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Atomic planar arrays offer a novel emerging quantum-optical many-body system in which light mediates
strong interactions between the atoms. The regular lattice structure provides a cooperatively enhanced light-
matter coupling and allows for increased control and harnessing of these interactions. In subwavelength arrays,
coherent scattering of incident light beams can be highly collimated in the forward and backward direction,
resembling one-dimensional light propagation without the need for waveguides, fibers, or resonators. The atomic
planar arrays share features with fabricated metasurfaces, formed by thin nanostructured films that have shown
great promise in manipulating and structuring classical light. Here we describe theoretical methods commonly
employed to analyze the cooperative responses of atomic arrays and explore some recent developments and
potential future applications of planar arrays as versatile quantum interfaces between light and matter.
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I. INTRODUCTION

Resonant emitters play a crucial role in optical devices
for both classical and quantum technologies that rely on
interfaces between light and matter. In this research, there
is a natural tendency towards using cold samples for better
coherence properties and dense samples due to the critical
parameter of resonance optical depth. As refined media, cold
atomic ensembles provide a quantum platform for light-matter
interfaces that underpin a wide range of quantum technologies
from atomic clocks [1] to quantum information processing
[2]. At high densities, however, atoms exhibit strong light-
mediated resonant dipole-dipole (DD) interactions that can
lead to resonance broadening, shifts, and dephasing. Tradi-
tionally, these are considered unwanted phenomena that are
challenging to control and pose limitations in applications.

Due to the light-mediated DD interactions, cold atoms at
densities with many atoms per cubic optical resonance wave-
length exhibit cooperative responses to light, characterized by
collective excitations with their own resonance linewidths and
line shifts. When the linewidth is below the single-particle
linewidth, excitations are called subradiant, whereas in the op-
posite case, they are super-radiant [3]. While super-radiance
has been extensively studied for many years [4], experi-
ments on subradiance were, until a few years ago, limited to
systems of two or a few particles [5–10]. More recent exper-
iments have shown small long-lived fractions of disordered
atom clouds [11,12] and spatially extended subradiant mode
resonances in resonator arrays [13].

Atoms confined in regular arrays have emerged as pristine
systems where cooperative light-mediated interactions can be

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

controlled and harnessed. Giant subradiance was observed
in the transmission of light through a two-dimensional (2D)
subwavelength planar optical lattice, with the spectral reso-
nance narrowing below the fundamental quantum limit set by
a single atom [14,15]. Unlike conventional free-space optical
media that rely on long propagation distances in their ability
to control light, planar atomic arrays strongly interact with
light within a single ultrathin atomic layer. Highly collimated
coherent emission from planar arrays results in effectively 1D
light propagation [16–20], with significantly enhanced optical
cross sections compared with similar disordered ensembles.

The light-matter interface with atomic planar arrays
exhibits an intriguing analogy with artificially fabricated
metasurfaces [21–24], which have garnered considerable at-
tention in nanophotonics in recent years with their unique
abilities to manipulate light. However, reaching the quantum
regime in nanostructured metasurfaces remains a formidable
challenge [25], while quantum-optical control of atoms is
commonplace [26].

There has been rapid progress in theoretical understanding
of light propagation in dense and cold atomic ensembles.
Improved computing resources have enabled even atom-by-
atom simulations for the most miniature samples. These
simulations go far beyond the traditional analysis of light
propagation that has relied on a continuous description of
the atomic medium, characterized by macroscopic elec-
trodynamics quantities such as susceptibility or refractive
index.

In this perspective, we provide a review of the relevant
theoretical background and describe commonly employed
methods for analyzing optical responses. We present and high-
light selective results that shed light on the optical behaviors
of these arrays. Our focus is on atoms trapped in regular planar
geometries, while 1D chains of atoms typically analyzed in
the context of waveguides and optical fibers are mostly outside
the scope of this paper. For interested readers, recent review
articles provide coverage of these systems [27–29].
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II. THEORETICAL MODELS

A. Light interacting with atoms

In the analysis of light interacting with closely spaced
atoms, we utilize a nonrelativistic Hamiltonian formalism of
electrodynamics in the dipole approximation. The quantum-
optical interaction between atoms with light is expressed
in the length gauge, obtained through the Power-Zienau-
Woolley transformation [30–32]. We write the Hamitonian
in terms of the electric displacement D̂(r) which serves as
the fundamental dynamical variable for light in the length
gauge [32]. Our focus is on incident light with the domi-
nant frequency ω = c|k| = ck = 2πc/λ and wave vector k.
To facilitate the rotating wave approximation, we introduce
positive and negative frequency components, D̂ = D̂+ + D̂−,
with D̂+ = [D̂−]†. For the quantized electromagnetic field,
the mode frequency and the photon annihilation and creation
operators are denoted by ωq, âq, and â†

q, respectively, where
the mode index q encompasses both the wave vector q and the
transverse polarization êq. The positive frequency component
in terms of the quantization volume V then reads [26]

D̂+(r) =
∑

q

ζqêqâqeiq·r, ζq =
√

h̄ε0ωq

2V
. (1)

The Hamiltonian for the free electromagnetic field energy is

ĤF =
∑

q

h̄ωqâ†
qâq. (2)

For notational simplicity, we focus on the specific case
of a J = 0 → J ′ = 1 atomic transition. A more comprehen-
sive treatment of the atomic level structure can be found in
Ref. [33]. The positive frequency component of the atomic
polarization density operator P̂+(r) for a set of atomic posi-
tions {r1, r2, . . . , rN } then reads

P̂+(r) =
∑

jν

δ(r − r j )d(ν)
ge σ̂−

jν, (3)

where σ̂+
jν = (σ̂−

jν )† = |e jν〉〈g j | is the raising operator to the
excited state ν = ±1, 0 for atom j, with the dipole matrix ele-
ment d(ν)

ge = Dêν , [d(ν)
ge ]∗ = d(ν)

eg , and the circular polarization
unit vectors ê± = ∓ 1√

2
(êx ± iêy), ê0 = êz. Throughout the pa-

per, we refer to slowly varying amplitudes for both atom and
light field quantities, where the rapid oscillations at the laser
frequency have been factored out, such as exp(−iωt ) from
σ̂−

jν . For stationary atoms in the rotating wave approximation,
the atom-light interaction part of the Hamiltonian reads

Ĥa−l = −
∑

jν

h̄
 jν σ̂
ee
jν − 1

ε0

∫
d3r(D̂+(r) · P̂−(r) + H.c.).

(4)
The first term corresponds to the laser frequency detuning

 jν = ω − ω jν from the level ν transition frequency ω jν of
atom j, and σ̂ ee

jν = σ̂+
jν σ̂

−
jν represents the excited level ν pop-

ulation. The second term describes the interaction of light
with the atoms. Additionally, the Hamiltonian contains the
self-polarization term, (2ε0)−1

∫
P̂(r) · P̂(r)d3r that is incon-

sequential in our system of nonoverlapping point atoms.
Typically, atoms are illuminated by a coherent light with

the positive frequency component E+(r), generating scattered

electric field amplitude Ê+
s . This can be formally integrated

[34] using the Hamiltonian and is given by the contributions
from all the atoms

ε0Ê+
s (r) =

∫
d3r′ G(r − r′)P̂+(r′) =

∑
jν

G(r − r j )d(ν)
ge σ̂−

jν,

(5)

where Gνμ(r) = ê∗
ν · G(r)êμ is the dipole radiation kernel

Gνμ(r) =
[

∂

∂rν

∂

∂rμ

− δνμ∇2

]
eikr

4πr
− δνμδ(r) . (6)

When acting on a dipole d at the origin, we obtain [35,36]

G(r)d = −dδ(r)

3
+ k3

4π

{
(r̂ × d) × r̂

eikr

kr

− [3r̂(r̂ · d) − d]

[
i

(kr)2
− 1

(kr)3

]
eikr

}
, (7)

where r̂ = r/|r| and we interpret the expression in such a way
that the integral of the term inside the curly brackets over an
infinitesimal volume enclosing the origin vanishes [34]. The
total electric field amplitude operator Ê+(r) is the sum of the
laser field and the fields scattered from all atoms

Ê+(r) = E+(r) + Ê+
s (r). (8)

The system of Eqs. (5) and (8) presents an integral form
of Maxwell’s wave equations, where Gνμ is also known as
a dyadic Green’s function for the Helmholtz equation and
the source term is provided by the electric dipole transitions
of the atoms through the operator P̂+. Typically, multipole
transitions are much weaker in comparison.

Equation (5) provides the solution for the scattered light
given a specific atomic polarization density. The main chal-
lenge arises in calculating the expectation values involving P̂,
as the interaction between the light and atoms can be strong.
The dipole amplitude of each atom, which represents the po-
larization density at its position, depends on the light scattered
by all the other atoms in the sample. For closely spaced cold
atoms, the scattering can be dominated by recurrent processes
[34,37–43] where the scattered photon is exchanged multiple
times between the same atoms.

To describe the effects of position fluctuations, it is use-
ful to introduce second-quantized atomic field operators for
the ground ψ̂g(r) and excited ψ̂eν (r) states. Thus, P̂+(r) =∑

ν ψ̂†
g (r) d(ν)

ge ψ̂eν (r) becomes the field-theoretical version of
Eq. (3) [34]. The relationship between the two is obtained by
considering the atomic correlation functions for atoms fixed
at positions {r1, r2, . . . , rN } [33]∑

ν

d(ν)
ge 〈ψ̂†

g (r) ψ̂eν (r)〉{r1,...,rN } =
∑

jν

d(ν)
ge 〈σ̂−

jν〉 δ(r − r j ),

(9)
where the summation of the index j runs over the set
{r1, r2, . . . , rN }. Similarly, the atomic level density operators
in second quantization are ψ̂†

g (r) ψ̂g(r) and ψ̂†
eν (r) ψ̂eν (r).
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B. Quantum master equation

For stationary atoms the full dynamics is represented by the
quantum many-body master equation (QME) for the reduced
density matrix [44,45], which for a configuration of positions
{r1, r2, . . . , rN }, ρ̂ = ρ̂{r1,r2,...,rN }, reads

˙̂ρ = − i

h̄

⎡
⎣∑

jν

Ĥ (0)
jν −

∑
j�νμ(� 	= j)

h̄�( j�)
νμ σ̂+

jν σ̂
−
�μ, ρ̂

⎤
⎦

+
∑

jν

γ (2σ̂−
jν ρ̂σ̂+

jν − σ̂+
jν σ̂

−
jν ρ̂ − ρ̂σ̂+

jν σ̂
−
jν )

+
∑

j�νμ(� 	= j)

γ ( j�)
νμ (2σ̂−

�μρ̂σ̂+
jν − σ̂+

jν σ̂
−
�μρ̂ − ρ̂σ̂+

jν σ̂
−
�μ),

(10)

where the bracket denotes a commutator and the Hamiltonian
for the incident field and the atoms [the coherent part of the
light-matter coupling of Eq. (4)] is given by

Ĥ (0)
jν = −h̄
 jν σ̂

ee
jν − (d(ν)

eg · E+(r j ) σ̂+
jν + H.c.

)
. (11)

The coupling between different atoms j and � in Eq. (10)
results from the real and imaginary parts of

�( j�)
νμ + iγ ( j�)

νμ = ξG( j�)
νμ , ( j 	= �), ξ = 6πγ

k3
, (12)

corresponding to the dissipation and interaction terms, respec-
tively, of the DD interaction G( j�)

νμ = Gνμ(r j − r�) between
the atoms at r j and r�, with dipolar orientations êν and êμ.
The nonlocal terms in Eq. (12) account for spatially correlated
scattering between different atoms. The single-atom (half-
width at half-maximum) resonance linewidth [26]

γ = D2k3

6π h̄ε0
(13)

is given by the Wigner-Weisskopf expression. The single-
atom resonance shifts are absorbed in the detuning term 
 jν .

C. Semiclassical approximation

In many-atom cavity systems, it is common to factorize
two-body and higher order correlations to obtain equations for
the expectation values of one-body operators; see, e.g.,
Ref. [46]. The equations of motion for one-body expectation
values may be derived from the QME (10). For example, for
the coherences of the jth atom between the electronic ground
level |g j〉 and excited level |e jν〉,

ρ ( j)
geν = Tr

[
σ̂−

jν ρ̂{r1,r2,...,rN }
]
, (14)

where ρ̂{r1,r2,...,rN } is the solution to Eq. (10) and Tr denotes
the trace. Semiclassical dynamics that neglects all quantum
fluctuations may then be obtained by factorizing the internal
level correlations between the different atoms

〈σ̂±
jν σ̂

±
�μ〉 
 〈σ̂±

jν〉〈σ̂±
�μ〉, j 	= �. (15)

This results in coupled optical Bloch equations (OBEs) that
form a compact set of equations for two-level atoms [47]. The
full set of equations for an arbitrary level configuration can
be found in Ref. [33]. For the J = 0 → J ′ = 1 transition, we
have 6N equations for the coherences and 4N equations for

the level populations, one of which may be eliminated due to
the population conservation. We obtain [33]

ρ̇ ( j)
geη = (i
 jη − γ )ρ ( j)

geη + iR̄( j)
η ρ ( j)

gg − iR̄( j)
τ ρ ( j)

eτeη, (16a)

ρ̇ ( j)
eνeη = (i
̄( j)

νη − 2γ
)
ρ ( j)

eνeη + iR̄( j)
η ρ ( j)

eνg − i
[
R̄( j)

ν ρ ( j)
eηg

]∗
, (16b)

where 
̄
( j)
νη = 
 jη − 
 jν . Here the effective Rabi frequencies

[48] R̄( j)
ν describe the driving of the atom j at r j by the Rabi

frequency R( j)
ν = [d(ν)

ge ]∗ · E+(r j )/h̄ of the incident field and
the scattered field from all the other atoms at positions r�

R̄( j)
ν = R( j)

ν + ξ
∑
� 	= j

G( j�)
νμ ρ (�)

geμ. (17)

The second term is responsible for light-mediated DD inter-
actions via the dipole radiation. The incident field intensities
on the atom j are I ( j)/Isat = 2

∑
μ |R( j)

μ /γ |2, where

Isat = 4π2h̄cγ

3λ3
(18)

is the saturation intensity. In Eqs. (16) and (17), ρ
( j)
gg is elim-

inated according to the substitution ρ
( j)
gg = 1 −∑η ρ

( j)
eηeη and

the repeated indices τ, μ are implicitly summed over.
The system of equations (16) describes the coupled dynam-

ics of the one-body density matrix elements for each atom. In
the absence of the radiative DD coupling terms G( j�)

νμ between
the different atoms, which depend on the atomic positions, the
equations reduce to the standard OBEs (when R̄( j)

ν is replaced
by R( j)

ν ). Various forms of the semiclassical equations have
been employed in the studies of atomic arrays [47,49].

It is important to note that in typical experimental scenarios
with fluctuating atomic positions, Eqs. (16) do not represent
the mean-field approximation because the light-induced spa-
tial correlations do not factorize. Despite the factorization of
quantum correlations between atoms according to Eq. (15),
significant spatial correlations between atoms can still be
present due to the DD interactions. The correlations induced
by position fluctuations can be accounted for by combining
the dynamics of Eqs. (16) with stochastic sampling of atomic
positions [33,50], as explained in Sec. III.

D. Limit of low light intensity

In the limit of low light intensity (LLI), to first order in the
incident field amplitude, the atoms respond to light as classical
linear oscillators, resulting in the so-called coupled-dipole
model. Keeping the terms that include at most one of the am-
plitudes ρgeη or E±, and no ρeνeη, Eqs. (16) reduce to a linear
system. The only dynamical variable then is ρ

( j)
geν = 〈σ̂−

jν〉 that
satisfies

d

dt
ρ ( j)

geν = (i
 jν − γ )ρ ( j)
geν + iR̄( j)

ν

= (i
 jν − γ )ρ ( j)
geν + iR( j)

ν + iξ
∑

�η(� 	= j)

G( j�)
νη ρ (�)

geη,

(19)

with the definitions of Sec. II B and R̄( j)
ν given by Eq. (17).

The linear equations of motion can be cast in matrix form

ḃ = i(H + δH )b + f, (20)
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where (with ν, μ = ±1, 0) b3 j−1+ν = ρ
( j)
geν , the driving term

f3 j−1+ν = iR( j)
ν , and the non-Hermitian matrix

H3 j−1+ν,3 j−1+ν = iγ , (21a)

H3 j−1+ν,3�−1+μ = �( j�)
μν + iγ ( j�)

μν , j 	= �. (21b)

The diagonal matrix δH contains the laser detuning and level
shifts of the atoms, with elements 
( j) − μδ

( j)
μ .

The dynamics in the limit of LLI can be described in terms
of collective radiative excitation eigenmodes [51,52] of the
non-Hermitian matrix H , while δH introduces the resonance
conditions and couplings between the eigenmodes. The eigen-
modes are biorthogonal w†

j v� = δ j� between the left w j and

right v� eigenvectors (Hv j = λ jv j ; w†
jH = λ jw

†
j ). However,

they are generally not orthogonal v†
j v� 	= δ j�. The eigenvalues

λ j = δ j + iυ j have real and imaginary parts, given by the col-
lective line shift δ j = ω − ω j from the single-atom resonance
ω and the collective resonance linewidth υ j . When eigenval-
ues are degenerate, it is possible to have an exceptional point
where two or more eigenvectors coalesce and become linearly
dependent, such that v j no longer form a basis, H cannot be
diagonalized, and the radiation no longer shows exponential
decay of independent modes [53].

Here we mostly consider the isotropic J = 0 → J ′ = 1
transition and assume that symmetry-breaking level shifts
are encapsulated in δH . This makes H a symmetric ma-
trix, resulting in a simple relation w†

j = vT
j , and so vT

j v� =
δ j�, except some possible cases of vT

j v j = 0. Due to the
nonorthogonality of the eigenvectors, the definition

Lj =
∣∣vT

j b
∣∣2∑

�

∣∣vT
� b
∣∣2 (22)

can be used as a measure of the occupation of an eigenmode v j

in the state b. This describes accurately the contribution of the
dominant collective mode occupation in the excitation decay
[17]. The measure (22) can also be used to determine a finite-
array eigenmode that most closely matches a desired infinite
lattice mode. When the eigenmodes form a basis, the excita-
tion amplitudes can be expressed as b(t ) =∑n cn(t )vn for the
amplitudes cn that satisfy cn(t ) = exp [t (iδn − υn)]cn(0) when
acted byH alone.

