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Vacuum-induced quantum-beat-enabled photon antibunching
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Vacuum-induced coupling (VIC), arising from the quantum interference between the spontaneous emission
pathways from the excited doublet to a common ground state, has attracted significant research interest and has
been observed in recent experiments. Here, we present an alternative route to probe the existence of VIC by
means of the coherence statistics of photon antibunching and show that, under realistic experimental conditions,
the vacuum-induced quantum beat (VIQB) can enable strong photon antibunching with high brightness in an
optical nanofiber (ONF) cavity quantum electrodynamics (CQED) system. We find that the occurrence of the
photon antibunching corresponds to the existence of the VIC, indicating that the photon antibunching can be
an important witness for VIC. In addition, a strong photon antibunching effect appears in the weak-coupling
regime of light-atom interactions when the VIQB is present, as a result of the destructive quantum interference
between the different paths for two-photon excitation. Furthermore, we find that strong photon antibunching can
be generated within a certain driving frequency range in the present system, which can relax the requirement for
the driving frequency in the ONF CQED system. Also, we compare the analytical and numerical results of the
second-order intensity correlation function, and they are in good agreement. The present study builds a bridge
between the photon antibunching and the VIC and VIQB, which is useful for well understanding and researching
a tunable single-photon source, as well as enabling potential applications in quantum information processing and
quantum communications.
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I. INTRODUCTION

Quantum beat is a fundamental and important quantum
phenomenon, referring to the interference effect in the ra-
diation emitted from different excited levels in multilevel
systems [1,2]. It occurs in the modulation of the decay by
spontaneous emission of multilevel systems owing to the en-
ergy difference among transitions [3]. Periodic interference
between different energy levels results in energy exchange
and periodic modulation of the radiated field intensity [4],
usually appearing in the time-resolved fluorescence [5,6], the
wave mixing [7,8], or the absorption profiles [9,10]. Quantum
beat is a significant tool of nonlinear spectroscopy [4,11],
offering a powerful means of measuring the energy differ-
ences between excited levels in many experimental platforms,
including atoms [12,13], molecules [14,15], quantum dots
[16,17], semiconductors [18,19], and superconductors [20].
The study of quantum beat is important for understanding the
dephasing processes and the coherent characteristics in atoms
and molecules, as well as for developing quantum technolo-
gies, such as quantum sensing [20], quantum storage [21,22],
and quantum gates [23,24].

In 2021, Han et al. observed experimentally that quantum
beat can occur in a three-level atomic system initially prepared
in a single excited level due to the vacuum-induced coupling
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(VIC) between excited levels [4]. Recently, the VIC that
arises from the quantum interference between the spontaneous
emission pathways from the excited doublet to a common
ground state has attracted tremendous research interest and
has been experimentally observed (see, e.g., Refs. [4,25]).
Alternatively, quantum beat can also be observed in photon
antibunching in a three-level atomic system [26,27], yet the
relationship between photon antibunching and quantum beat
remains mostly unexplored. Photon antibunching refers to the
statistical property of a light field that the excitation of a
first photon can block the transmission of subsequent photons
[28]. In recent years, significant progress has been achieved
in cavity quantum electrodynamics (CQED) systems com-
posed of an optical microcavity strongly coupled to a single
atom, which can generate large optical nonlinearity even at
the single-photon level [29–31] and induce an anharmonic
Jaynes-Cummings ladder [32–34]. Thanks to the anharmonic
energy-level spacing, the population of the two-photon state
can be substantially suppressed when the nonlinear energy
shift in the two-photon state is greater than the loss of the
optical cavity, resulting in only one photon allowed in the
coupled system [35–38]. This phenomenon is called the con-
ventional photon blockade, in which the photons show strong
antibunching [39–41]. In contrast, there is another avenue to
get photon antibunching in a quantum optical system with
weak nonlinearity, known as unconventional photon block-
ade [42–45]. This achieved photon antibunching is based on
quantum destructive interference between the two or more
different quantum paths from a one-photon state transiting to a
two-photon state [43]. The photon antibunching effect can be
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FIG. 1. Schematic representation of the ONF CQED system. The
ONF CQED system consists of a single three-level V -type atom (the
small gold sphere) trapped in the vicinity of a tapered ONF-based
cavity. The top inset shows atomic level structure, relevant damping,
and corresponding laser coupling involved in the scheme. The ground
state is denoted by |0〉 and the two excited states are represented
by |1〉 and |2〉. The x, y, and z axes are defined as shown in the
bottom left corner. The external laser field with the central frequency
ωp and the amplitude Ep is applied to coherently drive the cavity
mode with the resonance frequency ωc and to couple the |2〉 ↔ |0〉
excited transition via the left-hand cavity mirror along the axial (z)
direction. At the same time, the free-space control laser with the
central frequency ω and the Rabi frequency � interacts with the
atom and couples the |1〉 ↔ |0〉 excited transition from the open
side of the cavity along the vertical (x) direction. The second-order
intensity correlation function g(2)(0) of the transmitted field through
the right-hand cavity mirror can be measured by using one ordinary
50:50 nonpolarizing beam splitter and two single-photon detectors.
Here κe1 and κe2 are the damping rates of the left- and right-hand
cavity mirrors, and κi is the inner damping rate of the cavity. The
cavity is chosen to be symmetric, i.e., κe1 = κe2. The total damping
rate of the cavity is given by the sum κ = κe1 + κe2 + κi. �11 and �22

