sense that the
lack of objectivity does not rely on an exact description of
the dynamics being probed, an aspect that is emphasized by
the black-box optimization algorithm [51] employed in the
real-time execution of the experiment.

VI. DISCUSSION

Comprehending how microscopic quantum features give
rise to the observed macroscopic properties is a central
goal of decoherence theory and in particular of quantum
Darwinism. Importantly, the emergence of objectivity, that is,
the fact that different observers agree on the properties of a

quantum system under observation, can be seen as a generic
aspect as long as the information of the quantum system is
successfully outspread to the environment it is interacting
with. It is unclear, however, how to witness the presence or
rather the absence of such objectivity in practice. Can we
witness nonobjectivity by simply probing the environment,
without any knowledge of the underlying dynamics?

To answer in the affirmative to this question, we establish
a probabilistic framework to cast objectivity through opera-
tional lens, building on the results of [22]. Within this setting,
we propose three properties defining what is to be expected
from a generic objective behavior, i.e., no superdeterminism,
no signaling, and δ objectivity, the latter stating that p(bi =
a|x∗

i ) � 1 − δ, where x∗
i denotes the measurement for which

the observer should try to recover as best as possible the
information about the system A as encoded in the probability
p(a). Those conditions play a role similar to what the concept
of local realism implies for Bell’s theorem [28]. In particular,
the notion of δ objectivity is justified by our first result stating
that the local agreement between a given observer and the
quantum system of interest translates into a global notion of
agreement between all observers having access to some part
of the environment.

We then showed that a generalization of the seminal CHSH
inequality [27] constrains the set of possible correlations
compatible with the three aforementioned assumptions. We
showed that Bell inequalities are a relevant tool for the un-
derstanding of quantum Darwinism and the emergence of
objectivity. Nonetheless, it is important to note that Bell in-
equalities appear in many other areas of quantum information
far beyond its original purpose, such as dimension witnesses
[55], self-testing [43], communication complexity problems
[56], and the measurement problem [41,57]. It also emerges
in totally different contexts such as game theory [58], causal
inference [59], knowledge integration of expert systems in
artificial intelligence [60], and database theory and privacy
aspects of databases [61].

The violation of the Bell-like inequality we derive offers
a device-independent witness of the nonobjectivity of the un-
derlying process at the same time that it naturally quantifies
how much one should give up objectivity in order to explain
the observed correlations. Further, we proved that quantum
mechanics allows for violations of this inequality and, in par-
ticular, leads to a monogamy relation between the agreement
with the internal degree of freedom and the one among the
observers. This implies that even though the observers agree
among themselves, their outcomes can be completely uncor-
related from the system they supposedly should be correlated
with, a phenomenon that we have experimentally probed us-
ing a photonic setup where the quantum property of interest is
encoded in the temporal degree of freedom of photons, the
polarization of which plays the role of the environment to
which the information should redundantly proliferate.

For scenarios where the probed system has more than one
property of interest, we demonstrated that if the observers
have to agree on measurement outcomes of all performed
measurements, then quantum correlations are compatible with
the assumptions of no superdeterminism, no signaling, and
objectivity, that is, they cannot violate any Bell-like inequality,
a result that can be violated by correlations beyond those

032201-9



DAVIDE PODERINI et al. PHYSICAL REVIEW A 108, 032201 (2023)

allowed by quantum theory and that thus can be employed
as a test for postquantumness.

This connection between quantum Darwinism, and the
notion of objectivity it entails, with Bell inequalities and
device-independent quantum information processing is a
bridge that deserves further investigation. For instance, it
would be interesting to generalize our results to a larger
number of observers and consider measurements with more
outcomes. At the same time, one should understand paradig-
matic dynamics considered in the literature of quantum
Darwinism [13–20] under this alternative perspective and ex-
plore the connections with other objectivity measures [62]
valid in the quantum framework. It is worth remarking also
that our approach could lead to substantial refinements in
recent tests for the emergence of objectivity [52–54]. Never-
theless, we should also note that another bridge connecting
quantum Darwinism, Spekkens contextuality, and quantum
information has also been recently developed. Adapting the
prepare-and-measure scenario into the usual environment as a
witness framework, in Ref. [24] the authors managed to prove
that Spekkens noncontextuality for each observer follows
through whenever the environment proliferates the informa-
tion about the central system appropriately. Their notion of
classicality differs from ours, insofar as here we consider mu-
tual agreement rather than noncontextuality as a signature of
classicality (and our connection with foundations of quantum
mechanics is via Bell scenarios). Additionally, our work goes
a step further, as we investigate our theoretical findings with a
proof-of-principle experiment.

Finally, we notice that the δ-objectivity constraint we con-
sider here is mathematically very similar to the notion of
absoluteness of events employed to analyze a generalization
of the Wigner friend experiment [41,57,63] on the foundation
of quantum theory. Apprehending further the connections be-
tween quantum Darwinism or objectivity and Wigner’s friend
experiment or absoluteness of events is another relevant re-
search direction that we hope our results might trigger.

ACKNOWLEDGMENTS

This work was supported by the Serrapilheira Institute
(Grant No. Serra-1708-15763), the Simons Foundation [Grant
No. 884966 (AF) and Grant No. 1023171 (RC)], and the
Brazilian National Council for Scientific and Technological
Development (CNPq) via the National Institute for Science
and Technology on Quantum Information (INCT-IQ) and
Grants No. 406574/2018-9 and No. 307295/2020-6. This
research was also supported by the Fetzer Franklin Fund of
the John E. Fetzer Memorial Trust and by Grant No. FQXi-
RFP-IPW-1905 from the Foundational Questions Institute and
Fetzer Franklin Fund, a donor advised fund of Silicon Valley
Community Foundation. We acknowledge support from the
Templeton Foundation, The Quantum Information Structure
of Spacetime Project [the opinions expressed in this publica-
tion are those of the author(s) and do not necessarily reflect the
views of the John Templeton Foundation], Grant Agreement
No. 61466. C.D. was supported by Engineering and Physical
Sciences Research Council Grant No. EP/V002732/1.