The “weak” intensity requirement of the driving light
strongly depends on the collective eigenmodes coupled to the
drive [54,55]. Even at very low intensities, subradiant eigen-
modes with narrow linewidths exhibit nonlinear responses.
Numerical studies have shown that the intensity threshold for
the validity of the LLI description scales with the resonance
linewidth of the excited eigenmode as υ2.5

j [54]. However,
the absence of saturation effects can always be reached with
single photon sources. If we are not interested in quantum cor-
relations between the atomic dipoles or the photon statistics,
but rather in the dynamics of a single electronic excitation
amplitude (induced by a single photon), the system is for-
mally equivalent to the classical LLI model of coherently
driven linearly coupled dipoles [56]. However, it should be
noted that higher-order correlations and entanglement cannot
be obtained in this classical description [57]. To formulate
a single-photon model, we restrict the Hilbert space to the

sector with only one excitation and expand the density ma-
trix ρ(t ) = |�(t )〉〈�(t )| + P|G〉〈G| in terms of pure states,
following the approach outlined in Ref. [58]. Here |�(t )〉 =∑

j,ν P
( j)
ν (t ) σ̂+

jν |G〉 represents a state with precisely one ex-

citation, characterized by the amplitudes P( j)
ν . The state |G〉

corresponds to all the atoms being in the electronic ground
level, and the probability of the photon emission is P. The full
QME for ρ̄

( jk)
νμ = 〈G|σ̂−

jνρσ̂+
kμ

|G〉 simplifies to

˙̄ρ ( jk)
νμ = i

∑
�τ

(
H̄ ( j�)

ντ ρ̄ (�k)
τμ − iρ̄ ( j�)

ντ

[
H̄ (�k)

τμ

]∗)
, (23)

where H̄ ( jk)
νμ = H3 j−1+ν,3k−1+μ. The amplitudes P( j)

ν (t ) then
satisfy the same dynamics as the coherences of the LLI sys-
tem, given byH in Eq. (20). An incident single-photon pulse
may be approximated by a time-dependent f (t ) in Eq. (20).

E. Truncated correlations and two-excitation sectors

Full quantum simulations based on the QME (10) are in-
herently limited to small atom numbers due to the exponential
growth of the system size as the number of atoms increases.
Considerably larger system sizes can be achieved with the
semiclassical approach of Sec. II C, which includes the non-
linear interaction but neglects quantum fluctuations. However,
the semiclassical approach can be improved by incorporating
the lowest-order quantum contributions of internal atomic
level correlations. The complete quantum treatment can be
formulated as a hierarchy of equations for atomic correla-
tion functions. This hierarchy can be truncated by assuming
that correlations beyond a certain order become less signifi-
cant and can be disregarded. The truncation is accomplished
by reducing the expectation values of higher-order opera-
tor products to products of lower-order expectation values
via a cumulant [59], or closely related, expansion. This ap-
proach has been successfully applied to atomic arrays in
Refs. [47,60,61] (see also Ref. [62]) and an automated quan-
tum optics toolbox [63] has been developed to facilitate these
calculations by incorporating the lowest-order quantum fluc-
tuations with internal level atomic correlation functions. The
truncation

〈ÂB̂Ĉ〉 → 〈ÂB̂〉〈Ĉ〉 + 〈Â〉〈B̂Ĉ〉 + 〈B̂〉〈ÂĈ〉 − 2〈Â〉〈B̂〉〈Ĉ〉
(24)

of three-operator correlations in Ref. [60] resulted in a closed
set of equations for light transmission, which qualitatively
agreed with the comparisons between the full quantum dy-
namics and the semiclassical equations in Ref. [50].

Another approach to limit the size of the Hilbert space
in the full quantum system is truncation. By including only
up to two electronic excitations, some nonlinear interactions
can be incorporated while maintaining numerical tractability
in larger arrays. Two-excitation systems exhibit intriguing
phenomena such as fermionization of the excitations [64,65],
multiple subradiant excitations forming a superposition of
singly excited subradiant states [64], entanglement [66], and
bound dimer states [67,68]. Software packages are available
to numerically solve these systems as well [63].
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F. Scattered light properties

The scattered field consists of a mean field 〈Ê+
s 〉 and fluctu-

ations δÊ+
s = Ê+

s − 〈Ê+
s 〉. We analyze different contributions

to the scattered light by expanding the correlations that yield
the total light intensity matrix

I (r) = 2ε0c〈Ê−(r)Ê+(r)〉. (25)

We obtain from Eq. (8)

〈Ê−(r) Ê+(r)〉 = E−(r)E+(r) +E−(r)〈Ê+
s (r)〉

+ 〈Ê−
s (r)〉E+(r) + 〈Ê−

s (r)〉〈Ê+
s (r)〉

+ 〈δÊ−
s (r) δÊ+

s (r)〉. (26)

Here Ê−Ê+ is a dyadic product of elements Ê−
α Ê+

β , with
α, β ∈ {1, 2, 3} cycling over the polarization components,
where the intensity is proportional to its diagonal elements.
The first term in Eq. (26) corresponds to the incident field
intensity alone. The next two terms give the interference be-
tween the incident field and coherently scattered field, which
is revealed in homodyne measurements [69]. The fourth term
is proportional to the coherently scattered light intensity and
the final term represents incoherent scattering

〈δÊ−
s (r) δÊ+

s (r)〉 = 〈Ê−
s (r) Ê+

s (r)〉 − 〈Ê−
s (r)〉〈Ê+

s (r)〉. (27)

If only the scattered light is detected, e.g., by blocking the in-
cident light by a thin wire, as in the dark-ground imaging [70],
incoherent scattering is obtained by subtracting the coherently
scattered intensity from the total intensity.

We first consider the atoms at the fixed set of positions
{r1, r2, . . . , rN }. The analysis of light scattering involving
many-atom systems with fluctuating positions is more intri-
cate and will be addressed in Sec. III. According to Eq. (5),
the coherently scattered light reads

ε0〈Ê+
s (r)〉 =

∑
jν

G(r − r j )d(ν)
ge 〈σ̂−

jν〉. (28)

For a detector sufficiently far away from the atoms r � λ,
the scattered light amplitudes can be evaluated in the far-field
radiation zone [35,36],

G(r − r j )d(ν)
ge ∼ k2

4πr
eikr−ikr̂·r j

(
r̂ × d(ν)

ge

)× r̂, (29)

where the unit vector r̂ joins a representative point in the sam-
ple to the observation point. In Eq. (28) there is no distinction
between quantum and semiclassical coherent scattering for a
single atom, since in the semiclassical case σ̂−

jν is replaced
by 〈σ̂−

jν〉 [71]. Therefore, any disparity between quantum and
semiclassical coherent scattering in a many-atom ensemble is
solely attributable to many-body quantum effects. The inten-
sity of the scattered light is given by

2ε0c〈Ê−
s (r) Ê+

s (r)〉

= 2c

ε0

∑
j�νμ

[
G(r − r j )d(ν)

ge

]∗
G(r − r�)d(μ)

ge 〈σ̂+
jν σ̂

−
�μ〉

= D2k4c

8π2ε0r2

∑
j�νμ

[δν,μ − (r̂ · ê∗
ν )(r̂ · êμ)]eikr̂·r j�〈σ̂+

jν σ̂
−
�μ〉,

(30)

where the j = � term is due to single-atom contributions.
The j 	= � terms originate from many-atom couplings and
interferences. In the second equality, we employed the far-
field limit [Eq. (29)] that simplifies the double summation
over the atomic positions to a sum of different phase factors
and correlations, where r j� = r� − r j (see also Appendix B).
In the semiclassical scattering version σ̂+

jν is again replaced
by 〈σ̂+

jν〉.
We can derive a simple formula for the total intensity of

scattered light that illustrates the collective effects. The rate
of photon scattering is calculated by integrating the scattered
intensity per the energy of the photon over a closed surface
S enclosing the atoms. In Appendix B we show how this is
expressed in terms of a sum over the imaginary parts of the
DD radiation coupling tensor between the different atoms

ns = 1

h̄ω

∫
S

dS Is = 2ε0c

h̄ω

∫
S

dS〈Ê−
s (r) · Ê+

s (r)〉

= 2γ
∑

jν

〈σ̂+
jν σ̂

−
jν〉 + 2

∑
j�νμ( j 	=�)

γ ( j�)
νμ 〈σ̂+

jν σ̂
−
�μ〉. (31)

The first term represents the single-atom decay [Eq. (13)]
summed over all the atoms. This is given by the excited-
level population, according to σ̂+

jν σ̂
−
jν = σ̂ ee

jν . [Note that the
terms proportional to σ̂+

jν σ̂
−
jμ, with ν 	= μ, in Eq. (30) do not

contribute to Eq. (31).] The second term represents collective
decay ξ Im[G( j�)

νμ ], introduced in Eq. (12). The emission rates
obtained here confirm the correct choice of the decay rates in
the QME (10). The simple rate formula (31) applies to other
observables of scattered light, such as coherent scattering, in
which case the correlation functions are changed to

nc = 2γ
∑

jν

〈σ̂+
jν〉〈σ̂−

jν〉 + 2
∑

j�νμ( j 	=�)

γ ( j�)
νμ 〈σ̂+

jν〉〈σ̂−
�μ〉. (32)

According to Eq. (27), the incoherently scattered light con-
tribution is obtained from

ε2
0〈δÊ−

s (r)δÊ+
s (r)〉 =

∑
j�νμ

[
G(r − r j )d(ν)

ge

]∗
G(r − r�)d(μ)

ge

× (〈σ̂+
jν σ̂

−
�μ〉 − 〈σ̂+

jν〉〈σ̂−
�μ〉). (33)

In the far-field radiation zone, this can be simplified analo-
gously to Eq. (30). In the case of a simple two-level atom,
the single-atom contributions ( j = �) are then proportional to
the excited level population minus the the absolute square of
the atomic coherences 〈σ̂ ee

j 〉 − |〈σ̂−
j 〉|2. In the semiclassical

scattering approximation [71], where the correlation functions
for internal atomic operators factorize, the incoherently scat-
tered light intensity in Eq. (33) vanishes. The semiclassical
approximation to the scattered light is consistent with a sys-
tematic way of disregarding all quantum fluctuations when the
atomic response is first calculated from the semiclassical atom
dynamics of Eq. (16). Therefore, any disparity between this
approach and evaluating scattered light of Eq. (33) using the
full solution of QME (10) provides a signature of quantum ef-
fects in the collective atomic response [50], the result of which
is also valid in the case of fluctuating atomic positions when
Eq. (33) is nonvanishing even semiclassically (see Sec. III B).

For the full quantum analysis, the sum over single-atom
contributions ( j = �) in Eq. (33) yields a nonzero result. Even
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for a single atom, the incoherent scattering therefore differs
depending on whether we treat it quantum-mechanically or
semiclassically. This distinction contrasts with coherent scat-
tering, where the single-atom contributions are identical in
both quantum and semiclassical analyses.

In the case of fixed atomic positions, many-body con-
tributions to incoherent scattering arise from nonnegligible
many-body correlations 〈σ̂+

jν σ̂
−
�μ〉 	= 〈σ̂+

jν〉〈σ̂−
�μ〉, for j 	= �,

which can be generated through light-mediated interactions.
These contributions represent quantum many-body effects in
the scattered light that are absent in the semiclassical analysis.
Without these quantum many-body effects and position fluc-
tuations, all the incoherent scattering in Eq. (33) originates
solely from the single-atom quantum effects ( j = �).

There exist straightforward methods to improve the semi-
classical model of incoherent scattering without increasing
computational complexity [50]. These improvements provide
greater accuracy and offer a systematic approach to identify
light-induced many-body quantum effects in the optical re-
sponse [50]. The dynamical response of matter is once again
calculated within the semiclassical approximation of Eq. (16)
by neglecting all quantum fluctuations, but we add to the
semiclassical scattering description the sum of independent
single-atom quantum contributions ( j = �) in the incoherent
scattering expression [Eq. (33)] and obtain

ISAQ
inc = 2c

ε0

∑
jνμ

[
G(r − r j )d(ν)

ge

]∗
G(r − r j )d(μ)

ge

× (〈σ̂+
jν σ̂

−
jμ〉 − 〈σ̂+

jν〉〈σ̂−
jμ〉). (34)

For the case of only one excited level participating, there is no
summation over μ, ν and the first term provides the excited
level population of the atom j. We obtain analogously to
Eq. (31) over a closed surface

nSAQ
inc = 1

h̄ω

∫
S

dS ISAQ
inc = 2γ

∑
j

(〈
σ̂ ee

j

〉− |〈σ̂+
j 〉|2). (35)

The difference between Eq. (34) when the dynamics is solved
semiclassically and Eq. (33) when it is solved using the QME
(10) represents a signature of quantum many-body effects in
the scattered light. ISAQ

inc in the presence of position fluctua-
tions is discussed in Sec. III B.

G. Quantum trajectories

The QME (10) can be solved using exact diagonalization
methods. Alternatively, a numerically more efficient approach
for large systems can be achieved by employing quantum
trajectories of state vectors [72–75], where the dynamics
is unraveled into stochastic realizations of a wave function
|ψ (t )〉. In the quantum trajectory approach, the evolution of
a density matrix of the master equation is replaced by the
evolution of a smaller sized stochastic state vector that is run
multiple times. For the master equation

˙̂ρ = − i

h̄
[Ĥs, ρ̂] +

∑
j

(2Ĵ j ρ̂Ĵ†
j − Ĵ†

j Ĵ j ρ̂ − ρ̂Ĵ†
j Ĵ j ), (36)

the procedure involves evolving |ψ (t )〉 according to a nonuni-
tary Hamiltonian Ĥs − ih̄

∑
j Ĵ†

j Ĵ j , incorporating randomly

determined quantum “jumps,” followed by wave-function
normalization. During the time interval [t, t + dt], a quan-
tum jump

√
2Ĵ j |ψ (t )〉 occurs with a probability Pj =

2〈ψ (t )|Ĵ†
j Ĵ j |ψ (t )〉. The additional advantage is that if the

quantum jumps correspond to photon counts, the stochastic
wave function is conditioned on photon detection records,
describing quantum measurement-induced back-action.

In the context of many-atom light scattering with the QME
(10), this approach is efficiently formulated in terms of the
source-mode jump operators [76,77]. The unitary part Ĥs of
the stochastic wave function evolution is straightforwardly
obtained by comparing Eqs. (10) and (36). The jump operators
are expressed in the LLI excitation eigenmode basis v j , which
diagonalizes �

( j�)
μν + iγ ( j�)

μν (Sec. II D). The jump operators are

then defined as Ĵ j = √
υ jvT

j �̂ and Ĵ†
j = √

υ j�̂
†
v j , where �̂

is a column vector composed of σ̂−
�ν , and υ j is the collective

linewidth. It is important to note that since the source-mode
jump operators are expressed in terms of the LLI eigenmodes,
they are generally not identified with photon detection events
in individual trajectories [76,77].

The unraveling of the QME (10) into quantum trajecto-
ries, where the quantum jumps represent photon counts, is
achieved by resolving the emission time and direction [77].
Consider the photon emission rate ns integrated over all di-
rections in Eqs. (31) and (B1). This rate can be divided into
a discrete set of scattering directions (θ, φ), each associated
with a solid angle d�, such that ns 
∑ j ns(θ j, φ j )d�. The
unraveling then follows similar techniques to the integration
of the total rate ns outlined in Appendix B. In the case of
two-level atoms in the far field radiation zone [Eq. (29)], the
jump operators have a simple analytic form [compare with
Eq. (B3)]

Ĵ (θ, φ) =
{

3γ

4π
[1 − (r̂ · ê)2]d�

}1/2∑
�

e−ikr̂·r� σ̂−
� , (37)

where the unit vector r̂ = x̂ cos φ sin θ + ŷ sin φ sin θ +
ẑ cos θ , and ê denotes the orientation of the atomic dipole.

III. FLUCTUATIONS OF ATOMIC POSITIONS

A. Stochastic simulations

The atoms in a periodic array experience fluctuations of
their positions [78]. The fluctuations can be thermal or zero-
point quantum fluctuations at the ground state of the trapping
potential at each lattice site. Such fluctuations only become
negligible with very tight confinement. To describe the effect
of position fluctuations of atoms in a periodic array, we follow
the formalism introduced in Ref. [79].

The position fluctuations of atoms in an array introduce
characteristics of light propagation typically observed in dis-
ordered media. This considerably complicates the optical
response even in the limit of LLI when the response of an atom
to coherent incident field is that of an entirely classical linear
harmonic oscillator (Sec. II D). The study of light propagation
in disordered media has been actively pursued in mesoscopic
physics for a considerable duration [37,38,80,81]. Recurrent
scattering of light between closely spaced particles can induce
strong position correlations within a classical framework. This
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phenomenon plays a crucial role, e.g., in localization of light,
which is akin to the Anderson localization of electrons in
solids. Despite numerous efforts to observe light localization
in 3D media, it remains a subject of considerable controversy
and debate [82–84]. Various proposals have been put forth to
achieve 3D light localization using atomic ensembles [85],
offering the advantage of potentially incorporating quantum
effects as well.

The impact of position correlations, resulting from posi-
tion fluctuations, is most effectively described by employing
atomic field operators for the ground and excited states ψ̂g,e(r)
[34], introduced in Sec. II A. To solve the scattered light of
Eq. (5), it is necessary to calculate the expectation value for
the atomic polarization density 〈P̂(r)〉.

The analysis, specifically focusing on the limit of LLI,
has revealed how multiply scattered light can establish
correlations between atoms at fluctuating positions. These
correlations give rise to a hierarchy of equations of motion for
the correlation functions of atomic density and polarization
[34,40]. Within this hierarchy, the atomic polarization density
becomes coupled to a two-atom correlation function, such as
〈ψ̂†

g (r) ψ̂†
g (r′) ψ̂e(r′) ψ̂g(r)〉, which represents the correlations

in the optical response of a ground-state atom at position r
in the presence of an atomic dipole in the second atom at
position r′. These correlations originate from the resonant DD
interaction between the atoms, which depends on their relative
positions, as the strength of the DD interaction is sensitive to
the atomic separation. In turn, the two-body correlation relies
on the three-atom correlation function, and so on. Finding
general solutions to this hierarchy of equations is challenging
when the atom density limit ρ/k3 � 1 in terms of the resonant
wave number of light k is not satisfied. On the other hand,
in the limit ρ/k3 � 1, perturbative solutions may be derived
[40,86]. The hierarchy of equations for correlation functions
can also be truncated for the case of inhomogeneously broad-
ened samples [42].