are the damping rates of the excited states |1〉 and |2〉 to the ground
state |0〉, respectively. �12 represents the cross-damping rate between
the excited states |1〉 and |2〉, namely, the VIC. Other symbols are
defined in the text

implemented for a single-photon source [46–48], which plays
an important role in quantum optics and quantum information
technologies [49–52].

Inspired by such a three-level quantum model [4] men-
tioned above, here we put forward an alternative route
to probe the existence of the VIC utilizing the quantum
statistics of photon antibunching and further reveal that the
vacuum-induced quantum beat (VIQB) can enable photon
antibunching in a weak-coupling CQED architecture. Specifi-
cally, the proposed CQED system consists of a tapered optical
nanofiber (ONF)-based [53–56] single-mode cavity contain-
ing a single three-level V -type atom (with two closely lying
upper states |1〉 and |2〉, and one ground state |0〉; see Fig. 1
for a sketch), which is subject to a control field and is excited

by an external driving light field from the left end of the
cavity. We find that the coherence statistics of photon anti-
bunching and the quantum beat dynamics of the ONF CQED
system with VIC are distinct from those without VIC. Fur-
thermore, we find that the occurrence of photon antibunching
corresponds to the existence of VIC, indicating that the photon
antibunching can be an important witness for VIC and can
be used to probe the existence of VIC. By means of both the
master equation approach and the Schrödinger equation ap-
proach, we present detailed analytical and numerical results
of the second-order intensity correlation function g(2)(0), in
which the analytical results are in good agreement with the
numerical simulations.

Alternatively, using experimentally realistic parameter val-
ues, we also investigate the influence of system parameters
on the photon antibunching. By reasonably tuning the system
parameters, a strong photon antibunching can occur in the
weak-coupling “bad-cavity” regime of CQED when the VIQB
is present, as a result of the destructive quantum interference
between the different paths for the two-photon excitation,
which is beneficial to the use of low-finesse cavities that are
readily accessible in many CQED systems. In this case, the
strong photon antibunching can be detected near the strong
intensity of the emitted light from the ONF-based cavity at the
same time, which provides a guiding significance for practi-
cal experimental design to a certain extent. In our proposed
scheme, strong photon antibunching with large brightness can
be generated within a certain driving frequency range, which
can relax the requirement for the driving frequency in the
ONF CQED system. Also, we demonstrate that this scheme
of probing the existence of the VIC utilizing the coherence
statistics of photon antibunching can be implemented based
on a real physical platform. The present study builds a bridge
between the photon antibunching and the VIC and VIQB. Our
achievable results may be useful for building a tunable single-
photon source and enabling potential applications in quantum
information processing [57,58] and quantum communications
[59,60].