[1] L. de Broglie, A tentative theory of light quanta, Philos. Mag.
47, 446 (1924).

[2] N. Bohr, The quantum postulate and the recent development of
atomic theory, Nature (London) 121, 580 (1928).

[3] W. K. Wootters and W. H. Zurek, Complementarity in the
double-slit experiment: Quantum nonseparability and a quan-
titative statement of Bohr’s principle, Phys. Rev. D 19, 473
(1979).

[4] E. P. Wigner, The problem of measurement, Am. J. Phys. 31, 6
(1963).

[5] M. A. Schlosshauer, Decoherence and the Quantum-to-
Classical Transition (Springer Science + Business Media, New
York, 2007).

[6] E. Joos, H. D. Zeh, C. Kiefer, D. J. Giulini, J. Kupsch, and I.-O.
Stamatescu, Decoherence and the Appearance of a Classical
World in Quantum Theory (Springer Science + Business Media,
New York, 2013).

[7] L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L.
Davidovich, Scaling Laws for the Decay of Multiqubit Entan-
glement, Phys. Rev. Lett. 100, 080501 (2008).

[8] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C.
Wunderlich, J. M. Raimond, and S. Haroche, Observing the
Progressive Decoherence of the “Meter” in a Quantum Mea-
surement, Phys. Rev. Lett. 77, 4887 (1996).

[9] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van
der Zouw, and A. Zeilinger, Wave–particle duality of C60

molecules, Nature (London) 401, 680 (1999).

[10] P. Sonnentag and F. Hasselbach, Measurement of Decoherence
of Electron Waves and Visualization of the Quantum-Classical
Transition, Phys. Rev. Lett. 98, 200402 (2007).

[11] W. H. Zurek, Decoherence, einselection, and the quantum ori-
gins of the classical, Rev. Mod. Phys. 75, 715 (2003).

[12] W. H. Zurek, Quantum Darwinism, Nat. Phys. 5, 181 (2009).
[13] H. Ollivier, D. Poulin, and W. H. Zurek, Objective Properties

from Subjective Quantum States: Environment as a Witness,
Phys. Rev. Lett. 93, 220401 (2004).

[14] H. Ollivier, D. Poulin, and W. H. Zurek, Environment as a
witness: Selective proliferation of information and emergence
of objectivity in a quantum universe, Phys. Rev. A 72, 042113
(2005).

[15] R. Blume-Kohout and W. H. Zurek, Quantum darwinism:
Entanglement, branches, and the emergent classicality of redun-
dantly stored quantum information, Phys. Rev. A 73, 062310
(2006).

[16] J. K. Korbicz, P. Horodecki, and R. Horodecki, Objec-
tivity in a Noisy Photonic Environment through Quantum
State Information Broadcasting, Phys. Rev. Lett. 112, 120402
(2014).

[17] C. J. Riedel and W. H. Zurek, Quantum Darwinism in an Ev-
eryday Environment: Huge Redundancy in Scattered Photons,
Phys. Rev. Lett. 105, 020404 (2010).

[18] R. Blume-Kohout and W. H. Zurek, Quantum Darwinism in
Quantum Brownian Motion, Phys. Rev. Lett. 101, 240405
(2008).

032201-10

https://doi.org/10.1080/14786442408634378
https://doi.org/10.1038/121580a0
https://doi.org/10.1103/PhysRevD.19.473
https://doi.org/10.1119/1.1969254
https://doi.org/10.1103/PhysRevLett.100.080501
https://doi.org/10.1103/PhysRevLett.77.4887
https://doi.org/10.1038/44348
https://doi.org/10.1103/PhysRevLett.98.200402
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1038/nphys1202
https://doi.org/10.1103/PhysRevLett.93.220401
https://doi.org/10.1103/PhysRevA.72.042113
https://doi.org/10.1103/PhysRevA.73.062310
https://doi.org/10.1103/PhysRevLett.112.120402
https://doi.org/10.1103/PhysRevLett.105.020404
https://doi.org/10.1103/PhysRevLett.101.240405


DEVICE-INDEPENDENT WITNESS FOR THE … PHYSICAL REVIEW A 108, 032201 (2023)

[19] M. Zwolak, H. T. Quan, and W. H. Zurek, Quantum Darwin-
ism in a Mixed Environment, Phys. Rev. Lett. 103, 110402
(2009).

[20] C. J. Riedel and W. H. Zurek, Redundant information from
thermal illumination: Quantum Darwinism in scattered photons,
New J. Phys. 13, 073038 (2011).

[21] R. Horodecki, J. K. Korbicz, and P. Horodecki, Quantum origins
of objectivity, Phys. Rev. A 91, 032122 (2015).

[22] F. G. Brandao, M. Piani, and P. Horodecki, Generic emergence
of classical features in quantum darwinism, Nat. Commun. 6,
7908 (2015).

[23] X.-L. Qi and D. Ranard, Emergent classicality in general mul-
tipartite states and channels, Quantum 5, 555 (2021).

[24] R. Baldijão, R. Wagner, C. Duarte, B. Amaral, and M. T.
Cunha, Emergence of noncontextuality under quantum darwin-
ism, PRX Quantum 2, 030351 (2021).

[25] B. Çakmak, Ö. E. Müstecaplıoğlu, M. Paternostro, B. Vacchini,
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