An alternative approach, applicable in the limit of LLI,
involves utilizing coupled-dipole model equations (19) for a
fixed set of atomic positions {r1, r2, . . . , rN }. In this approach,
the position coordinates are treated as stochastic variables
and are sampled according to the probability distribution for
the atomic positions in the absence of light. This Monte

Carlo sampling enables stochastic classical-electrodynamics
simulations: In each realization, we sample the atomic po-
sitions and subsequently solve the optical response for the
given set of coordinates using Eqs. (19) and (5). The re-
quired probability distribution is obtained as the absolute
square of the many-body wave function P(r1, r2, . . . , rN ) =
|�(r1, r2, . . . , rN )|2 [87]. In the case of classically dis-
tributed atoms, it is typically sufficient to sample uncorrelated
independent positions. However, for atoms obeying the Fermi-
Dirac statistics, more sophisticated sampling methods, such as
the Metropolis algorithm, have been implemented to solve the
optical responses [88].

Ensemble-averaging over many realizations provides the
expectation values of physical observables. In the limit of LLI,
this can formally be shown to converge to an exact solution
for stationary atoms at arbitrary densities by reproducing the
correct hierarchy of correlation functions for both 1D scalar
theory [87] and 3D vector electrodynamics with a single
electronic ground level [33]. Since each stochastic realiza-
tion of atomic positions can be interpreted as an outcome
of a quantum measurement process on scattered light that
localizes the positions of the atoms, each stochastic trajectory
also represents a possible outcome of a single experimental
run. Numerically ensemble-averaging over many realizations
then corresponds to an experimental ensemble averaging over
many measurement runs. Within this interpretation, stochastic
electrodynamics simulations can be extended beyond the LLI
regime [33,50]. The nonlinear coupled-dipole equations (16),
which correspond to the semiclassical approximation, or the
full QME (10), are solved for a fixed set of atom positions in
each stochastic realization. By ensemble-averaging over many
realizations, the effects of position fluctuations on the physical
observables are captured.

The semiclassical approximation, Eqs. (16), does not rep-
resent a mean-field approximation when the atomic position
fluctuate, since the light-induced correlations depend on the
higher-order atomic correlation functions. In second quan-
tization, the correlations are given as ensemble averages of
individual realizations, sampled according to the probability
distribution of atomic positions P(r1, . . . , rN ). Each real-
ization corresponds to some fixed N-atom configuration of
positions {r1, r2, . . . , rN }. For example,

〈ψ̂†
eν (r, t ) ψ̂†

g (r′, t ) ψ̂eμ(r′, t ) ψ̂g(r, t )〉 =
∫

d3r1 . . . d3rN 〈ψ̂†
eν (r, t ) ψ̂†

g (r′, t ) ψ̂eμ(r′, t ) ψ̂g(r, t )〉{r1,...,rN } P(r1, . . . , rN ), (38)

where 〈ψ̂†
eν (r, t ) ψ̂†

g (r′, t ) ψ̂eμ(r′, t ) ψ̂g(r, t )〉{r1,...,rN } is calcu-
lated in a single realization of fixed positions {r1, r2, . . . , rN },
and is given in terms of the operators σ̂±

jν by

〈ψ̂†
eν (r, t ) ψ̂†

g (r′, t ) ψ̂eμ(r′, t ) ψ̂g(r, t )〉{r1,...,rN }

=
∑

j�( j 	=�)

〈σ̂+
jν (t )σ̂−

�μ(t )〉 δ(r − r j ) δ(r′ − r�), (39)

where the summations run over all the atoms, excluding the
cases where the both operators refer to the same atom.

Ensemble-averaged solutions to semiclassical dynamics
[Eqs. (16)] correspond to field-theoretical expectation values.
Even though we factorize quantum correlations between in-
ternal levels of the atoms 〈σ̂+

jν (t )σ̂−
�μ(t )〉 = 〈σ̂+

jν (t )〉〈σ̂−
�μ(t )〉

( j 	= �) [Eq. (15)], nonvanishing spatial correlations of
Eq. (38) induced by light do not factorize. In general
(a, b, c, d ∈ {g, eν}),

〈ψ̂†
a (r)ψ̂†

b (r′)ψ̂c(r′)ψ̂d (r)〉 	= 〈ψ̂†
a (r)ψ̂d (r)〉〈ψ̂†

b (r′)ψ̂c(r′)〉.
(40)
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B. Optical response with position disorder

Nonvanishing spatial correlations of Eq. (40) due to po-
sition fluctuations act as additional sources of incoherent
scattering that are absent when the atoms are at fixed posi-
tions [Eq. (33)]. The scattered light intensity of Eq. (30) is
generalized in Ref. [50] to include disorder in positions

2cε0〈Ê−
s (r) Ê+

s (r)〉 = 2c

ε0

∫
d3r d3r′[G(r − r)]∗[G(r − r′)]

× 〈P̂−(r) P̂+(r′)〉, (41)

where [G(r − r)]∗ acts on P̂−(r) and likewise G(r − r′) on
P̂+(r′). Here 〈P̂−(r) P̂+(r′)〉 depends on the correlations in
Eq. (38) indicating how it is determined by the atom positions.
As shown in Appendix C, the intensity in Eq. (41) depends on
the correlations 〈σ̂+

jν σ̂
−
�μ〉 for each realization of fixed positions

{r1, r2, . . . , rN }. Solving the full coupled quantum dynamics
from the QME (10) to obtain these correlations and ensemble-
averaging over many such realizations provides the quantum
solution of scattered light intensity. In the semiclassical ap-
proximation of scattering [71], we factorize the polarization
correlations in each realization

〈P̂−(r)P̂+(r′)〉 

∫

d3r1 . . . d3rN 〈P̂−(r)〉{r1,...,rN }

× 〈P̂+(r′)〉{r1,...,rN } P(r1, . . . , rN ) . (42)

When the atom-light dynamics is then also solved using the
semiclassical equations, the quantum effects are then sys-
tematically neglected. Similarly to Sec. II F, the difference
between the semiclassical and full quantum solution reveals
the signature of quantum effects in the scattered light [50].
Analogous, albeit more involved, analysis is performed to
improve the scattered light approximation to include the sum
of single-atom quantum effects to the semiclassical scatter-
ing model to generalize the fixed atomic position results of
Eq. (34) [50].

C. Implementation in an optical lattice

To characterize the influence of position fluctuations in an
atomic array on the optical response, we consider the exper-
imental setup [14,89] of a sinusoidal optical lattice potential
in a Mott-insulator state with one atom per site, following the
simulation scheme introduced in Ref. [79]. Experimentally,
single-occupancy Mott-insulator states have been studied and
manipulated in individual sites already for quite some time
[90–92]. Achieving single-atom site occupancy can be ac-
complished by cooling atoms to the typical “wedding-cake”
Mott-insulator ground state of an optical lattice superposed
on a weak harmonic trap, and then manipulating the sites with
excess occupancy [92]. For the purpose of classical stochastic-
electrodynamics simulations to calculate the optical response
with unit occupancy, the position coordinates of atoms within
each site are treated as independent stochastic variables. An-
other interesting scenario would be to have two fermionic
atoms per site [93,94]. In the case of a 2D square lattice with
a periodicity a in the yz plane, we express the potential in the
units of the lattice recoil energy ER = π2h̄2/(2ma2) [78]

V = sER[sin2(πy/a) + sin2(πz/a)], (43)

FIG. 1. (Reproduced from Ref. [33]). The probability distribu-
tion of collective linewidths � of LLI eigenmodes for two-level
atoms in a 32 × 32 square array, with dipoles slightly tilted from
the normal to the array along ê⊥ + 0.1ê‖, where γ is the single atom
linewidth [33,79]. The long tail of subradiant modes with the lattice
spacing a = 0.55λ and fixed atom positions in (a) becomes absent in
(b) when a = 1.65λ and position fluctuate with � 
 0.12a.

where the lattice strength is denoted by s. The confinement
of atoms in the x = 0 plane is achieved through an additional
potential, which can also be generated by an optical lattice.

In the optical imaging experiments, the atoms are confined
in deep lattice potentials [14,89]. In the vicinity of the lattice
site minimum, the potential V is approximately harmonic,
with trapping frequencies ωy = ωz = 2

√
sER/h̄ within the lat-

tice plane and ωx perpendicular to it. The atoms occupy the
vibrational ground states of the lattice sites at r j , and their
positions exhibit quantum fluctuations, resulting in Gaussian
density distributions |φ j (r)|2 of the Wannier wave functions
φ j (r) ≡ φ(r − r j ). For the site r j = 0, we express it as

|φ(r)|2 = 1(
π3�4�2

z

)1/2 exp

(
−y2 + z2

�2
− x2

�2
x

)
, (44)

with the width � = as−1/4/π in the yz plane and �x =
[h̄/(mωx )]1/2 in the x direction. The width is determined by
the lattice spacing and narrows with increased s.

IV. OPTICAL RESPONSE OF A PLANAR ARRAY

We now turn our attention to cooperatively responding pla-
nar arrays of atoms that can exhibit a range of LLI subradiant
collective excitation eigenmodes (Fig. 1). The array acts as
a diffraction grating with wave functions of the individual
lattice sites determining the analogy of the Debye-Waller
factor. For normal incidence, only the zeroth-order Bragg
scattering peak exists in a lattice with subwavelength spac-
ing, resulting in coherent scattering at the exact forward and
backward directions. At other incident angles, the maximum
spacing allowed for the existence of only a single Bragg peak
varies between half a wavelength and a full wavelength. The
following analysis relies on this highly collimated scattering
that leads to light propagation similar to that in 1D electrody-
namics.

A. Uniformly excited array

The coupling of a coherent incident light beam to a pla-
nar array is greatly simplified by the phase matching of the
light profile to only the most dominant collective excitation
eigenmodes. This allows for the introduction of superatom
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models where the collective many-atom optical response of
the array can be described qualitatively by one (Secs. IV A 1
and IV A 2), two (Sec. IV C), three (Sec. IV D), or four
(Sec. IV F) eigenmodes. To simplify the analysis, we begin by
considering a driving light with a uniform phase and intensity
profile perpendicular to the propagation direction of light and
a sufficiently large square array, neglecting edge effects and
treating the system as translationally invariant. Additionally,
we assume degenerate electronically excited atomic levels
with equal resonance frequencies for each atom. At the normal
incidence, the light then couples to a collective (“coherent
in-plane”) mode in which all the dipoles oscillate coherently
in phase along the direction of the light polarization [95]. By
applying a uniform Zeeman shift to the atoms, they can also
couple to a uniform phase-coherent out-of-plane (“coherent
perpendicular”) eigenmode where all the atomic dipoles os-
cillate in phase normal to the plane [17,18]. This analysis will
be discussed in Sec. IV C.

1. Normal incidence: Effective 1D propagation

For a normally incident uniform plane wave, the response
of a sufficiently large array is dominated by the LLI eigen-
mode of the uniform phase profile (vanishing wave vector q =
0), due to the phase matching of the incident light (although
this can be violated at sufficiently high intensities and small
lattice spacings). For finite arrays, the matching is further
improved by a Gaussian beam with the width comparable
with the lattice size [17,96]. The resonance of the q = 0 LLI
eigenmode becomes the key parameter in the optical response
and the system can be analyzed as a single-mode model of
collective dipole oscillations [95]. In essence, a planar ar-
ray of atoms behaves like a single superatom, exhibiting a
Lorentzian-shaped response to the incident light, similar to
that of an individual atom, but with modified resonance fre-
quency and linewidth.

To analyze the response of a planar array to normally inci-
dent light, we examine the steady-state solutions of a square
lattice within the semiclassical dynamics of Eqs. (16) in which
case the LLI solutions are obtained as straightforward limiting
cases. The derivation closely follows Ref. [97]. The uniform
stationary solution to Eqs. (16) for the atomic coherence and
excited level population in terms of R̄(�)

ν = R̄ along the direc-
tion of the excited atomic dipole d(ν)

ge = Dêν is then given by

�ν = 
, ρ (�)

ee = ρee, and ρ (�)
ge = ρge [48,97]

ρge = R̄ −
 + iγ


2 + γ 2 + 2|R̄|2 , (45a)

ρee = |R̄|2

2 + γ 2 + 2|R̄|2 . (45b)

These solutions share a similar form with the solutions of
single-atom OBEs, with the distinction that the Rabi fre-
quency, R, which drives each atom, is substituted by the
effective Rabi frequency R̄ [Eq. (17)]. R̄ includes both the
incident field and the dipole radiation emitted by all other
atoms in the array. For the uniform solution, we can express
Eq. (17) as

R̄ = R+ (�̃ + iγ̃ )ρge, (46)

where

�̃ =
∑
� 	= j

�( j�)
νν , γ̃ =

∑
� 	= j

γ ( j�)
νν (47)

are obtained from the real and imaginary parts of the dipole
kernel, Eq. (12), respectively, and êν defines the direction of
the excited atomic dipole. Since the edge effects are neglected,
the lattice is translationally invariant and the site j is arbitrary
in Eq. (47). The eigenvalue of the phase-uniform LLI collec-
tive radiative excitation eigenmode of H in Eq. (20) reads
�̃ + i(γ̃ + γ ). Here γ̃ represents the change of the resonance
linewidth due to collective effects for the LLI eigenmode
q = 0, and �̃ is the corresponding collective line shift.

We obtain from Eq. (45a) an equation for collective radia-
tion field alone by eliminating ρge with Eq. (46)

R
R̄

= 1 + 2C(
2 + γ 2)


2 + γ 2 + 2|R̄|2 , (48)

where we have introduced a notation similar to that used in
cavity systems [98], and defined the cooperativity parameter
[48,97],

C = 1

2

�̃ + iγ̃


 + iγ
, (49)

which is a measure of the collective behavior in the array and
plays an important role in describing bistability in Sec. IV A 3.

The subradiant resonance narrowing in the transmitted
light through a planar lattice of about 200 atoms was ex-
perimentally measured in Ref. [14] (see Sec. IV A 2). The
observed resonance belongs to the q = 0 LLI eigenmode in
which all the atomic dipoles coherently oscillate in phase,
parallel to the laser polarization. The collective linewidth of
the q = 0 LLI eigenmode for an infinite dipole array at fixed
positions can be analytically calculated, e.g., using diffraction
theory and taking the limit of an infinite lattice, which was
performed in Ref. [95] (for the spacing a < λ)

γ + γ̃ = 3πγ

(ka)2
. (50)

In Appendix A we present a physically intuitive derivation
of the linewidth directly integrating the scattered light in the
spatial representation. The observed transmission resonance
narrowing to 0.68γ [14] is consistent with the collective
linewidth value γ + γ̃ 
 0.52γ of Eq. (50) for a 
 0.68λ,
considering the finite array size and position fluctuations that
broaden the resonance. It is worth noting that according to
Eq. (50), reducing the lattice spacing leads to significant
linewidth broadening and the occurrence of super-radiance in
the same system.

Due to the existence of only the zeroth-order Bragg peak
in propagating light, the highly collimated coherent scattering
from a subwavelength atomic array leads to light propagation
that corresponds to the effective 1D electrodynamics [16–20].
This behavior arises from the array’s single superatom charac-
teristics, which emerge at sufficient distance from a uniformly
excited array, causing the atomic dipoles to appear as if they
are continuously spread across a plane. This principle can
be extended to stacked planar arrays, where each individual
array behaves similarly to a “1D atom” coupled to the other
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arrays through scattered light [17,18,20,99]. A stack of infinite
2D atom arrays therefore emulates regularly spaced atoms in
a lossless 1D waveguide. Finite-size effects and defects due
to missing atoms, that lead to losses, can be incorporated
by introducing phenomenological scattering rates in other
radiation modes [20,53], similar to losses in waveguides and
fibers. In Appendix A, we formally derive the emerging 1D
electrodynamics from the spatial distribution of the scattered
light, employing coarse-graining integration approximations
introduced in Ref. [100]. The derivation relies on two critical
assumptions: the uniform excitation of atoms within each in-
dividual planar array and the separation between layers, which
allows us to disregard the discreteness of the atoms in the light
propagation. The latter assumption holds true for separations
d that satisfy λ � d � √

A (or d � 0.5λ, for a � 0.7λ), where
A is the array area [20]. The scattered light from a planar atom
array, with the effective 1D atomic polarization amplitude
given by the uniform excitation ρge, then satisfy

ε0〈Ê+
s (x)〉 = G(x)D̄ρge, G(x) = ik

2
eik|x|, D̄ = D

A′ ,

(51)

where G(x) denotes the 1D dipole radiation kernel (the
Green’s function of the 1D Helmholtz equation [36]) and D̄
is the density of the atomic dipoles in the array (A′ = A/N is
the area of the unit cell); see Appendix A. In the limit of LLI,
the atomic polarization amplitudes of the stacked uniformly
excited atom arrays obey the dynamics

d

dt
�( j)

ge = (i
1D − γ1D)�( j)
ge + iR(x j ) − γ1D

∑
� 	= j

eik|x j−x�| �(�)
ge ,

(52)

where �
( j)
ge denotes the uniform polarization amplitude ρge of

the jth array in the 1D electrodynamics. The 1D electrody-
namics linewidth γ1D = γ + γ̃ equals the linewidth of the
uniform mode. The detuning 
1D represents the single-atom
resonance shifted by the collective line shift �̃.

Neglecting the discreteness of the atoms in the coarse-
graining approximation in effective 1D propagation represents
a mean-field type of approximation. The effects of reduced
filling factors (defects) [20], scattering to other modes, and
incoherent scattering due to position fluctuations [53] can
similarly be incorporated as a mean-field approximation by
multiplying the collective dipole excitation amplitude by the
filling factor [20] or the ratio of the linewidths between the
coherent scattering to the target mode and total scattering
(Purcell factor) [53]. The latter allows to use Eq. (52) also for
the case of modes with nonuniform phase profiles. Numerical
studies [20] for intralayer spacings close to half a wavelength
confirm the accuracy of the mean-field approximation. This
is interpreted as a result of two beneficial factors. First, al-
though deviations from continuous media electrodynamics
can be detected at such densities, the density is too low to
lead to qualitative failure of the mean-field model [42,101].
Second, unlike in disordered media, in the array atoms are
trapped at specific locations which prevents small interatomic
separations where the 1/r3 DD terms rapidly increase.