The remainder of the paper is organized as follows. In
Sec. II, we describe the theoretical model and the Hamilto-
nian of the ONF CQED system. In Sec. III, we describe the
physical quantity of our interest, namely, the second-order
intensity correlation function. Moreover, by means of both
the master equation approach (Sec. III A) and the Schrödinger
equation approach (Sec. III B), we yield insights into the nu-
merical and analytical solutions of the second-order intensity
correlation function, respectively. In Sec. IV, we demonstrate
the experimental feasibility of our proposed scheme and the
choice of typical ONF CQED system parameters. All param-
eters discussed here are readily achievable experimentally. In
Sec. V, we investigate the relationship between the photon
antibunching and the VIC and VIQB. Then, we compare the
analytical solutions of the second-order intensity correlation
function with the numerical solutions and find that they are
in good agreement. Also, we analyze in detail the coher-
ence statistics of photon antibunching by adjusting the typical
system parameters. Finally, we summarize our results and
yield our outlook in Sec. VI. In the Appendix, we present
the Heisenberg-Langevin equation of motion governing the
quantum beat dynamics for better readability.
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II. PHYSICAL SYSTEM
AND THEORETICAL FRAMEWORK

Figure 1 shows the schematic diagram for a coupled ONF
CQED system that consists of a single three-level V -type
atom inside a tapered ONF-based cavity. To be specific, the
ONF cavity mode couples the |2〉 ↔ |0〉 excited transition
with frequency detuning �c = ω20 − ωc (ω20 is the excited
resonance frequency of the |2〉 ↔ |0〉 excited transition and ωc

is the resonance frequency of the ONF cavity mode). Again,
the free-space control laser drives the |1〉 ↔ |0〉 excited tran-
sition with Rabi frequency � in the vertical direction (axis
x) and � = ω10 − ω is the control frequency detuning (ω10

is the excited resonance frequency of the |1〉 ↔ |0〉 excited
transition and ω is the central frequency of the control laser).
The damping rate of atomic levels generated by the second-
order coupling between |i〉 and | j〉 (i, j = 1, 2) is �i j = �di0 ·
�d j0ω

3
i0/(3πε0 h̄c3) [4], where the indices i, j refer to the

atomic levels, �di0 and ωi0 are the transition electric-dipole
moment and the excited resonance frequency between |i〉 and
|0〉 (the same is true for �d j0), ε0 is the permittivity of vacuum,
h̄ is the reduced Planck constant, and c is the speed of light.
�12 represents the cross-damping rate between the excited
states |1〉 and |2〉, namely, the VIC as mentioned in Ref. [4],
whereas �11 and �22 are the damping rates of the excited states
|1〉 and |2〉 to the ground state |0〉, respectively. We can assume
that all the transition dipole moments are parallel to each
other and real, and obtain �12 � √

�11�22 like Refs. [4,61].
The ONF CQED system is coherently driven by an external
laser field with the central frequency ωp and the amplitude Ep

through the damping rate κe1 of the left-hand cavity mirror
in the horizontal axial direction (axis z) and �p = ωc − ωp

is its frequency detuning from the resonance frequency ωc of
the cavity mode. In this circumstance, the light is coherently
absorbed by the three-level atom (the small gold sphere) and
reemitted into the cavity. Through the damping rate κe2 of the
right-hand cavity mirror, we can probe the statistical charac-
teristics of the transmitted field by measuring the normalized
second-order intensity correlation function g(2)(0).

Under the electric-dipole and rotating-wave approxima-
tions, the total Hamiltonian of the composite system which
describes the atom-field coupling reads (assuming the Hamil-
tonian will be taken to have units of frequency here and
hereafter)

Ĥtot = ωcâ†â + ω10σ̂11 + ω20σ̂22 + g(â†σ̂02 + âσ̂
†
02)

+�(e−iωt σ̂
†
01 + eiωt σ̂01) + i(ηe−iωpt â† − η∗eiωpt â),

(1)

where â† and â are the creation and annihilation operators
for photons inside the ONF cavity, obeying the bosonic com-
mutation relations [â, â†] = 1, [â†, â†] = 0, and [â, â] = 0.
σ̂lm = |l〉〈m| (l, m = 0, 1, 2) represents the raising (l > m),
lowering (l < m), or population (l = m) operator for the
atom. Notice that the relationship σ̂

†
lm = |m〉〈l| = σ̂ml holds.

g = d20
√

ωc/(2h̄ε0V ) is the cavity-atom coupling strength
for the transition |2〉 ↔ |0〉, where d20 is the electric-dipole
moment of the corresponding transition |2〉 ↔ |0〉 and V is
the mode volume of the ONF cavity. � = d10E/(2h̄) is the
Rabi frequency for the transition |1〉 ↔ |0〉, where d10 is the

electric-dipole moment of the corresponding transition |1〉 ↔
|0〉 and E is the field amplitude of the control laser. It should
be pointed out that our definition of the control laser Rabi
frequency � corresponds to half of the standard definition of
Rabi frequency. Lastly, η = √

κe1Ep = √
Ppκe1/(h̄ωp) is the

strength of the external driving laser to motivate the cavity
mode â, where Pp is the pump power of the external driving
laser [62,63].