2. Transmission and reflection

The efficacy of the single-mode model is effectively
demonstrated through the examination of transmission and
reflection properties in an array. We begin by analyzing the
coherent transmission and reflection of normally incident light
through a single array. We express the reflectance r and the
transmittance t amplitudes in terms of the incident E+(r),
scattered 〈Ê+

s (r)〉, and total 〈Ê+(r)〉 = E+(r) + 〈Ê+
s (r)〉 field

amplitudes

t =
∫

x>0 ê · 〈Ê+(r)〉 d�∫
x>0 ê · E+(r) d�

, r =
∫

x<0 ê · 〈Ê+
s (r)〉 d�∫

x>0 ê · E+(r) d�
, (53)

where the subscript x ≷ 0 represents the integration over a
solid angle enclosing the light component ê propagating to
the region x ≷ 0. Due to the symmetry, the amplitudes satisfy

t = 1 + r. (54)

We consider the more general scenario of incident laser
powers that are not confined to the LLI limit but employ the
semiclassical approximation (Sec. II C) to neglect quantum
fluctuations. Using Eqs. (51) and (50), we obtain for the mode
with a uniform phase profile (q = 0) [97],

r = i(γ + γ̃ )
ρge

R
. (55)

Solving the semiclassical dynamics for the coherence gives
the reflection amplitude as a function of the excited level
population. In Eq. (45a), the effective field Reff depends on
ρge that can be solved for the q = 0 mode [97], with

ρge = iRZ

i(
 − Z�̃) − (γ − Z γ̃ )
, (56)

where the excited level population is encapsulated in Z ,

Z = 2ρee − 1. (57)

In the LLI limit, ρee = 0 in Eq. (56), and

ρge = −R

 + �̃ + i(γ + γ̃ )

, (58)

resulting in the reflection and transmission amplitudes

r = −i(γ + γ̃ )


 + �̃ + i(γ + γ̃ )
, t = 
 + �̃


 + �̃ + i(γ + γ̃ )
. (59)

At the resonance 
 = −�̃ of the LLI q = 0 eigenmode,
Eq. (59) indicates the total reflection r = −1, analogously
to the total reflection of a resonant atom in 1D electrody-
namics [87]. For a square array, there are two values of the
lattice constant for a < λ, a/λ 
 0.2 and 0.8, when �̃ 
 0
and the atomic resonance equals the array resonance [16,102].
The total resonance reflection from a planar array of lin-
ear dipole scatterers has been well established in classical
electrodynamics [103]. More recently, it has gained attention
in nanophotonics [95,104,105]. Experimental studies have
demonstrated near-perfect reflection in small-scale [106] and
large-scale [107] dielectric planar arrays of dipoles, based
on electron beam lithography and silicon cylinder resonators,
respectively. Dipolar Mie resonances of the nanocylinders
achieved an average reflection of 99.7% [107]. The same
dipolar reflection has been highlighted in atomic arrays
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FIG. 2. (Reproduced from Ref. [14]). Cooperative narrowing of
a resonance linewidth below the single-atom quantum limit for the
transmission of light through a near-unity-filled optical lattice of Rb
atoms. The dashed line corresponds to the reference spectrum with
the natural linewidth of a single atom. The measured Lorentzian
linewidth and resonance transmission for the array were 2γ /(2π ) =
4.09(11) MHz (for a single atom 2γ /(2π ) 
 6.06 MHz) and T =
0.23(1), respectively. The inset shows numerically simulated differ-
ential cross section of the scattered field.

[16,17,102]. Increasing disorder in atomic positions has the
effect of decreasing extinction, both in the LLI limit [102]
and at higher intensities [50], eventually reducing the cross-
section below the independent-atom value. The reason is easy
to grasp, since in an infinite regular array the resonance shifts
of each atom caused by the DD interactions with other atoms
are equal, while in disordered ensembles the interaction shifts
within any close atom pair fluctuate and rapidly grow at small
atom separations, resulting in inhomogenously broadened res-
onance frequencies [52]. The degradation of reflectivity due
to fluctuations is estimated to scale as �2/d2 [16], where � is
defined in Eq. (44).

Another thin planar array system closely related to fab-
ricated metasurfaces can be created using transition metal
dichalcogenides, such as MoSe2. These materials are direct
band-gap semiconductors without free charge carriers. In
this context, optical excitations occur as excitons with high
binding energy, leading to high reflectivity [108,109], rapid
switching [110], and the potential for nonlinear responses
[111,112].

In the atomic case Fig. 2 shows the observed cooperative
spectral narrowing in the LLI transmission through a square
array [14], surpassing the quantum-limited Wigner-Weisskopf
linewidth of an isolated atom. Ultracold 87Rb atoms were
trapped in an optical lattice, undergoing a quantum phase
transition from a Bose-Einstein condensate to a Mott-insulator
state. This allowed for precise control over the occupation
numbers per lattice site (see also Sec. III C). Approximately
200 atoms, with a near-unit filling fraction of 0.92, were
probed using an isolated two-level cycling transition, and the
forward or backward scattering was detected. The resonance
(power) transmission T = |t |2 
 0.23 and reflection R =
|r|2 
 0.58 (R + T < 1 because of the finite collection angle)
were not T 
 0, R 
 1 due to the position fluctuations of

the atoms, although the corresponding resonance linewidths,
0.68γ and 0.66γ , qualitatively approached the ideal value ex-
pected for an infinite array of fixed atomic positions [Eq. (50)
for a = 0.68λ]. Increasing the lattice height beyond 300Er de-
teriorated subradiance due to motional spreading of atoms in
the antitrapped electronically excited state 52P3/2 in the lattice
potential. This spreading caused heating and inhomogeneous
broadening from position-dependent atomic resonance shifts
inside each lattice site.

To assess the impact of a regular atomic pattern, the optical
response was compared under two conditions: for randomized
atomic positions along the propagation direction of light, and
for reduced atomic filling factors [14]. Increased randomiza-
tion of the DD interactions between the atoms due to disorder
rapidly reduced reflection [102] and increased the transmis-
sion linewidth beyond the linewidth of an isolated atom. At
low fillings, the linewidth was similar to that of a single atom,
while becoming increasingly subradiant as the site occupancy
approached unity. Additionally, changing the occupancy also
notably shifted the transmission resonance.

While the experiment [14] used a weak light probe, it
is important to consider the optical response beyond the
LLI limit. From Eqs. (45a), (46), and (56), we can find
the leading collective contribution (for |γ̃ |/γ � 1) to the
power-broadened resonance linewidth due to the incident
light intensity I as γPB 
 γ [1 + I/Isat (1 − 2bγ̃ )]1/2, where
b ≡ −Z/(γ − Z γ̃ ) > 0 and Isat is defined in Eq. (18). The
power broadening of independent atoms [71] (correspond-
ing to γ̃ = 0) is enhanced for subradiant states (γ̃ < 0) and
reduced for super-radiant states (γ̃ > 0). However, for subra-
diant (super-radiant) states it remains narrower (broader) than
the power-broadened single-atom linewidth. Using Eqs. (56),
(55), and (54), we obtain reflectivity R and extinction 1 − T
beyond the LLI limit [97]

1 − T = −Z (γ + γ̃ )[2(γ − Z γ̃ ) + Z (γ + γ̃ )]

(
 − Z�̃)2 + (γ − Z γ̃ )2
, (60a)

R = Z2(γ + γ̃ )2

(
 − Z�̃)2 + (γ − Z γ̃ )2
. (60b)

The presence of incoherent scattering, however, implies
R + T < 1. We can formulate a self-consistent theoretical
model that conserves the energy by incorporating the flux of
incoherently scattered light in the semiclassical approxima-
tion, amended by the single-atom quantum contributions in
Eq. (34). From the expression of the scattered light in Eq. (26),
we consider the last term of incoherent scattering [Eq. (27)]
that is generally due to position and quantum fluctuations.
Since in this example we consider atoms at fixed positions,
the incoherent contribution is solely due to quantum fluctu-
ations. In the semiclassical approximation, amended by the
single-atom quantum contributions [Eq. (34)], the normalized
flux for the incoherent light integrated over a closed surface is
given by

Finc =
∫ 〈δÊ−

s (r) · δÊ+
s (r)〉 d�∫ |E+(r)|2 d�

. (61)

The flux contribution in the denominator for an incident plane
wave yieldsA |E+|2 and the flux in the numerator is evaluated
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straightforwardly [97] using Eq. (35),

Finc = 2γ (γ + γ̃ )

(
ρee

|R|2 −
∣∣∣∣ρge

R

∣∣∣∣
2
)

= 2(γ + γ̃ )Im
[ρge

R

]
− 2(γ + γ̃ )2

∣∣∣∣ρge

R

∣∣∣∣
2

, (62)

where in the last line, we have used the stationary solutions
to the coupled many-atom OBEs (45) to eliminate the excited
level population. Summing up the incident, coherent and in-
coherent normalized fluxes equals to one, implying that the
model conserves energy [97]

R + T + Finc = 1. (63)

The experimental result R + T < 1 [14] can imply consid-
erable incoherent scattering that was not collected by the
lens. This is not surprising, given the zero-point position
fluctuations of the atoms in the lattice sites. However, another
potential source is Finc 	= 0, indicating that there were scatter-
ing effects beyond the limit of LLI that are expected to become
more dominant the narrower the subradiant resonance [54,55].

In Ref. [50] light transmission beyond the LLI limit was
analyzed and many-body quantum fluctuations in the coher-
ent transmission (Secs. II F and III B) were identified that
increased with increasing DD interaction, reaching their max-
imum at intermediate intensities I 
 Isat. Outside this regime
and at larger spacings (a � 0.4λ), the semiclassical approx-
imation accurately described coherently transmitted light,
except when exciting subradiant modes. When augmented
with the single-atom quantum contributions, the semiclassical
model also qualitatively reproduced incoherent transmission
in the same regime. Beyond the LLI limit, nonlinearities can
also result in nonuniform excitations including antiferromag-
netic and oscillatory phases, despite a uniform drive [48].

3. Bistable transmission

In the semiclassical approximation, where the quantum
fluctuations are neglected, the transmitted light can exhibit op-
tical bistability and hysteresis [48,97]. Equation (48) provides
the effective field on the atoms (the incident field plus the
scattered light from all the other atoms). Taking the absolute
square of both sides of Eq. (48) yields a cubic polynomial
equation for |Reff |2, which can have either one or two dynam-
ically stable solutions. Interestingly, this formulation closely
resembles the one used to describe bistability in cavity sys-
tems [46,98,113–117]. In both cavity systems and atomic
arrays, the number of stable solutions depends on the coop-
erativity parameter C [97]. For the atomic array, it is given
by Eq. (49) that depends on the collective linewidth and line
shift. In the optical cavity, C = Ng2/2γ κ [46,98], where κ

denotes the cavity linewidth and g the atom-cavity coupling
coefficient. The condition C � 1 corresponds to the strong
coupling regime of optical cavities. In optical cavities, a large
value of C indicates multiple recurrent scattering events of an
atom with light bouncing back and forth between the cavity
mirrors. In arrays in free space, large |C| � 4 represents re-
current scattering events between neighboring atoms at high
densities, with ka ∼ 1 when γ̃ assumes the role of the atom
cloud coupling to the cavity given by Ng [97].

FIG. 3. [Reproduced from Ref. [17] (left) from Ref. [97] (right)].
Left: Reflectivity from a 20 × 20 square array as a function of
the detuning, with a = 0.55λ, nonzero level shifts, and subradiant
linewidth 0.0031γ (Sec. IV C). The reflection is near-perfect at two
values of the detuning on each side of the subradiant resonance with
near-perfect transmission due to the dipoles being excited in the light
propagation direction. The two-mode model of Sec. IV C [Eq. (75)]
(red, dashed curves) agrees well with the full LLI numerics [Eq. (19)]
(blue, solid curves). The narrow (broad) resonance corresponds to
small (large) level shift δ̄/γ = 0.15 (1.1). Right: Bistable light trans-
mission through a square array at different lattice spacings, showing
maximum extinction at any detuning as a function of incident light
intensity (Sec. IV A 3). The extinction remains close to one at the
higher intensities the smaller the spacing. At a = 0.1λ, there are two
stable solutions: “single-atom” (orange squares) and “cooperative”
(blue circles) over a range of intensities.

For sufficiently large lattice spacings, there is only a single
solution for the transmitted light, resulting in no bistability
for any intensity or detuning (see Fig. 3). The maximum
lattice spacing at which the bistable transmission through an
infinite square array can be observed is a 
 0.165λ [48,97].
This value is very close to the analytically derived condition
ka < (π/3)1/2 that can be obtained from Eq. (48) at specific
parameter values. The maximum spacing ka ∼ 1 to observe
bistable behavior corresponds to the atom separation at which
the induced level shift due to the DD interaction exceeds the
single-atom linewidth.

Analogous to the optical cavity bistability [98], the two
stable solutions for the transmitted light can be referred to
as the “cooperative” and “single-atom” solutions due to their
distinct optical responses (Fig. 3). Analytic estimates for these
solutions have been derived in limiting cases from the cubic
equation for |Reff |2 [97]. In the cooperative solution, the atoms
exhibit collective behavior, generating a field that counteracts
the incident light and leading to strong absorption, particu-
larly at higher atom densities [97]. Cooperative behavior is
most evident in the LLI limit, where the effective field Reff ≈
R/(2C + 1) inversely scales with C, resulting in a small Reff

for strong collective behavior. In the single-atom solution,
the atoms saturate, causing weak absorption and rendering
the medium transparent as the atoms respond to the incident
light independently. At high intensities, the effective field
scales linearly with the incident field, Reff ≈ R, and there is
no dependence on the cooperativity parameter C as collective
behavior among the atoms is lost.

4. Transfer matrices in 1D propagation

For stacked (subwavelength) planar arrays of atoms with
sufficiently large spacing between them, the light propaga-
tion through the layers obeys effective 1D electrodynamics
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of Eqs. (51) and (52) (Sec. IV A 1). This holds approximately
true at normal incidence when the nearest-neighbor layer sep-
aration d satisfies λ � d � √

A (or d � 0.5λ, for a � 0.7λ),
whereA is the array area [20]. The transmission and reflection
through the system of stacked arrays may then be solved in
the limit of LLI using transfer matrices. We consider one
polarization component within the array plane and treat light
as a scalar field. When incident light with an amplitude E+

i
arrives from the left, it results in a reflected amplitude E+

r and
a transmitted amplitude E+

t , which are related by the transfer
matrix Tsys of the entire system of stacked arrays[

E+
t
0

]
= Tsys

[
E+

i
E+

r

]
, (64)

where Tsys consists of the transfer matrices for individual
arrays and free propagation between the arrays. The elements
of the inverse of Tsys then give the analytic solutions to the
transmission and reflection amplitudes [118]

tsys = E+
t

E+
i

= 1[
T−1

sys

]
11

, rsys = E+
r

E+
i

=
[
T−1

sys

]
21[

T−1
sys

]
11

. (65)

For instance, a transfer matrix for two arrays at x j and x�

is Tsys = T�(x�, x j )T , where T describes a single array
and the light propagation phases for both the right- and left-
propagating waves between x j to x� are governed by

�(x�, x j ) =
[

eik(x�−x j ) 0

0 e−ik(x�−x j )

]
. (66)

A transfer matrix T for an individual array is derived by
separating the outgoing field amplitudes E+

l on the left side of
the array from those on the right side E+

r , and, similarly, the
incoming (from the left or right) field amplitudes E+

ext,l/r ,[
E+

l

E+
ext,l

]
= T

[
E+

ext,r

E+
r

]
. (67)

We then obtain

T = 1

r + 1

[
2r + 1 r

−r 1

]
, (68)

where Eq. (59) gives the reflection amplitude r and the trans-
mission amplitude 1 + r.

B. Nonuniform excitations

1. Collective eigenmodes and band structure

The study of excitations and band structure in regular 3D
emitter arrays has been a topic of long-standing theoretical
interest [119–126]. In this section we explore collective ex-
citation eigenmodes with nonuniform phase profiles in the
LLI limit beyond the uniform ones of Sec. IV A 1. Driving
nonuniform modes requires some nonuniform coupling mech-
anism of light to atoms, except at higher intensities when
this can occur solely due to nonlinearities, resulting in an
excitation phase diagram [48]. The LLI collective excitation
eigenmodes, collective linewidths, and collective line shits
are obtained from the matrix H [Eq. (21)], as explained in
Sec. II D. According to Bloch’s theorem, in an infinite square
lattice, the eigenmodes are plane waves with the wave vector

q, such that ρ (�)
geν = ρgeνeiq·r� . �

( j�)
νμ + iγ ( j�)

νμ represents the real
and imaginary parts of the dipole radiation kernel [Eq. (12)],
and in an infinite array, they depend on q,

�̃νμ(q) =
∑
� 	= j

�( j�)
νμ eiq·r j� , γ̃νμ(q) =

∑
� 	= j

γ ( j�)
νμ eiq·r j� , (69)

where r j� = r� − r j . Due to the translational invariance, the
reference atom j is arbitrary. The collective line shifts and
linewidths relevant for normally incident light in a square
array can be given as �̃μ(q) and γ + γ̃μ(q) along the atomic
polarization μ, with the uniform phase profile modes corre-
sponding to q = 0. In other symmetries, such as triangular
and triangular-like [127,128], or Kagome [128,129], atomic
dipoles can form more complex nonuniform profiles, involv-
ing in the latter case also Fano transmission resonances even
for normal incidence.

The dipole radiation kernel [Eqs. (6) and (7)] for the scat-
tered light can be expressed in momentum space as [121]

G̃νμ(p) = 1

k2

k2δνμ − pν pμ

k2 − p2 + iε
,

Gνμ(r) =
∫

d3p
(2π )3

eip·rG̃νμ(p), (70)

with infinitesimal ε > 0. The derivation of nonrelativistic
electrodynamics implicitly assumes a high-frequency cutoff.
For example, to ensure that the system satisfies Maxwell’s
wave equation, which requires the contact term in Eq. (7),
it is necessary in the derivation to remove high-frequency
modes |p| � 1/η, where η represents a characteristic length
scale [34]. This is achieved by introducing a cutoff term
exp(−p2η2/4). As a result, the delta function in Eq. (7) is
replaced by a Gaussian of 1/e width η and height π−3/2η−3

[34]. The same cutoff expression regularizes the dipole radi-
ation kernel in an infinite lattice for the calculation of band
structures and excitations [124,126]. By employing this cut-
off, momentum space summations converge rapidly and this
resolves the ambiguity in the summation of infinite series ex-
pressions that are not absolutely convergent. From a physical
standpoint, the Gaussian smearing of the lattice site positions
can be understood as a consequence of a finite-sized harmonic
oscillator potential with a size of η = [h̄/(mωho)]1/2, where
quantum or thermal position fluctuations of the emitter are
determined by the strength of the trap frequency ωho [124].

In a translationally invariant 3D lattice, the scattered field
on atom j from all the other atoms is transformed to the
momentum space by∑

� 	= j

Gνμ(r j�)eiq·r j� = 1

V
∑

j

G̃νμ(q + g j ) − Gνμ(0), (71)

where we have added and subtracted the � = j term on the
right-hand side to complete the Poisson summation formula.
The reciprocal-lattice vectors g j are related to the lattice vec-
tors g j · r� = 2πn, for integer n, andV is the unit cell volume.

The momentum representation of the dipole radiation ker-
nel with the high-momentum cutoff is denoted by G̃∗

νμ(p) =
G̃νμ(p) exp(−p2η2/4). Then its Fourier transform G∗

νμ(r) is
a convolution of Gνμ(r) and the smeared-out Gaussian for
the density profile of the lattice site [the Fourier transform
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of exp(−p2η2/4)]. When the terms on the right-hand side of
Eq. (71) are replaced by their regularized versions G̃∗

νμ(p) and
G∗

νμ(r) [G∗
νμ(0) becomes a Gaussian multiplied by −δνμ/3

from Eq. (7)], the integrals are well defined and can be calcu-
lated [124,130]. Taking the limit η → 0 of

∑
� 	= j

Gνμ(r j�)eiq·r j� 
 ep2η2/4

V
∑

j

G̃∗
νμ(q + g j ) − G∗

νμ(0)

(72)
yields the solutions for fixed atomic positions (η � 1/k),
while the effect of position fluctuations due to finite confine-
ment can be estimated by a finite value of η.

Near planar surfaces it is customary to expand the spher-
ical wave of the dipole radiation kernel, Eq. (7), in a
plane wave basis; see Appendix D. In a 2D planar array,
this provides Eqs. (71) and (72) in a more suitable form
when we replace G̃νμ(p)/V and G̃∗

νμ(p)/V by G̃‖
νμ(p)/A′

and G̃‖∗
νμ(p)/A′, respectively. Here A′ is the unit cell area,

G̃‖∗
νμ(p) = G̃‖

νμ(p) exp(−p2η2/4), and G̃‖
νμ(p) is the Fourier

transform of the radiation kernel on the array plane

Gνμ(r) =
∫

d2p‖
(2π )2

eip‖·rG̃‖
νμ(p), (73)

where p‖ = (py, pz ) denotes a wave vector on the array plane.
Appendix D presents the expressions for collective linewidths
and line shifts in Eqs. (D5). The technique is adapted to
the 2D planar arrays in Ref. [130] where the appropriate
regularization cutoff integrals of the radiation kernel were
evaluated. The method offers a rapidly converging sum for
the collective radiative linewidths and line shifts. It can also
be easily extended to non-Bravais lattices [130].

2. Topological bands and edge states

Planar arrays of atoms interacting with light can exhibit
topologically protected quantum optical behavior, similar to
topologically protected photonic systems found in photonic
crystals and metamaterials composed of resonator arrays
[131,132]. However, unlike topological phases of matter ob-
served in solid-state crystals [133] or cold-atom systems
[134], the presence of light-matter coupling introduces dis-
sipation due to light scattering and 1/r long-range DD
interactions.

Topologically nontrivial band structures in the limit of LLI
have been explored in honeycomb lattices [135,136], non-
Bravais square lattices [130,135], and triangular lattices [130]
by breaking the time-reversal symmetries with atomic level
splittings of the excited electronic levels of the J = 0 → J ′ =
1 transition. Two of these transitions occur within the array
plane, leading to Bloch bands with nontrivial Chern numbers,

C = 1

2π i

∫
d2q

[
∂qx Ay(q) − ∂qy Ax(q)

]
, (74)

where Aμ(q) = 〈n(q)|∂qμ
|n(q)〉 is the Berry connection,

|n(q)〉 is an eigenstate, and the integration is over the Brillouin
zone. Generally, the bands are not continuous due to the Bragg
resonances and the calculation of the Chern numbers must
avoid the divergences. The band structure can be evaluated
using the techniques explained in Sec. IV B 1.

FIG. 4. (Reproduced from Ref. [135]). The dynamics of atomic
polarization magnitude on a hexagonal array with the lattice spacing
a/λ = 0.1 when two different collective eigenmodes (in different
rows) located at the edge of the array are resonantly targeted by
driving a single edge atom (indicated by the star in the leftmost
panels). Both cases demonstrate chiral clockwise propagation, as
indicated by snapshot images, and the steady-state profile at the
edge. However, only one of the edge states (the bottom row) exhibits
topological robustness against defects and dissipation, despite the
sum of the Chern numbers of the lower bands being equal in the
both cases.

Simulations conducted on arrays with small spacings of
a/λ = 0.05 and 0.1 have revealed the presence of topo-
logically robust edge mode propagation, associated with
strongly subradiant eigenmodes outside the light cone |q| >

|k| [135,136]. These edge modes offer appealing features
such as reflection-free unidirectionality and resilience against
defects (Fig. 4). Interestingly, the presence of the long-range
interactions were found to violate the standard bulk-boundary
relation and only some of the edge states showed topological
robustness, despite the band Chern numbers [135].

C. Atomic level shifts and cooperative transparency

In Sec. IV A 2, we examined the case of light with spatially
uniform phase profile normally incident on the array when
the excited atomic levels are degenerate. This was analyzed
in the single-mode model using a collective “coherent in-
plane” mode that describes transmission and reflection. By
introducing nondegenerate atomic level energies through a
uniform level shift, the light can also couple to a collective
“coherent perpendicular” eigenmode, where all the atomic
dipoles oscillate in phase perpendicular to the plane [17,18].
In the limit of LLI, this system is accurately described by
an effective two-mode model, where each mode represents
one of the perpendicular uniform collective eigenmodes. The
two-mode superatom model extends beyond the conventional
Lorentzian profile of the full reflection of the single-mode
superatom, introducing also a narrow transparency window
(Fig. 3).

In short 1D atom chains, subradiant eigenmodes can be
excited by strong illumination [54,137], and this excitation is
further enhanced by a spatially varying level shift along the
chain [138–140]. In planar arrays, achieving phase matching
between the incident field and deeply subradiant eigenmodes
is more challenging due to the variation of field amplitude
across the entire 2D plane. However, by coupling the two
modes in a planar array through a uniform level shift, it
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becomes possible to selectively excite a subradiant mode
whose resonance linewidth approaches zero in the infinite
lattice limit. In numerical simulations up to 98%–99% of the
total excitation at the resonance occupies a single many-atom
subradiant eigenmode [17,18]. This behavior resembles giant
spatially extended subradiance observed in strongly coupled
planar scatterer arrays [13].

We consider a square lattice in the yz plane and the y-
polarized light propagating along the x direction. In the case
of degenerate excited states in the J = 0 → J ′ = 1 transition,
the system exhibits isotropy, and any orientation of the orthog-
onal basis forms an eigenbasis. However, introducing linear
Zeeman shift (along the z axis) breaks this symmetry, and
the dipoles pointing along the y or x direction no longer form
an eigenbasis or evolve independently. The dynamics can be
understood as follows: In the degenerate case, the m = ±1
atomic polarization components represent equal and opposite
circulations, resulting in a linear net polarization along the y
axis. The level shift tunes the m = ±1 components out-of-
phase, leading to elliptical polarization composed of both the
y and x linear polarization components [141]. In the limiting
case, the y component completely disappears.

In this context ρgey (ρgex) denotes the collective in-plane
(perpendicular) mode where the atomic dipoles oscillate along
y (x) axis. For an infinite array, these are exact collective
eigenmodes ofH [Eq. (21)] (the eigenmodes in the absence of
Zeeman shifts); see Sec. II D. However, due to the level shifts,
the light driving ρgey becomes coupled to ρgex. The dynamics
in the LLI limit, given by Eq. (20), in the two-mode model
approximation reads [17,18]

ρ̇gex = (i
P − iδ̃ − υP )ρgex − δ̄ρgey, (75a)

ρ̇gey = (i
I − iδ̃ − υI )ρgey + δ̄ρgex + iR, (75b)

where υP and υI are the collective linewidths of ρgex and
ρgey, respectively, 
P/I = 
0 + δP/I are the laser detunings
from the mode resonances, and δP/I are the collective line
shifts. The excited level shifts δ̃ = (δ+ − δ−)/2, δ̄ = (δ− +
δ+)/2 in Eq. (75), which are encapsulated in δH in Eq. (20),
break the isotropy of the transition via δ̄, and allow dipoles
to be excited parallel to the light propagation by coupling
ρgex to ρgey.

For an infinite subwavelength lattice, a uniform mode
can only emit perpendicular to the array. Since no emission
occurs along the dipole axis, the perpendicular mode ρgex

cannot scatter in that direction, resulting in strong subra-
diance, with limN→∞ υP = 0 in the limit of infinite atom
number N , despite the eigenmode residing inside the light
cone. Numerically, υP/γ 
 N−0.9 [17], which is in contrast
to the behavior of the most subradiant eigenmode of the sys-
tem, whose linewidth in typical situations narrows as ∝ N−3

[142,143]. Even in a shallow lattice of 50Er (see Sec. III C),
υP 
 0.15γ for N � 100 [17].

The steady-state solutions of Eqs. (75) read

ρgey = ZP(
0)R
δ̄2 − ZP(
0)ZI (
0)

, ρgex = −i
δ̄ρgey

ZP(
0)
, (76)

where ZP/I (
0) ≡ 
0 + δP/I − δ̃ + iυP/I . Without level shifts
(δ̄ = δ̃ = 0), ρgey trivially reduces to the single-mode model
of Eq. (58), with a Lorentzian profile and total resonance

reflection (υI = γ + γ̃ of Sec. IV A 2). Forward and back-
ward scattering is solely produced by the in-plane amplitude
ρgey. The steady-state reflection amplitude is shown in Fig. 3
and is analytically obtained from Eqs. (55) and (76):

r = iυI ZP(
0)

δ̄2 − ZP(
0)ZI (
0)
. (77)

Since limN→∞ υP = 0, the reflection is always perfect |r|2 =
1 at two values of the detuning 
0 + δP − δ̃ = δd ± (δ̄2 +
δ2

d )1/2, where δd = (δP − δI )/2. This happens on each side
of the detuning that gives the complete transmission r = 0
at the resonance 
0 + δP − δ̃ = 0 of the perpendicular mode
[17,18]. The shifts induced by ac Stark effect of lasers or
microwaves [144,145] can be rapidly turned off once the
system has reached a steady state with the population in the
subradiant mode ρgex. In the absence of the level shifts, ρgex

is no longer coupled to ρgey in Eq. (75) and the decay is
determined by the subradiant perpendicular mode with the
narrow linewidth υP.

The array exhibits dynamics similar to that of the elec-
tromagnetically induced transparency (EIT) of independently
scattering atoms [146]. The two-mode model accurately pre-
dicts the behavior of the arrays (see Fig. 3) for given values
of υP/I and δP/I . The coherent in-plane mode corresponds to
a “bright” mode of the EIT and the coherent perpendicular
mode represents a deeply subradiant “dark” mode. In the
independent-atom EIT, the single-atom linewidth defines a
spectral transparency window where the absorption is sup-
pressed in an otherwise opaque medium. In the many-atom
array, the transparency window is determined by the ultra-
sharp collective resonance υP and the level shift δ̄ serves to
control the population of the dark (subradiant) mode, similarly
to the coupling field control in the EIT [147]. The emergence
of two full reflection maxima in Eq. (77) can be understood
as a resonance splitting due to the effective “coupling field” δ̄,
similarly to the EIT doublet splitting. At a 
 0.54λ, we have
δP 
 δI and the resonances are symmetrically split at ±δ̄.

For finite-size arrays, for which υP 	= 0 but small, the
reflectivity has a simple expression for δP 
 δI . At the res-
onance of the perpendicular mode [17]

r ≈ − υIυP

δ̄2 + υIυP
. (78)

The transmission is close to one for δ̄2 � υPυI . As shown
in Fig. 3, while for large δ̄ the resonance width is [(υ2

I +
4δ̄2)1/2 − υI ]/2, for small δ̄ the resonance narrows and even-
tually only depends on the very narrow linewidth υP, being a
direct manifestation of subradiance [18].

The presence of a narrow resonance results in significant
group delays for a transmitted pulse due to its sharp dispersion
[17,18]. The EIT magnetometry [148] relies on the signifi-
cant dispersion that is sensitive to the magnetic field, while
simultaneously suppressing absorption. The analogy of the
array with the EIT suggests potential applications in coop-
erative magnetometry [18]. The accuracy of the cooperative
magnetometer, however, is not limited by the single-atom
resonance linewidth γ , but rather by the much narrower col-
lective linewidth υP. Sharp transmission variation in stacked
layers has also been proposed as a band-stop filter [149].
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1. Parity-time symmetry and coherent perfect absorption

The two-mode model in Eq. (75) immediately allows to
identify exceptional points when the decay becomes non-
exponential by neglecting all the other modes in H + δH
[53]. Assuming δP 
 δI (at a 
 0.54λ), the two eigenmodes
coalesce at |δ̄| = |υI − υP|/2 at which point the two-mode
H + δH possesses only one right eigenmode. The two-mode
model also demonstrates spontaneous breaking of parity-time
(PT ) symmetry when scattering from the collective bright
in-plane mode balances loss from the collective dark perpen-
dicular mode [53]. In this scenario, the array is symmetrically
illuminated from both directions, and the total coherently scat-
tered light exactly vanishes when thePT symmetry is broken,
resulting in coherent perfect absorption with all the scattered
light becoming incoherent. The incoherent scattering, e.g.,
due to position fluctuations, can be included in the mean-field
approximation of 1D light propagation (Sec. IV A 1).

D. Arbitrary angle of incidence

So far we have focused on the case of normally incident
light onto the array. However, the analysis becomes more
intricate when considering arbitrary angles of incidence, as
discussed in Refs. [16,20]. A simplified scenario arises when
the dipoles are excited solely in the plane of a square array by
a tilted incident field projected onto the lattice plane, leading
to the excitation of higher q wave vector modes [48,97]. In
this case the Rabi frequency R(�)

ν = Reiq·r� and the atomic
polarization density ρ (�)

ge = ρgeeiq·r� in Eq. (45) acquire only
phase variations. This situation can arise, e.g., with an isolated
two-level transition within the lattice plane. The excitation of
different q modes is associated with changes in the bistability
conditions (Sec. IV A 3) and phase transitions [48].

We begin by examining a single array in the LLI limit
and separate the wave vectors of the incident plane wave,
k = k⊥ + k‖, into those parallel to the yz lattice plane, k‖,
and those perpendicular to it, k⊥ = |k⊥|êx. The excitation
eigenmodes for which |q| > |k| are outside the light cone
and cannot be directly coupled to light in an infinite lattice at
any incident angle, due to the rapid phase variation required.
Equations (45) are valid for finite wave vector excitations
q = k‖ when we substitute R(�)

ν = Rνeiq·r� , R̄(�)
ν = R̄νeiq·r� ,

and ρ (�)
geν = ρgeνeiq·r� . However, Eq. (46) is replaced by the

matrix equation [20]

R̄ν = Rν + [�̃νμ(q) + iγ̃νμ(q)]ρgeμ

= Rν + α

ξ
[�̃νμ(q) + iγ̃νμ(q)]R̄μ, (79)

where �̃νμ(q) and γ̃νμ(q) are defined in Eq. (69). In Eq. (79)
we have introduced the atomic polarizability

α = − D2

h̄ε0(
 + iγ )
, (80)

representing in the limit of LLI the ratio of the induced atomic
dipole to the effective field of the incident light plus the dipole
radiation from all the other atoms in the array.

For the linearly responding atoms, it is then straightforward
to formally solve Eq. (79) in the matrix form [20],

R̄ =
{

1 − α

ξ
[�̃(q) + iγ̃ (q)]

}−1

R, (81a)

ρgeν = ê∗
ν · α

ξ

{
1 − α

ξ
[�̃(q) + iγ̃ (q)]

}−1

R. (81b)

The excitation wave vector, q = (k⊥, k‖) (assuming only
one Bragg peak is excited; for a more general case, see
Appendix D), is determined by the incident angle. In the
case of nonnormal incidence and for given q, the matrix
[�̃(q) + iγ̃ (q)] generally exhibits three distinct resonances,
each with its own collective linewidth [20]. The atomic po-
larization acquires an x component that is decoupled from
the resonances in the yz lattice plane. When considering a
general incident angle, two elliptically polarized eigenmodes
are excited in the yz plane (even for a square lattice) with
distinct resonances.