Several remarks are in order. First, it is pointed out that,
for the first term of Ĥtot [see Eq. (1)], the zero-point energy
ωc/2 of the ONF cavity field is neglected. This is allowed
because it only gives a relative shift and has no impact on
the system dynamics. Second, for the second and third terms
of Ĥtot , the energy of the atomic ground state |0〉 is taken as
the zero of energy for the sake of convenience. Third, the time
dependencies of the fifth and sixth terms reflect that the energy
of the system is not conserved. Such time dependencies are
justified because the photons are exchanged with the external
control and driving laser fields.

Below, for the purpose of eliminating the explicit temporal
dependence in the total Hamiltonian Ĥtot in Eq. (1) above,
we perform a unitary transformation to a rotating coordinate
frame described by the unitary operator Û (t ) = exp(−iĤ0t ),
where Ĥ0 = ωpâ†â + ωσ̂11 + ωpσ̂22. Then, in terms of the
formula Ĥrot = Û †(t )ĤtotÛ (t ) − iÛ †(t )∂Û (t )/∂t [64], we can
derive a time-independent effective Hamiltonian of the ONF
CQED system after some algebra, with the form

Ĥrot = �pâ†â + �σ̂11 + (�p + �c)σ̂22

+ g(â†σ̂02 + âσ̂
†
02) + �(σ̂ †

01 + σ̂01)

+ i(ηâ† − η∗â), (2)

where the notation �p = ωc − ωp is the detuning of the reso-
nance frequency ωc of the cavity mode from the driving laser
frequency ωp (named the driving detuning). � = ω10 − ω is
the detuning of the excited resonance frequency ω10 from the
control laser frequency ω (named the control detuning). �c =
ω20 − ωc is the detuning of the excited resonance frequency
ω20 from the resonance frequency ωc of the cavity mode.

III. CALCULATIONS OF THE SECOND-ORDER
INTENSITY CORRELATION FUNCTION

A. Numerical solutions via the full master equation approach

For the sake of treating the incoherent (dissipative) pro-
cesses and describing the complete dynamics of the ONF
CQED system with the joint atom-cavity density matrix op-
erator ρ̂, we can employ the Lindblad master equation in the
Born-Markov approximation [4,64–67],

∂ρ̂

∂t
= −i[Ĥrot, ρ̂] + κD(â)ρ̂ + �11D(σ̂01)ρ̂ + �22D(σ̂02)ρ̂

+�12(σ̂01ρ̂σ̂
†
02 − σ̂

†
02σ̂01ρ̂/2 − ρ̂σ̂

†
02σ̂01/2)

+�12(σ̂02ρ̂σ̂
†
01 − σ̂

†
01σ̂02ρ̂/2 − ρ̂σ̂

†
01σ̂02/2), (3)

with Ĥrot being the effective Hamiltonian directly yielded
by Eq. (2) and the brackets [·, ·] denoting the commutator.
D(Ô)ρ̂ = Ôρ̂Ô† − Ô†Ôρ̂/2 − ρ̂Ô†Ô/2 is a standard Lind-
blad operator form for the collapse operator Ô, accounting
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for the dissipation to the environment. Here, κ is the total
damping rate of the cavity (i.e., κ = κe1 + κe2 + κi). �11 and
�22 are the damping rates of the excited states |1〉 and |2〉 to
the ground state |0〉, respectively. �12 represents the VIC. The
first term on the right-hand side of Eq. (3) denotes the coherent
evolution of the whole system. The second term represents the
coupling of the cavity mode with the environment with the
damping rate κ . The third term shows the dissipation of the
excited state |1〉 into the environment with the damping rate
�11. The fourth term describes the dissipation of the excited
state |2〉 into the environment with the damping rate �22.
Finally, the last two terms illustrate the dissipative coupling
between the excited states |1〉 and |2〉 into the environment
with the VIC (i.e., �12) [4].

By applying the standard input-output formalism [68,69],
we can define the operator Ŝout describing the transmitted
field through the right-hand cavity mirror and arrive at the
continuity relation Ŝout = √

κe2â, with κe2 being the damping
rate of the right-hand cavity mirror. For a rotating-frame time-
independent Hamiltonian Ĥrot [see Eq. (2)], the dynamics of
the system evolves into a steady state as t → ∞ correspond-
ing to ∂ρ̂/∂t = 0. In this case, the statistical properties of the
transmitted field can be characterized by the normalized de-
layed second-order intensity correlation function [70], which
is defined by

g(2)(τ ) = 〈Ŝ†
out (t )Ŝ†

out (t + τ )Ŝout (t + τ )Ŝout (t )〉
〈Ŝ†

out (t )Ŝout (t )〉2

= 〈â†(t )â†(t + τ )â(t + τ )â(t )〉
〈â†(t )â(t )〉2 , (4)

where 〈·〉 represents the expectation value of the operator and
τ is the delay time between different detectors. Here, the nor-
malized equal-time (or zero-time-delay τ = 0) second-order
intensity correlation function can be expressed as [70]

g(2)(0) = 〈â†â†ââ〉
〈â†â〉2 = Tr(ρ̂ssâ†â†ââ)

[Tr(ρ̂ssâ†â)]2
, (5)

where Tr means the trace and ρ̂ss is the steady-state solution of
the density matrix ρ̂ for the coupled ONF CQED system by
numerically solving the Lindblad master equation (3) under
∂ρ̂ss/∂t = 0, with the constraint Tr(ρ̂ss) = 1.

The signature of the photon antibunching and bunching
can be distinguished by measuring the second-order inten-
sity correlation function from the output of the optical cavity
[70,71]. The photon antibunching effect with g(2)(0) < 1 [or
g(2)(τ ) > g(2)(0)] indicates that the transmitted light is sub-
Poissonian and antibunched. The limit g(2)(0) → 0 means a
complete photon blockade phenomenon [72]. The smallness
of g(2)(0) is considered as the quality of photon antibunch-
ing, which is also directly related to the single-photon purity
P by the relation P = 1 − g(2)(0) [73,74]. According to the
second-order intensity correlation function, we can judge
whether photon antibunching happens or not. In contrast, if
g(2)(0) > 1 [or g(2)(τ ) < g(2)(0)], the transmitted light shows
super-Poissonian and bunched corresponding to the pho-
ton bunching effect. In particular, the value of g(2)(0) = 1
corresponds to Poissonian photon statistics, which is a qua-
siclassical effect.

Here, the normalized second-order intensity correlation
function g(2)(0) can be calculated by numerically solving the
master equation (3) within a truncated Fock space. To do so,
we consider a Hilbert space expanded by the three electronic
states of the atom and the Fock states of the ONF cavity. No-
tice that the dynamics of the considered ONF CQED system
evolves towards a steady state ρ̂ss after long enough time,
where the condition ∂ρ̂ss/∂t = 0 holds. In the numerical sim-
ulations, we can truncate the Hilbert space at photon numbers
as low as 10 for the ONF cavity mode [72], which is sufficient
to guarantee the convergence of the simulations. Again, the
convergence of our numerical simulations can be checked by
varying the cutoff number of the ONF cavity photons [75].
The cutoff number of photons as low as 10 for the ONF
cavity mode corresponds to a total Hilbert space of 30 for
the ONF CQED system and hence such a master equation for
the steady-state density matrix [i.e., Eq. (3)] equivalent to
a linear system of 900 equations [76]. Hence the dynamic
characteristics of the ONF CQED system are obtained by the
numerical diagonalization. The details of the numerical results
will be discussed in Sec. V below.

Before continuing, it should be pointed out that seeking the
analytical solutions of the normalized second-order intensity
correlation function can help us to better explore the photon
antibunching effect in the ONF CQED system and to gain
further insight into the physics at play. To this end, we will first
discuss how to analytically calculate the second-order inten-
sity correlation function g(2)(0) in the next section (Sec. III B).