The lattice plane component, k‖, also has an impact on
the light propagation between stacked atomic layers. The
coupling of 1D electrodynamics between the planar arrays is
altered by the phase variation within each plane. In principle,
the derivation could be conducted similarly to the case with-
out phase variation in Appendix A, with the exception that
Eq. (A1) is replaced by a matrix equation that also incorpo-
rates the momentum contribution from k‖ [20],

ε0ê∗
ν · 〈Ê+

s (r)〉 =D
∑

j

eik‖·R j ê∗
ν · G(R j )êμ ρgeμ = TνμDρgeμ,

(82)
where R j = x êx − y j êy− z j êz defines the vector joining the
jth atom and the observation point (x, 0, 0). From Eq. (81),
we obtain forward and backward scattered fields for suf-
ficiently large |x|, with, e.g., the forward scattered Rabi
frequency Rs

Rs,ν = ê∗
ν · Tα

{
1 − α

ξ
[�̃(q) + iγ̃ (q)]

}−1

R. (83)

By comparing with the numerical results, it was possible in
Ref. [20] to establish an analytic expression for T (x > 0),

T = ik

2A′ R(−φ)M(θ )R(φ)eik⊥x, (84)

where R(φ) denotes the rotation matrix around the x axis with
an angle φ and

M(θ ) =
⎛
⎝sin2 θ/ cos θ − sin θ 0

− sin θ cos θ 0
0 0 1/ cos θ

⎞
⎠, (85)

where the coordinates (θ, φ) are determined by the
incident light wave vector k = cos θ êx + sin θ cos φ êy +
sin θ sin φ êz. Equation (84) represents projection to the sub-
space orthogonal to the light propagation k, forcing the
radiated field to be transverse, with the density of the atomic
dipoles adjusted by the viewing angle θ . This yields a compact
expression that is also derived in Appendix D

T = ik

2A′ cos θ
P⊥(k)eik⊥|x|, (86)
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FIG. 5. (Reproduced from Ref. [20]). Reflection R = |r|2 (solid
red line), transmission T = |t |2 (dotted blue line), and R + T (dashed
black line) as a function of detuning for nonnormal incidence in an
infinite square lattice. The lattice spacing a = 0.5λ, the incident an-
gle with the normal θ = 0.4π , and the angle of k‖ with the lattice axis
φ = π/8. Due to the nonnormal incidence and φ 	= nπ/4 (n integer),
R never reaches one and there are two distinct resonances represent-
ing the eigenvalues (−0.325 + 0.389i)γ and (0.399 + 3.00i)γ , but
no third one since the incident light is polarized along the array plane.

where P⊥(k) denotes the projection operator [20]. An exam-
ple case is shown in Fig. 5.

By carefully selecting the propagation direction and polar-
ization of light, it is possible to find applications in canceling
density-dependent collective resonance shifts caused by DD
interactions, which can have a significant detrimental effect
in precision spectroscopy [20]. Transfer matrix analysis of
Sec. IV A 4 can be used to estimate the resonance shift of
the peak transmission through stacked arrays for normal in-
cidence δ 
 cot(2kd )γ1D/2 [118]. When the layer spacing is
close, but not exactly equal, to an integer multiple of half of
the wavelength, the shift diverges. This can be understood as
a resonance shift due to cavity-like effects, where each pair
of successive layers defines a cavity. However, the shift is
affected by the angle dependence of the collective mode cou-
pling, resulting in specific incident angles where it vanishes.

1. Arbitrary angle of incidence and level splitting

In the previous section, we assumed that the J = 0 → J ′ =
1 transition is isotropic due to the degeneracy of the excited
levels. However, in Sec. IV C it was demonstrated that the
atomic polarization can acquire a component parallel to light
propagation even for normally incident light beam when the
degeneracy is broken. The findings presented in Sec. IV D,
which pertained to arbitrary angles of incidence, can be ex-
tended to the case of anisotropic polarizability by replacing
the scalar polarizability α in Eqs. (81) and (83) with a 3 × 3
tensor polarizability α [20].

E. Wave front engineering

Thin layers of artificially fabricated metamaterials, known
as metasurfaces, have been developed to manipulate and con-
trol classical light propagation [21–24]. Unlike in bulky 3D
metamaterials, absorption is suppressed and microscopic pat-
terned surface coating can introduce abrupt phase modulation
on transmitted and reflected light. Metasurfaces function as

optical elements, enabling various beam-shaping capabilities
without altering the material’s geometric shape. Nevertheless,
metasurfaces face certain constraints in their functionality.
Fabrication irregularities result in inhomogeneous resonance
broadening, and preventing absorptive losses at optical fre-
quencies poses a significant challenge. Furthermore, their
operation is primarily confined to the classical domain, with
limited quantum capabilities [25].

Atomic planar arrays are more amenable to quantum-
optical control and offer other key advantages. Here we
consider atomic single and bilayer arrays as nanophotonic
surfaces for wave front control. A lattice excitation can be
engineered to target some superposition of transverse modes
ϕn(ρ, φ), which form some suitable basis in the polar coor-
dinates, subsequently affecting coherent transmission. In the
paraxial approximation [see Eq. (51)] normal to the array

ε0〈Ê+
s (x)〉 = ik

2

∑
n

cnϕn(ρ, φ)eik|x|〈P̂+(r)〉. (87)

Moreover, two independent light polarization components in
transmission realizes an optical Jones matrix. In Ref. [150] a
single layer with excited-level Zeeman shifts (see Sec. IV C)
was proposed as polarizer, allowing the transmission of only
one of the polarization components. However, implementing
an optical wave plate with a single layer results in unavoidable
losses in transmission [150].

Cooperatively interacting planar arrays of atoms can be en-
gineered to exhibit collective excitation eigenmodes that show
magnetic responses at optical frequencies, despite individual
atoms having negligible coupling to the magnetic component
of light [151,152]. Coupling light, in particular, to bilayer
arrays that can have different unit cell orientations allows
great engineering flexibility. It becomes possible to precisely
control the phase, polarization, and direction of transmitted
light, and to realize Huygens’ surfaces [145,151,153]. Huy-
gens’ surfaces are based on the Huygens’ principle that every
point in a propagating wave acts as an independent source of
forward-propagating waves [154,155]. These surfaces can be
physically realized by implementing fictitious sources of wave
front based on Huygens’ concept, using crossed electric and
magnetic dipoles [156–158]. As any wave can be represented
by the Huygens’ principle, achieving complete control over
the forward-propagating wave front is theoretically possible
through a Huygens’ surface.

A collective LLI eigenmode consisting of an effective mag-
netic dipole can be formed, e.g., by arranging four atoms at the
corners of a square unit cell, with electric dipoles oriented in
a circular fashion resembling a circular loop of a continuous
azimuthal electric polarization density [151]. Such a unit cell
results in a net zero electric dipole and nonvanishing per-
pendicular magnetic dipole. The overall array eigenmode can
approximate a phase-uniform repetition of coherent magnetic
dipoles in each unit cell. The LLI eigenmode with a uniform
phase profile, considered in Sec. IV A, exhibits even symme-
try between forward and backward scattered light 〈Ê+

s, f (r)〉 =
〈Ê+

s,b(r)〉. However, for the mode composed of magnetic
dipoles pointing along the bilayer plane, the field is anti-
symmetric around the lattice plane, leading to −〈Ê+

s, f (r)〉 =
〈Ê+

s,b(r)〉. For a uniform distribution of effective magnetic
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dipoles m =Mêz we obtain the reflection and transmission
amplitudes [analogously to those in Eq. (59)]

r = iγ M
1D


M
1D + iγ M

1D

, t = 
M
1D


M
1D + iγ M

1D

, γ M
1D = μ0kM2

2A′h̄
,

(88)

where γ M
1D is the collective eigenmode linewidth with the area

density M/A′ of magnetic dipoles [the magnetic analog of
Eq. (A10)] and 
M

1D is the laser detuning from the collective
mode resonance. The transmission retains the same form as in
Eq. (59), while the resonance reflection r = −1 in Eq. (59)
changes to r = 1 in Eq. (88). This represents a magnetic
mirror, observed in metal [159,160] and dielectric [161,162]
structures. Due to the sign change, the conventional half-wave
loss of fields near the array interface is completely eliminated.

Despite having different resonance frequencies, the col-
lective electric and magnetic dipole modes, responsible for
reflection and transmission of Eqs. (59) and (88), can be
simultaneously excited through level shifts incorporated in
δH in Eq. (20), enabling the realization of a Huygens’ sur-
face [145,151,153]. Due to the different phase shifts for
the reflected waves, the scattered light from the two modes
can destructively interfere in the backward direction, while
constructively interfering in the forward direction. This con-
structive interference approximately compensates for any
reduction in transmission near the resonance, resulting in |t | 

1 at any frequency, while allowing the phase of the total light
amplitude to vary over the full 2π range. The simultaneous
excitation of these two collective modes requires synthesizing
spatially nonuniform ac Stark shifts for the excited electronic
levels, which can potentially be achieved, e.g., in Sr atoms
with off-resonant 5s4d 3D1 → 5s6p 3PJ transitions, while the
probe is tuned to the 5s5p 3P0 → 5s4d 3D1 transition [145].
However, the procedure can be simplified by the observation
that crossed electric and magnetic dipoles are not strictly
necessarily for a Huygens’ surface; what matters is the si-
multaneous excitation of collective uniform modes with even
and odd parities that may be formed by any combinations of
electromagnetic multipoles, and can be achieved even without
externally induced level shifts [163].

A functional Huygens’ surface serves as a versatile tool for
wave front engineering. It can be used as an effective variable
wave-plate by introducing a delay in the incoming y-polarized
light, which couples to the Huygens’ surface resonance, rela-
tive to the z-polarized light, which does not [57]. Applying
linear level shift gradients can generate beam-steering, fo-
cusing, or can transform a Gaussian beam to a Poincaré
beam [145].

F. Photon storage

Planar atomic arrays offer great potential as a platform for
quantum networks [164–166] due to the presence of strongly
subradiant states and highly collimated coherent light emis-
sion. In Sec. IV C we discussed how in the steady state nearly
the entire optical excitation can be driven to a deeply sub-
radiant collective excitation eigenmode [17,18]. To achieve
reversible quantum memory of light and high-fidelity storage
of a single photon in a planar array, efficient absorption of a
time-dependent single-photon pulse and subsequent storage

of the absorbed pulse need to be considered. However, in
a single-layer 2D lattice, efficient absorption or emission of
light occurs symmetrically in both forward and backward
directions. The maximum absorption efficiency for a normally
incident unidirectional light pulse is 0.5. This can be un-
derstood by considering a plane wave exp(ikx) = cos(kx) +
i sin(kx). In this case, at the lattice position x = 0, only the
symmetric component cos(kx) couples to the atoms, resulting
in a loss of 50% of the intensity [167].

In a general scheme, the limits of storage error in a planar
array for a photon arriving by some nonspecific mechanism
were analyzed in Ref. [96]. The analysis considered a sub-
wavelength square array composed of three-level atoms with
the electronic ground state |g〉, excited state |e〉, and “storage”
state |s〉. The incoming photon couples |g〉 to |e〉, while a
coherent field drives the transition between |e〉 and |s〉. The
minimum retrieval/storage error was calculated by varying
the waist of a Gaussian beam-shaped incident photon. The
main sources of error were identified as the fraction of the
energy carried by the beam beyond the array boundaries and
the range of wave vector components that reach the target
mode [96]. For the beam waist values w0 less than the array
size, the latter scales as ∝(λ/w0)4. After optimizing the beam
waist, the leading term for the error for the atoms at fixed po-
sitions scales with the atom number as ∝(log N )2/(4N2). For
a 4 × 4 array, this corresponds to an efficiency above 99%. In
a dilute disordered ensemble of three-level atoms, the storage
efficiency depends on the optical depth D ∼ σ0N/w2

0, where
σ0 = 3λ2/(2π ) denotes the resonance cross section of a single
atom [168]. Only values close to D ∼ 600 (or N ∼ 106–107)
provide similarly small errors [96]. The storage efficiency was
found to deteriorate as a function of the position fluctuations
[see Eq. (44)] as ∝ �2/d2.

Highly excited Rydberg states offer the possibility of gen-
erating a single excitation in an atomic array [89,169–172];
see Sec. IV G. Within a sufficiently small spatial region de-
termined by the blockade radius a single excitation could be
stored and released as a photon, as DD interactions between
the atoms can suppress more than one Rydberg excitation. Al-
ternatively, the approach proposed in Refs. [164,173] involves
a single isolated atom in a Rydberg state. This excitation
then is transferred to an array through a resonant exchange
interaction with a collective Rydberg state of the array atoms,
employing techniques such as adiabatic passage. A complete
Rydberg blockade among the array atoms is not necessary.
The photon could subsequently be stored in the array or the
array could serve as a collimated single photon source, or
a quantum antenna [164]. Here a localized source atom can
create an excitation with a nonuniform phase profile, which
could be compensated by introducing spatially nonuniform
detunings in the array atoms [164]. If only small localized
region of the array is excited by a single photon, the excitation
can be transferred to a perpendicular mode by rotating the
dipoles, as described in Sec. IV C and the following para-
graph. The localized excitation then propagates across the
array and can probabilistically reach the deeply subradiant
perpendicular eigenmode with a uniform phase profile across
the entire array [58].

The storage of a photon pulse in a deeply subradiant eigen-
mode, where dipoles oscillate in phase perpendicular to the
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array plane (Sec. IV C), has been examined in Ref. [57].
To address the challenge of simultaneously suppressing both
forward and backward scattering through interference with
the incident beam, the pulse was directed through a beam
splitter to symmetrically illuminate the lattice from both sides.
This configuration enables the lattice to couple to a stand-
ing wave cos(kx) at x = 0, minimizing losses. The storage
process follows a similar principle to driving the subradiant
perpendicular mode described in Sec. IV C. The incident light
directly excites the in-plane mode that is polarized in the same
direction. However, since the degeneracy of the excited elec-
tronic levels is lifted through optical- or microwave-induced
ac Stark shifts, the in-plane mode is coupled to the perpen-
dicular mode. This facilitates the excitation transfer to the
deeply subradiant phase-uniform perpendicular mode. Once
the photon is absorbed, the level shifts are rapidly removed,
and the degeneracy is restored, resulting in the storage of
the photon in a subradiant state. A closely related storage
scheme was examined in Ref. [174] (see also Ref. [175]),
where the excitation was coupled to a checkerboard pattern
of atomic level shifts. Such a nonuniform profile of atomic
resonance frequencies couples the incident light to a collective
eigenmode with antiferromagentic spin pattern [48]. In the ab-
sence of atomic level shifts, the subradiant antiferromagnetic
eigenmode can lie outside the light cone.

To establish a quantum network using atomic planar arrays
and enable coherent quantum links between them, it is impor-
tant to achieve directional control over efficient absorption,
storage, and release of photons. The need to illuminate from
both sides the array [57,174] can be overcome by consid-
ering bilayer arrays [167]. In a bilayer array, the collective
eigenmodes of interest are characterized by atoms within each
layer oscillating in phase, while the top and bottom layers
exhibit either symmetric (in-phase) or antisymmetric (π out-
of-phase) modes. The control of emission and absorption
directionality follows from the different parity of these modes:
the symmetric mode, with even parity, scatters equally in
both directions, while for the antisymmetric mode, with odd
parity, the scattering in the forward and backward direction is
π out-of-phase. As a result, scattering losses are suppressed
during photon absorption [167]: in the forward direction, the
symmetric and antisymmetric modes are in-phase, and de-
structively interfere with the incident photon [see Eqs. (51)
and (58)], while in the backward direction the scattered light
from these modes destructively interferes. The storage process
after absorption follows again the same principle of trans-
ferring the photon to the subradiant perpendicular mode as
described in Sec. IV C and above. Numerical simulations on
a 20 × 20 × 2 array for a 
 0.91λ and a layer separation
d = 0.25λ demonstrated a storage efficiency of 0.93. For d =
0.9λ, an efficiency of 0.85 was achieved. The perpendicular
mode, uniform in each layer, consists of symmetric and anti-
symmetric modes. By adjusting the relative phase between the
symmetric and antisymmetric amplitudes using an induced
atomic level shift between the two layers, the excitation can
be transferred back to the in-plane modes in such a way that it
is emitted in the forward direction, backward direction, or an
arbitrary combination of the two, independent of the incident
beam direction. The process is qualitatively described by four
eigenmodes.

G. Dipole blockade and nonclassical light emission

Quantum solutions for stationary atoms (Secs. II B and
II G) demonstrate nonlinearities at the few-photon level.
Strong light-mediated interactions between the atoms in a
planar array lead to correlated responses, suppressed joint
photon detection events, and dipole blockade [176,177].
These nonlinearities can be further enhanced by involving
Rydberg excitations coupled to optical transitions [170–172],
as demonstrated in recent experiments [89].

A well-known result of quantum optics for a two-level
atom [178–182] reveals quantum correlations g2(0) < g2(τ )
in the joint probability of two photon detection events occur-
ring τ apart

g2(τ ) ≡ lim
t→∞

〈 : n̂(t + τ )n̂(t ) : 〉
〈n̂(t )〉2

, (89)

where : : denotes normal ordering and n̂(t ) is the photon
number operator. The emission times of two back-to-back
photons are modified: two photons cannot closely follow each
other, demonstrating the particlelike behavior of light. This is
a direct consequence of the two-level nature of the atom, as
the electron, after each photon emission, returns to the ground
state and cannot reemit until excited by laser light again.

Strong light-mediated interactions between atoms are re-
quired for these correlations to persist in a many-atom system
because, in a noninteracting ensemble, atoms emit photons in-
dependently and emission events from different atoms quickly
wash out any nonclassical correlations. At sufficiently small
lattice spacings (a � 0.15), multiple scattering events give
rise to a correlated response, enhancing the nonclassical na-
ture of light emission [176,177]. Photon emission events
become synchronized, and the atomic ensemble behaves as a
single superatom. The dipole blockade, which inhibits transi-
tions into all but singly excited states, can then survive over
a collective correlated state with a size of about λ [177].
The dipole blockade is analogous to the microwave dipole
blockade in Rydberg atoms [183–189].

Due to the syncronized emission events in the atomic array,
the functional form of g2(τ ) [178,190] for a single isolated
atom remains valid for the entire array in the strongly corre-
lated regime of interest [177]

g(γ ,κ )
2 (τ ) ≡ 1 − e−3γ τ/2

(
cosh κγ τ + 3

2

sinh κγ τ

κ

)
, (90)

where κ ≡ 1
2 [1 − 8Iin/Is(γ )]1/2, and Iin and Is(γ ) are the in-

cident light and saturation [Eq. (18)] intensities, respectively.
In the many-atom case, the single-atom result (90) is modified
by multiplying Iin by the projection of the incident field onto
the excited LLI eigenmode, by an overall normalization of
light emission at zero delay, and by the replacement of the
single-atom linewidth γ by the linewidth υ of the underlying
LLI collective excitation eigenmode in Eq. (90) and in Is(γ )
of Eq. (18) [177]. As a result, the nonclassical nature of emit-
ted light, conveyed by photon antibunching, is significantly
enhanced by driving a subradiant collective excitation with
a narrow linewidth, surpassing the performance of a single
isolated atom. Additional nonlinearities in a bilayer array can
further suppress joint photon detection events [191].
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The statistics of emitted photons from a planar array
were calculated using quantum trajectories in Ref. [192],
considering the scenario where the incident light is indis-
tinguishable from the scattered photons. It was observed
that the transmitted light exhibited photon bunching, while
the reflected light at low intensities displayed photon anti-
bunching. Interestingly, this work also demonstrated quantum
measurement-induced back-action on the state of the array:
when a photon is detected in the forward direction, it projects
the atoms into a collective state with reduced reflectivity and
increased excited level population. This, in turn, enhances
the probability of subsequent photon emissions and leads to
photon bunching.