B. Analytical solutions via the Schrödinger
equation approach

In what follows, for the purpose of better exploring the
photon antibunching effect in the ONF CQED system, in this
section, we present approximate analytical expressions for
the second-order intensity correlation function g(2)(0) of the
transmitted field. Under the scenario of weak driving (η �
g, κ), the population of the high-photon excitation states is so
low that the total excitation number of the atom-cavity system
can be assumed to not exceed two, like in Refs. [43,77].
In this circumstance, the wave function of the atom-cavity
system can be reasonably approximated in the two-excitation
manifold with the ansatz [43,78]

|�(t )〉 � C00|0s, 0〉 + C01|0s, 1〉 + C02|0s, 2〉 + C10|1s, 0〉
+C11|1s, 1〉 + C20|2s, 0〉 + C21|2s, 1〉, (6)

where |m, n〉 = |m〉 ⊗ |n〉 denotes a tensor product of the
atomic state |m〉 (m = 0, 1, 2; the subscript “s” of |m〉 is only
for better visualization) in the three-level V -type atom and
the photonic Fock state with n = 0, 1, 2 photons in the ONF
cavity mode. The coefficient Cmn stands for the probability
amplitude of the corresponding state |m, n〉, for which the cor-
responding probability is given by |Cmn|2. In the limit of weak
driving, we have the relationship C00  {C01,C10,C20} 
{C02,C11,C21}.

Again, under the weak-driving limit, the atom-cavity sys-
tem remains predominantly in the ground state. As a result,
the contributions of the 2âρ̂â† and 2σ̂lmρ̂σ̂

†
lm (l, m = 0, 1, 2)

terms appearing in the Lindblad master equation can be
safely ignored [79,80]. This just is equivalent to obtaining the
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effective non-Hermitian Hamiltonian

Ĥeff = (�p − iκ/2)â†â + (� − i�11/2)σ̂11

+ (�p + �c − i�22/2)σ̂22 − i�12(σ̂12 + σ̂21)/2

+ g(â†σ̂02 + âσ̂
†
02) + �(σ̂ †

01 + σ̂01) + i(ηâ† − η∗â),

(7)

where, for the fourth term (i.e., the VIC between both radiative
channels), we can find that its coupling strength is imaginary
which is a characteristic of dissipative coupling. Physically,
the imaginary parts of the second and third terms indicate
that the coupling of the two quantum transition pathways
with a common reservoir results in the dampings �11 and
�22, respectively. The relation �12 � √

�11�22 indicates that
the coupling with the common reservoir induces a dissipative
coupling between these two radiative channels [4].

Based on the time-dependent Schrödinger equation
i∂|�〉/∂t = Ĥeff |�〉, the dynamics of the above probability
amplitude coefficients Cmn can be described by a set of cou-
pled equations as follows (overdots indicate time derivatives):

iĊ00 = �C10 − iη∗C01, (8)

iĊ01 = (�p − iκ/2)C01 + gC20 + �C11 + iηC00

− i
√

2η∗C02, (9)

iĊ02 = 2(�p − iκ/2)C02 +
√

2gC21 + i
√

2ηC01, (10)

iĊ10 = (� − i�11/2)C10 − i�12C20/2 + �C00 − iη∗C11,

(11)

iĊ11 = (�p + � − iκ/2 − i�11/2)C11 − i�12C21/2

+�C01 + iηC10, (12)

iĊ20 = (�p + �c − i�22/2)C20 − i�12C10/2 + gC01

− iη∗C21, (13)

iĊ21 = (2�p + �c − iκ/2 − i�22/2)C21 − i�12C11/2

+
√

2gC02 + iηC20. (14)

In the steady-state case by setting the left-hand sides
of Eqs. (8)–(14) to zero (i.e., Ċmn = 0), the following
set of coupled linear equations for the probability ampli-

tude coefficients Cmn can be obtained thereby, with the
forms

0 = �C10 − iη∗C01, (15)

0 = (�p − iκ/2)C01 + gC20 + �C11 + iηC00 − i
√

2η∗C02,

(16)

0 = 2(�p − iκ/2)C02 +
√

2gC21 + i
√

2ηC01, (17)

0 = (� − i�11/2)C10 − i�12C20/2 + �C00 − iη∗C11,

(18)

0 = (�p + � − iκ/2 − i�11/2)C11 − i�12C21/2
+�C01 + iηC10, (19)

0 = (�p + �c − i�22/2)C20 − i�12C10/2 + gC01 − iη∗C21,

(20)