Strong nonlinear interactions were successfully achieved
by utilizing Rydberg states, which enabled coherent control
through dipole blockade, leading to the switching of the planar
atomic array between transmission and reflection of light [89].
This experimental breakthrough was preceded by theoretical
investigations [170–172]. In the experiment, a subwavelength
planar array consisting of up to 1500 87Rb atoms in a Mott-
insulator state of an optical square lattice with a single atom
per lattice site was controlled by using a single ancilla atom
excited to a Rydberg state. The ancilla atom within the array
was prepared in the electronic ground state |g′〉 and cou-
pled to a Rydberg P-state |r′〉 by an ultraviolet beam, while
the remaining atoms in the lattice occupied a different hyper-
fine electronic ground state |g〉. An incident light pulse with
the Rabi frequency R coupled |g〉 to an excited state |e〉. By
employing a control field with the Rabi frequency Rc that
coupled |e〉 to a highly excited Rydberg S-state |r〉, Rydberg-
EIT was induced. In the weak driving limit, the populations of
|e〉 and |r〉 are negligible and the dynamics can be described
by the EIT response in terms of the atomic coherences ρgr and
ρge:

ρ̇gr = (i
r + iU − γr )ρgr + iR∗
cρge, (91a)

ρ̇ge = (i
I − υI )ρge + iRcρgr + iR, (91b)

where υI is the collective linewidth of the targeted in-plane
eigenmode, 
I = 
 + δI is the laser detuning from this mode
resonance, δI is the collective line shift, and γr and 
r are the
linewidth and the detuning of the Rydberg state. The Rydberg
states |r′〉 and |r〉 experience a strong long-wavelength dipolar
interaction that establishes a distance-dependent level shift
that is denoted by U (r). By defining ZI (
) ≡ 
 + δI + iυI

and Zr (
r ) ≡ 
r + U + iγr , the steady-state reflection am-
plitude reads [compare with the level shift generated EIT-like
responses of Eqs. (75), (76), and (77)]

r = iυI Zr (
r )

|Rc|2 − Zr (
r )ZI (
)
, (92)

which displays an EIT resonance doublet and transparency
window. However, this also represents an optical switch, pre-
pared in Ref. [89], as the control field creates an admixture
of |e〉 and |r〉, allowing |e〉 to inherit the characteristics of the
Rydberg long-range interactions through controlled level shift
U facilitated by the ancilla atom. The dipole blockade effect
induced by the ancilla atom then enables the array to switch
between subradiant transmission and reflection, as shown in
Fig. 6. Numerical simulations involving an ancilla atom [172]

FIG. 6. (Reproduced from Ref. [89]). An experiment in an anal-
ogous system to Fig. 2, when the transmission is controlled by a
single ancilla atom at the center of the array. The top row shows the
spatially resolved transmitted light. Left: strong resonant reflection
when only the probe beam is on. Middle: the additional control field
coupled to the Rydberg state establishes an EIT resonance, rendering
the array transparent. Right: the ancilla atom restores the reflectivity
within a finite radius around the ancilla through the dipolar Rydberg
interaction that shifts the control field out of resonance.

and Rydberg-dressed interactions [171] demonstrated anti-
bunching in the second-order correlation function Eq. (89).

1. Entanglement

The experiment [89] on the optical switch using the
Rydberg-atom blockage was conducted in a classical regime.
However, by considering quantum superpositions of the an-
cilla atom (|g′〉 + |r′〉)/21/2, it is possible to entangle the array
and the Rydberg atom to achieve quantum control over the
optical response [170]. By using nonoverlapping Gaussian
beams focused on different locations of the array, single pho-
tons in the transmitted and reflected modes can represent qubit
states. Photons in different locations could, in principle, be
entangled, or projective measurements could be used to pre-
pare entangled Greenberger-Horne-Zeilinger (GHZ) or cluster
photonic states [170]. The properties of a coherent photon-
photon gate were analyzed in Ref. [171].

A photon-mediated entanglement of two spatially distant
planar arrays was studied in Ref. [19]. As each layer can
behave as a superatom governed by 1D electrodynamics, the
collective state of the arrays supports a nonlocal subradiant
Bell superposition state. This excitation can be understood as
an analog of an antisymmetric pair of atoms in a waveguide,
coupled through 1D electrodynamics. The arrays thus serve
as a resource of nonlocal entanglement, allowing for coherent
and deterministic exchange of quantum information between
them, mediated by the subradiant state.

In Ref. [193] �-three-level atoms in a bilayer lattice
were studied when one of the two electronic ground lev-
els was off-resonantly coupled to the excited level. With
different resonance linewidths between the two transitions,
the atom can effectively behave as a two-level system
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between the two electronic ground levels. It can be driven to
a subradiant eigenmode outside the light cone by two non-
copropagating beams, with each beam coupled to a different
ground state. The nonlinear DD coupling between the layers
can be utilized to prepare an entangled state shared by the
two arrays, realizing a

√
iSWAP gate where the occupation

states of the two arrays approximately undergo transfor-
mations: |00〉 → |00〉, |10〉 → (|10〉 − i|01〉)/21/2, |01〉 →
(|01〉 − i|10〉)/21/2, |11〉 → |11〉.

The wave front engineering of transmitted light through a
planar array, as discussed in Sec. IV E, can also be controlled
by a coupled qubit, such as a Rydberg atom. An alternative
example of an optical cavity was considered in Ref. [57]. In
this scenario, a photon inside a cavity induces an ac Stark
shift, which in turn controls the resonance of the transmit-
ted light through the array or facilitates a photon storage
process. By shifting the resonance of an atomic Huygens’
surface, it becomes possible to entangle the state of the cavity
with different properties of the transmitted photon in various
Huygens’ surface realizations, including its polarization in
birefringence or its angle of transmission.

H. Atomic nanorings

A different type of periodic array with a planar geometry
is formed by a regular polygon (nanoring) or by multiple
polygons within a plane [142,194–198]. The LLI excitation
eigenmodes of a single nanoring exhibit distinct character-
istics. For the atomic dipoles oriented perpendicular to the
plane of the ring or tangentially along the ring, the eigen-
modes are translationally invariant with well-defined angular
momentum. The amplitudes of these modes satisfy ρ (�)

ge =
ρge exp(imφ�), where φ� is the angular coordinate of the atom
� and m represents integer-valued angular momentum [195].
For a nanoring with a fixed radius, the most super-radiant
mode exhibits a linewidth that is linearly proportional to the
atom number. However, there exist subradiant modes with
exponentially decreasing linewidths as a function of the atom
number [142].

Energy transfer between two rings on a plane can exhibit
similarities to the light-harvesting mechanism in biological
systems [195]. Moreover, by placing an atom at the center of
the ring, a steady-state coherent light source can be achieved
with a spectral linewidth narrower than that of a single isolated
atom, resembling a miniature laser [197]. The atoms within
the ring behave analogously to a cavity resonator and exhibit a
narrow collective linewidth with efficient coupling to the gain
atom located at the center.

V. DISCUSSION AND OUTLOOK

A. Optical manipulation and quantum networks

The similarity between atomic planar arrays and nanofab-
ricated metasurfaces paves the way for a wide range of
applications of ultraflat optics with atomic layers in the gener-
ation, manipulation, and detection of light. Metasurfaces are
thin nanostructured films, composed of metallic and dielectric
nanoresonators that are arranged in a regular 2D pattern with
subwavelength spacing [21–24]. They have gained popularity
as alternatives to traditional bulky classical optical elements.

Metasurfaces are used for designing light-matter interactions
where they offer versatile control over the amplitude, phase,
and polarization of light, functioning as antenna arrays that
can tailor near-field responses and redirect light in ways that
would not be possible with conventional refractive optics.

Although the manipulation of light using atomic planar
arrays is still in its early stages and presents significant techni-
cal challenges, these arrays offer several potential advantages
over nanofabricated metasurfaces. Atoms are free from man-
ufacturing imperfections and provide precise control over
internal transitions. They have well-defined resonance fre-
quencies and long coherence times. Additionally, all absorbed
photons are eventually reemitted, instead of being captured
by the material and turned into heat. Importantly, reach-
ing the quantum regime with nanofabricated metasurfaces is
challenging [25], while quantum interfaces between atoms
and light are already well established. Atomic metasurfaces
can simultaneously also act as diverse physical systems with
multiple processes that have functionalities different from
controlling light. It was recently proposed that atomic planar
arrays coupled by light could serve as a quantum network
[164]. The network would consists of many nodes, formed
by individual arrays or array systems, and communication
channels established by light to transfer quantum states be-
tween the nodes. Each node would be capable of performing
quantum operations.

To establish a quantum network, one requirement is for
quantum information to be processed and stored locally in
quantum memories of quantum nodes [165,166]. Localized,
individual nodes are linked by high-speed photonic quan-
tum channels, enabling the distribution of entanglement and
the transfer of quantum states with high fidelity across the
network. Crucial elements are efficient quantum interfaces
between light and matter that facilitate reversible mapping
of quantum states between the two, coherent control over
the light-matter interactions at the single-photon level, and
long-lived controllable quantum memories [165]. The system
should also be robust in the present of imperfections.

Atomic planar arrays offer ultrathin surfaces with signifi-
cantly enhanced optical cross sections compared with a single
atom in free space. In free space, the extinction of light by a
single atom is limited by the ratio of the resonant cross sec-
tion to the minimum beam waist area, which is typically well
below one. Strong coupling between an atom and light can be
achieved in optical cavities with a small mode volume or by
engineering confined modes in waveguides, fibers, or close to
dielectric surfaces. However, creating optical free-space links
in a network offers many advantages by avoiding challenging
surface effects. Moreover, e.g., trapping atoms near optical
nanofibers or in waveguides can be plagued by losses due to
scattering into undesired modes.

Atomic arrays offer highly collimated coherent light emis-
sion and light propagation that effectively follows 1D electro-
dynamics, efficiently linking different nodes in a network and
eliminating a significant loss channel of spontaneous emission
in undesired directions in disordered ensembles. Free-space
schemes for quantum information processing in disordered
atomic ensembles [2], such as the Duan-Lukin-Cirac-Zoller
(DLCZ) protocol [199], require a high optical depth D. As dis-
cussed in Sec. IV F, only values close to D ∼ 600, or 106–107
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atoms, provide photon storage efficiencies comparable with
small 4 × 4 atomic arrays [96].

Schemes employing subradiance provide reversible quan-
tum memories that can be rapidly accessed (Sec. IV F).
Wavefront control in atomic planar arrays (Sec. IV E) offers
a platform for operating flat surface optics for manipulating
light that resembles nanofabricated metasurfaces where the
amplitude, phase, and polarization can be controlled. The
operations of the arrays can be controlled by qubits and gate
operations can be performed within the arrays (Sec. IV G 1).
Recent experiments combining optical excitations in arrays
with Rydberg excitations [89] show promising potential, al-
though Rydberg states are sensitive to stray electric and
magnetic fields.

Atomic planar arrays share common features with cav-
ity QED and nanofabricated metasurfaces, and studies in
these areas may serve as a guide for potential future de-
velopments. Exciting examples related to quantum network
operations in cavity QED include teleportation of atomic
states [200], entanglement generation between atomic internal
states and light polarization [201], and photon-photon inter-
actions [202]. Although artificial solid-state metasurfaces are
susceptible to significant decoherence, there is considerable
interest in quantum applications, e.g., in quantum sensing,
ghost imaging, multiphoton, and angular momentum states of
light [25].

B. Many-body phenomena

Despite the differences in physics, atomic planar arrays
in free space exhibit surprisingly similar behaviors to atoms
in optical cavities, extending beyond the light-atom inter-
faces discussed in the previous section. In Sec. IV A 3 we
highlighted the similarities between the cooperativity pa-
rameters in both systems, which are determined by the
recurrent scattering of light by an atom either from the
neighboring atoms (in arrays) or facilitated by mirrors (in
optical cavities). In both systems, the value of the cooper-
ativity parameter defines a “strongly coupled” regime and
the emerging bistability. In planar arrays, this occurs when
the atom separation is small enough for the level shift due
to the DD interaction to exceed the single-atom linewidth.
Dipole blockade (Sec. IV G) by optical transitions relies
on similarly strong DD coupling. Moreover, the optical re-
sponse of a planar array beyond the LLI limit can exhibit
many-body analogs of vacuum Rabi splitting of transmis-
sion resonances [50], a well-known phenomenon in cavities
[203,204]. Additional analogies to cavities arise in lasing,
where neighboring atoms act as resonators (Sec. IV H; see
also Ref. [205]), and high-precision measurements and op-
tomechanics [206]. The control of light transmission by
a Rydberg excitation (Sec. IV G) can also be achieved in
cavities [207].

Ultracold atoms have been actively investigated as simula-
tors of strongly interacting quantum systems [208], and it is
anticipated that more research will explore analogous topics
for interacting many-body systems of atoms and photons in
arrays in the future. The presence of long-range interactions
and dissipation mediated by light, as well as the potential for
designing spin-dependent couplings between the atoms, opens

up avenues for studying rich many-body phenomena that are
challenging to achieve in other ultracold atom systems. Phase
transitions are already actively investigated for single- and
multimode cavities [209–212]. Other examples include the
study of topological phases (Sec. IV B 2), excitation statistics
[64], thermalization, and magnetism and frustration [127].

C. Experimental challenges

Experiments on light transmission through planar atomic
arrays in Refs. [14,89] employed 87Rb atoms. Alkali-metal
atoms, including Rb, typically possess multiple electronic
ground states. Even in the limit of LLI, the involve-
ment of multiple ground levels can significantly compli-
cate the dynamics, introducing, e.g., quantum entanglement
[33,66]. This can be avoided by employing cycling tran-
sitions of maximally polarized hyperfine levels while tun-
ing off-resonance the other transitions, e.g., by magnetic
fields.

Although relatively long optical lattice spacing a 
 0.68λ

was needed to observe the subradiant transmission resonance
narrowing [14,89] [see Eq. (50)], several intriguing strongly
interacting phenomena necessitate significantly smaller spac-
ing. For example, the dipole blockade (Sec. IV G), bistability
(Sec. IV A 3), phase transitions [48], and strongly correlated
effects arising from optical transitions rely on the spacing
below 0.2λ. Alkaline-earth-metal and rare-earth-metal atoms
are promising constituent elements for arrays due to a rich
variety of optical transitions. They offer great flexibility in ex-
perimental control [213–215] and Mott-insulator states have
been observed in such systems [214,216]. Atomic arrays may
find applications in atomic clocks [65,217,218] that employ
narrow optical transitions in Sr [1]. In bosonic isotopes of
Sr and Yb, the nuclear spin vanishes, making them prototype
models for spatially isotropic J = 0 → J ′ = 1 transitions that
enables simple classical simulation models for light propaga-
tion in the limit of LLI. However, the utilization of extremely
narrow transitions may present challenges due to the influence
of atomic recoil or longer timescales in which dipolar forces
can take effect, unless the atoms are tightly confined. Addi-
tionally, the recoil effects in a lattice can be collective, further
complicating the situation [219].

In Ref. [220] (see also Ref. [145]), a method was pro-
posed to create an optical lattice using Sr with especially
short lattice spacing a 
 0.08λ, resulting in strong DD in-
teractions. The low-lying metastable triplet state 5s5p 3P0 is
coupled to 5s4d 3D1 via resonance wavelength λ 
 2.6 µm,
providing a J = 0 → J ′ = 1 transition with the linewidth γ 

1.45 × 105 s−1 [221,222]. Additional resonances [220] are
utilized to trap the atoms at a magic wavelength λ ∼ 415 nm.
Furthermore, 5s4d 3D1 state can be off-resonantly coupled to
5s6p 3Pj states, enabling a wide range of light-induced level
shifts through the ac Stark effect, e.g., around λ 
 636 nm,
which facilitates engineering the collective responses of the
array [145].

Yb atoms exhibit a telecom resonance transition λ 

1.4 µm from the metastable 6s6p 3P0 state to 5d6s 3D1, with
γ 
 1.0 × 106 s−1 [223] and a large branching ratio. This
transition was analyzed in Ref. [224] for a fermionic 171Yb
isotope with the nuclear spin I = 1/2, as part of a spin-photon
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entanglement scheme. Two such fermionic spin states con-
fined in each lattice site can also support dark states due to
the Fermi blocking [93]. The system has magic wavelengths
of 473 nm and 532 nm [223–225], providing short lattice
spacings a/λ 
 0.17 and 0.19, respectively.

In atomic arrays created using optical tweezers [226–231],
achieving spacing even below λ presents a challenge. The
proposal of Ref. [224] considers Yb with the λ 
 1.4 µm
transition and an optical tweeezer wavelength of 470 nm,
resulting in subwavelength array spacing and tight atom
confinement.

In the experiments [14,89], the atoms were confined in an
optical lattice with the depths of 300Er and 100Er , respec-
tively (Sec. III C). More than an order-of-magnitude deeper
potentials would be achievable; however, increasing the lat-
tice height beyond 300Er led to a deterioration of subradiant
narrowing in transmission due to motional spreading of atoms
in the antitrapped electronically excited state in the lattice
potential. Position fluctuations of the atoms can be reduced
in deeper lattices that operate at a magic wavelength to limit
the spread of the atomic wave function. However, improving
the confinement significantly in the presence of a sinusoidal
optical lattice potential generated by a standing-wave laser
is not straightforward, as the ratio of the 1/e width of the
confinement to the lattice spacing scales very slowly with the
lattice potential height �/a = s−1/4/π [78] (see Sec. III C).
There has been a recent surge of interest in developing alterna-
tive periodic trapping schemes aimed at altering the potential
shape and reducing the effective lattice spacing [232–236].
In the optical response experiments, small spacing and tight-
ening the atom confinement for the electronic ground and
excited levels are crucial parameters, while the trap lifetime
can often be much shorter than in typical ultracold atom
experiments.
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APPENDIX A: DERIVATION OF 1D PROPAGATION
FROM A PLANAR ARRAY

A large planar array of atoms with a phase-uniform exci-
tation exhibits behavior akin to 1D electrodynamics for light.
When the atoms are spaced at a subwavelength distance, the
array functions as a diffraction grating with only the zeroth-
order Bragg peak present, representing coherent forward and
back scattering. Here we demonstrate a formal derivation of
effective 1D electrodynamics for such systems in a physically
intuitive way by directly analyzing the spatial distribution of
the scattered light. The techniques introduced in Ref. [100] are
employed to integrate the response of the array of N atoms
in the continuum limit. Related spatial integrals for coher-
ent light transmission, without formal derivations, can also
be found in Refs. [18,20,237,238]. Let us consider a dipole
located in the yz plane when the plane is centered at the ori-

gin, and an observation point at y = 0, z = 0, |x| > 0 (where
x < 0 corresponds to reflection and x > 0 transmission). In
the argument, we consider each dipole to be polarized in the y
direction, d(ν)

ge = D êy. We assume an approximately uniform
excitation over the entire lattice and set 〈σ̂−

jν〉 = 〈σ̂−〉, so that
the scattered light amplitude from Eq. (5) simplifies to

ε0〈Ê+
s (r)〉 =

∑
jν

G(r − r j )d(ν)
ge 〈σ̂−

jν〉 = D〈σ̂−〉
∑

j

G(R j )êy,

(A1)
where R j = x êx − y j êy− z j êz defines the vector joining the
jth atom and the observation point. Next, we make the as-
sumption that the observation point is sufficiently far from
the atomic array and that the lattice is much larger than the
distance to the observation point λ � |x| � √

A (numerically
it can be shown that it is sufficient to have |x| � 0.5λ when
the spacing a � 0.7λ [20]), where A is the total area of the
array. This allows us to neglect the discreteness of the atoms,
and we replace the summation by integration over the lattice
plane defining coordinates y and z. When working out the ex-
plicit expression for G(R j )êy using the expanded form of the
radiation kernel [Eq. (7)], we can immediately discard terms
that are odd in y since they cancel out in the integration. This
simplifies the expression to Gy,even(R j )êy. Transforming the
atomic coordinates (y, z) in the lattice to the polar coordinates
(ρ cos φ, ρ sin φ) then yields

ε0〈Ê+
s (x êx )〉 = Dρge

A′

∫ ρ0

0
ρ dρ

∫ π

−π

dφ Gy,even(R) êy, (A2)

where we have written ρge = 〈σ̂−〉, A′ = A/N the area per
atomic dipole, R = R(ρ, φ) = x êx − ρ cos φ êy− ρ sin φ êz,
and where we take the limit ρ0 → ∞ of an infinite lattice size.
We find the explicit expression∫ π

−π

dφ Gy,even(R) êy

= êyk2

4R
eikR

[
ρ2 + 2x2

R2
+
(

1

k2R2
− i

kR

)(
3ρ2

R2
− 2

)]
.

(A3)

Next, the integral over ρ can be performed using the tech-
niques introduced in Ref. [100]. We make the substitution
R =

√
x2 + ρ2, with ρdρ = RdR. Then

ε0〈Ê+
s (x êx )〉 = êyDρge

4A′ (F2 − ikF1 − 3x2F 4 + 3ikx2F 3

+ k2F 0 + k2x2F2), (A4)

where we have introduced the functions Fn, for integer n,

Fn =
∫ ∞

|x|
dR

eikR

Rn
. (A5)

With the help of a convergence factor that ensures that the
fields vanish for R → ∞, the first term can be integrated
straightforwardly and yields F0 = i exp (ik|x|)/k. The remain-
ing terms are obtained by deriving a recursion formula

Fn =
[

eikR

ikRn

]∞

|x|
+ n

ik

∫ ∞

|x|
dR

eikR

Rn+1
= 1

ik

(
nFn+1 − eik|x|

|x|n
)

.

(A6)
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Substituting first F1 and F2 in Eq. (A4), using Eq. (A6), gives

ε0〈Ê+
s (x êx )〉 = êyDρge

4A′

(
eik|x|

|x| − 3x2F4 + ikx2F 3 + 2ikeik|x|
)

.

(A7)
Expressing then all the integrals in Eq. (A7) in terms of F4

cancels out all the unknown terms and we are left with

ε0〈Ê+
s (x êx )〉 = êyDρge

ik

2A′ e
ik|x|. (A8)

The derivation works identically for a dipole oriented along
the z axis, so for any dipoles in the yz plane of the array we
obtain an effective 1D propagation of light along the x axis.

We can then write the field component along the y axis as
a scalar field and express Eq. (A8) as

ε0〈Ê+
s (x)〉 = G(x)D̄ρge, G(x) = ik

2
eik|x|, D̄ = D

A′ ,

(A9)

where G(x) is a 1D scalar dipole radiation kernel [36], D̄ is the
density of atomic dipoles in the plane, andA′ is the previously
introduced area of a single lattice unit cell.

We can now provide a straightforward derivation of the
collective resonance linewidth for the excitation eigenmode
that exhibits a uniform phase profile. Since Eq. (A8) captures
all the emitted radiation by the eigenmode, we can directly
apply Eq. (12) for Eq. (A8)

γ1D = γ +
∑

j�( j 	=�)

γ ( j�)
νν = ξ

∑
j�

Im
[
G( j�)

νν

]

= ξ lim
x→0

Im[G(x)] = kD2

2A′h̄ε0
. (A10)

In the square lattice of lattice constant a, we haveA′ = a2. We
then have in terms of the single-atom linewidth γ [Eq. (13)]

γ1D = γ + γ̃ = 3πγ

k2a2
. (A11)

Similarly, we consider the equations of motion for the
atomic polarization density amplitudes from a uniformly ex-
cited atomic array in the limit of LLI [see Eq. (19)]:

ρ̇ge = (i
1D − γ1D)ρge + iRext,y. (A12)

Here ρge represents the uniform excitation of an array and
Rext,y is the y component of the Rabi frequency of the exter-
nal light impinging on the array. For a single isolated array,
Rext,y represents the incident light. However, for a number of
stacked, parallel planar arrays, we also include the scattering
from all other arrays. This can be calculated similarly to the
previous example of the scattered light, with the exception that
now the coordinate R(�)

j refers to the jth atom of the �th array.
We write the uniform excitation of the polarization amplitude
ρge of the �th array as �(�)

ge , such that

iRext,y = iRin,y + iξ
∑

j,�

êy · G
(
R(�)

j

)
êy�

(�)
ge

= iRin,y − γ1D

∑
�(x 	=0)

eik|x�|�(�)
ge , (A13)

where we have explicitly highlighted in the subscript that Rin

denotes the Rabi frequency of the incident light. Dropping
the subscript y, we can then express Eq. (A12) as a compact,
coupled set of equations for stacked planar arrays

d

dt
�( j)

ge = (i
1D − γ1D)�( j)
ge + iRin(x j )

− γ1D

∑
� 	= j

eik|x j−x�| �(�)
ge . (A14)

APPENDIX B: CALCULATION OF PHOTON
SCATTERING RATE

We calculate the total photon scattering rate, introduced
in Eq. (31). The following treatment extends the two-level
analysis of Ref. [77] for the J = 0 → J ′ = 1 transition. For
different atom operator expectation values, the result also
provides the rates for coherently and incoherently scattered
light.

The photon scattering rate over a surface S can be obtained
by integrating the scattered intensity per the photon energy

ns = 1

h̄ω

∫
S

dS Is = 2ε0c

h̄ω

∫
S

dS〈Ê−
s (r) · Ê+

s (r)〉

=
∑

jν

�( j j)
νν 〈σ̂+

jν σ̂
−
jν〉 +

∑
j�νμ( j 	=�)

�( j�)
νμ 〈σ̂+

jν σ̂
−
�μ〉, (B1)

where the result depends on the integrals �
( j�)
νμ . Substituting

Eq. (5) yields

�( j�)
νμ = 2c

h̄ε0ω

∫
S

dS
[
G(r − r j )d(ν)

ge

]∗
G(r − r�)d(μ)

ge . (B2)

We evaluate the integral sufficiently far away from the atoms
r � λ in the far-field radiation zone using Eq. (29). To cal-
culate the total scattering rate, we assume that the integrated
surface completely encloses the atoms. In the spherical coor-
dinates (θ, φ) (we consider a spherical surface with the solid
angle of 4π ), this gives

�( j�)
νμ = 3γ

4π

∫ 1

−1
d (cos θ )

×
∫ 2π

0
dφ[δν,μ − (r̂ · ê∗

ν )(r̂ · êμ)]eikr̂·r j� . (B3)

We choose the unit vector r̂ j� = r j�/r j� = (r� − r j )/|r� −
r j | to be along the z axis (r̂ j� = ẑ) and substitute r̂ =
x̂ cos φ sin θ + ŷ sin φ sin θ + ẑ cos θ . The integration over φ

is then straightforward. For j = �, we obtain (the terms �
( j j)
νμ ,

with ν 	= μ, vanish)

�( j j)
νν = 2γ , (B4)
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and for j 	= �,

�( j�)
νμ = 3γ

8

∫ 1

−1
d (cos θ ){3δν,μ − (r̂ j� · ê∗

ν )(r̂ j� · êμ) − [δν,μ − 3(r̂ j� · ê∗
ν )(r̂ j� · êμ)] cos 2θ}eikr j� cos θ

= 3γ [δν,μ − (r̂ j� · ê∗
ν )(r̂ j� · êμ)]

sin kr j�

kr j�
+ 3γ [δν,μ − 3(r̂ j� · ê∗

ν )(r̂ j� · êμ)]

(
cos kr j�

k2r2
j�

− sin kr j�

k3r3
j�

)
= 2γ ( j�)

νμ = 2ξ Im
[
G( j�)

νμ

]
,

(B5)

where we have used Eq. (12). The total photon scattering rate is therefore given by

ns = 2γ
∑

jν

〈σ̂+
jν σ̂

−
jν〉 + 2

∑
j�νμ( j 	=�)

γ ( j�)
νμ 〈σ̂+

jν σ̂
−
�μ〉. (B6)

The result is consistent with the single-atom and collective decay terms in the QME (10).

APPENDIX C: INCOHERENT SCATTERING WITH POSITION DISORDER

For fluctuating atomic positions, Eq. (41) represents an ensemble average calculated over many realizations. We would like
to express Eq. (41) in terms of the solutions of the correlation functions in the coupled dynamics between the light and atoms
for each stochastic run, Eq. (39), and

〈ψ̂†
eν (r, t ) ψ̂eμ(r, t )〉{r1,...,rN } =

∑
j

〈σ̂+
jν (t )σ̂−

jμ(t )〉 δ(r − r j ) . (C1)

We rearrange the terms by placing the atomic operators in the normal order. This yields for the correlation function on the
right-hand side of Eq. (41) (for both fermionic and bosonic atoms)

〈ψ̂†
eν (r) ψ̂g(r) ψ̂†

g (r′) ψ̂eμ(r′)〉 = 〈ψ̂†
eν (r) ψ̂eμ(r′)〉 δ(r − r′) +〈ψ̂†

eν (r) ψ̂†
g (r′) ψ̂eμ(r′) ψ̂g(r)〉. (C2)

Substituting this into Eq. (41) and expressing the correlation functions in terms of single stochastic run values according to
Eq. (38), integrated over all trajectories that represents the ensemble-averaging procedure, we obtain [50]

2cε0〈Ê−
s (r) Ê+

s (r)〉 = 2c

ε0

∫
d3r
∑
νμ

{[
G(r − r) d(ν)

ge

]∗[
G(r − r) d(μ)

ge

] ∫
d3r1 . . . d3rN 〈ψ̂†

eν (r) ψ̂eμ(r)〉{r1,...,rN } P(r1, . . . , rN )

}

+ 2c

ε0

∫ ′
d3r d3r′

∑
νμ

{[
G(r − r) d(ν)

ge

]∗[
G(r − r′) d(μ)

ge

] ∫
d3r1 . . . d3rN

×〈ψ̂†
eν (r) ψ̂†

g (r′) ψ̂eμ(r′) ψ̂g(r)〉{r1,...,rN } P(r1, . . . , rN )

}
, (C3)

where
∫ ′ denotes a double integral over all (r, r′) excluding r = r′. The single-run expectation value of the atomic solution

〈ψ̂†
eν (r) ψ̂†

g (r′) ψ̂eμ(r′) ψ̂g(r)〉{r1,...,rN } is defined in terms of the atomic operator expectation values 〈σ̂+
jν σ̂

−
�μ〉( j 	= �) in Eq. (39)

and 〈ψ̂†
eν (r, t ) ψ̂eμ(r, t )〉{r1,...,rN } in terms of 〈σ̂+

jν σ̂
−
jμ〉 in Eq. (C1). The scattered intensity in Eq. (C3) then depends on the

correlations 〈σ̂+
jν σ̂

−
jμ〉 and 〈σ̂+

jν σ̂
−
�μ〉 of each stochastic realization of fixed atomic positions {r1, r2, . . . , rN } through Eqs. (39)

and (C1), and ensemble averaging over stochastic realizations of atomic positions. The quantum solutions of the correlations can
be obtained from the QME (10).

The effect of position fluctuations on the incoherently scattered light becomes obvious in Eq. (C3) when we consider
nonvanishing spatial correlations in Eq. (40). Independently, whether we have the full quantum solution or use the semiclassical
approximation, the second term on the right-hand side of Eq. (C3) can substantially differ from the corresponding coherent
contribution

2c

ε0

∫
d3r1 . . . d3rN

∣∣∣∣∣
∫

d3r
∑

ν

[
G(r − r) d(ν)

ge

]〈ψ̂†
eν (r) ψ̂g(r)〉{r1,...,rN }

∣∣∣∣∣
2

P(r1, . . . , rN ), (C4)

with the difference between the two indicating incoherently scattered light.
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APPENDIX D: EXPANSION OF SPHERICAL WAVES
IN A PLANE WAVE BASIS

Here we employ the standard optics techniques of ex-
pressing a spherical wave from the dipole radiation near
a planar surface as a plane wave expansion; see, e.g.,
Refs. [16,142,150,239–241]. The results are used in cal-
culating nonuniform excitations in the array Sec. IV B
and for nonnormal light incidence in Sec. IV D. The pro-
cedure is analogous to connecting Huygens’ principle to
Kirchhoff-Sommerfeld formulation of diffraction. By also
keeping track of the contact interaction terms, we can express
the dipole radiation kernel in Eq. (6) as

Gνμ(r) =
[

∂

∂rν

∂

∂rμ

+ δνμk2

]
eikr

4πr

= i

8π2

∫
d2q‖

[
∂

∂rν

∂

∂rμ

+ δνμk2

]
1

k⊥
eiq‖·reik⊥|x|,

(D1)

where k⊥ = (k2 − q2
‖ )1/2, q‖ = (qy, qz ) defines the wave vec-

tor on the array plane, and in the second line we have used the
Weyl identity [241]. A comparison with (73) shows that the
2D Fourier transform of the dipole radiation kernel reads

G̃‖
νμ(q) = i

2
(−qνqμ + δνμk2)

1

k⊥
eik⊥|x|, (D2)

where q = [sgn(x)k⊥, q‖]. Substituting this to the Poisson
summation formula in Sec. IV B 1 [2D analogy of Eq. (71)]
results in replacing the summation over the lattice sites by the
summation over the reciprocal-lattice vectors g j

∑
� 	= j

Gνμ(r j�)eiq·r j�

= 1

A′
∑

j

G̃‖
νμ(q + g j ) − Gνμ(0)

= i

2A′
∑

j

[−(qν + g jν )(qμ + g jμ) + δνμk2]

× 1

k⊥(g j )
eik⊥(g j )|x| − Gνμ(0), (D3)

where we have now incorporated g j in k⊥

k⊥(g j ) =
√

k2 − (qy + g jy)2 − (qz + g jz )2. (D4)

The sums can be performed by using the momentum-
regularized G̃‖∗

νμ(p) = G̃‖
νμ(p) exp(−p2η2/4) in the place of

G̃‖
νμ(p) in Eq. (D3), as discussed in Sec. IV B 1.

The collective linewidths and line shifts can be evaluated
by setting x = 0 in Eq. (D3)

�( j�)
νμ (q) = Re

⎡
⎣ D2

h̄ε0A′
∑

j

G̃‖
νμ(q + g j ) − D

2

h̄ε0
Gνμ(0)

⎤
⎦,

(D5a)

γ ( j�)
νμ (q) = Im

⎡
⎣ D2

h̄ε0A′
∑

j

G̃‖
νμ(q + g j ) − D

2

h̄ε0
Gνμ(0)

⎤
⎦.

(D5b)

For radiation normal to the lattice plane, there only exists
the zeroth-order Bragg peak with g = 0 when a < λ, because
for nonzero reciprocal-lattice vectors k⊥(g j ) is imaginary rep-
resenting evanescent fields. For light radiation along the lattice
plane k = k‖, we have q‖ = k and again the only contribution
to propagating waves is g = 0 whenever a < λ/2.

The light scattered from the planar array from the excita-
tion with the wave vector q‖ and the dipole Dêμ is given by

ε0〈Ê+
s (r)〉 = D

∑
�

eiq‖·r�G(r − r�)êμ ρgeμ. (D6)

Analogously to the earlier derivation we obtain

∑
�

eiq‖·r�G(r − r�) = i

2A′
∑

j

[−(qν + g jν )(qμ + g jμ)

+ δνμk2]
1

k⊥(g j )
eiq‖·reik⊥(g j )|x|. (D7)

For g = 0, an intuitive description can be formulated in terms
of the light beam propagation direction when we express k⊥ =
(k2 − q2

‖ )1/2 = k cos θ , where k = cos θ êx + sin θ cos φ êy +
sin θ sin φ êz. The term −qμqν/k2 + δμν = −q × (q × 1)/k2

in Eqs. (D2) and (D3) describes projection of light polariza-
tion to the direction perpendicular to the light propagation,
and we obtain [compare with Eq. (86), evaluated at y = z = 0]

∑
�

eiq‖·r�G(r − r�) = ik

2A′ cos θ
P⊥(k)eiq‖·reik⊥|x|. (D8)

For g = q = 0, we obtain again for the normal incidence
the effective 1D electrodynamics [compare this with the spa-
tially integrated (A8)] with

∑
�

Gνμ(r j�)eiq·r j� = ik

2A′ δμνeik⊥|x|. (D9)
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