0 = (2�p + �c − iκ/2 − i�22/2)C21 − i�12C11/2

+
√

2gC02 + iηC20. (21)

Owing to the weak-cavity-driving limit, the probability of
finding two photons in the ONF cavity is very small, such
that they can be safely ignored relative to the probability
of finding one (i.e., C00  {C01,C10,C20}  {C02,C11,C21}).
Additionally, it is reasonable to assume that the vacuum state
is approximately occupied with probability 1 as in Ref. [81].
That is to say, we can assume C00 ∼ 1, ηC02 ∼ 0, ηC11 ∼ 0,
and ηC21 ∼ 0 like in Ref. [82]. Based on the above reasonable
assumptions, by recurrently solving Eqs. (15)–(21), we can
obtain the concrete expressions for the probability amplitude
coefficients Cmn. Then the normalized equal-time second-
order intensity correlation function based on these coefficients
Cmn can be approximated by

g(2)(0) = 〈�|â†â†ââ|�〉ss

〈�|â†â|�〉2
ss

� 2|C02|2
|C01|4 , (22)

where the subscript “ss” denotes the expectation values taken
with respect to the steady-state solution, and accordingly |�〉
is the steady-state wave function of the ONF CQED system.
In general, the analytical expressions of Cmn are complex. For
the sake of simplicity, we introduce three effective detunings,
defined as �′

p = �p − iκ/2, �′ = � − i�11/2, and �′
c =

�p + �c − i�22/2, which take into account the presence of
damping rates in the system. Furthermore, for simplicity of
calculation, only C01 and C02 are given as below:

C01 = i
(−16η�′

cX01 + 8g�Y01�12 + 4ηZ01�
2
12 + 2g��′

p�
3
12 − η�′

p�
4
12

)

16�′A + 8gη�B�12 + 4C�2
12 − 2gη��3

12 + �′
p

2�4
12

, (23)

C02 = −16η2X02 − 8gη�Y02�12 + 4Z02�
2
12 + 4gη��3

12 − η2�4
12√

2
(
16�′A + 8gη�B�12 + 4C�2

12 − 2gη��3
12 + �′

p
2�4

12

) , (24)
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where

A = [g2 − �′
p(�′

p + �′
c)][�2�′

c + (�′
p + �′)(g2 − �′

p�
′
c)],

B = g2 − (�′
p + �′)(�′

p + �′
c),

C = �′
p�

′(−2g2 + 2�′
p�

′
c + �′

p
2) − (� − �′

p)(� + �′
p)[−g2 + �′

p(�′
p + �′

c)],

X01 = [�2 + �′(�′
p + �′)][−g2 + �′

p(�′
p + �′

c)],

Y01 = (�′
p + �′)[−g2 + �′

p(�′
p + �′

c)],

Z01 = �′
p[g2 + �2 − �′

p(�′
p + �′

c)] + �′[g2 − �′
p(�′

p + 2�′
c)],

X02 = [�2 + �′(�′
p + �′)][g2 + �′

c(�′
p + �′

c)],

Y02 = g2 + �2 − 2(�′
p + �′)(�′

p + �′
c),

Z02 = η2�2 + g2(η − �)(η + �) − η2[�′
p(�′

p + �′
c) + �′(�′

p + 2�′
c)]. (25)

According to Eqs. (22)–(25), the detailed analytical ex-
pression of the second-order intensity correlation function
g(2)(0) can be obtained. However, the analytical expression
of the second-order intensity correlation function g(2)(0) is
too cumbersome to offer clear physical insight (not pre-
sented here). Yet, it is not difficult to find that the statistical
property of photons is closely related to the VIC [i.e., �12;
cf. Eqs. (23) and (24)]. Again, based on Eqs. (8)–(14), we
present the schematic diagram of the energy level showing the
zero-, one-, and two-photon states and the transition pathways
of the coupled ONF CQED system, as shown in Fig. 2. It is
worth emphasizing from Fig. 2 that, thanks to the introduction
of the VIC, quantum interference can occur between different
two-photon excitation pathways, as marked by the red double
arrows of Fig. 2.

IV. EXPERIMENTAL FEASIBILITY AND TYPICAL
PARAMETERS FOR THE MODEL

Before proceeding, we briefly address the experimental
feasibility of our scheme. In accordance with the experimen-
tal report in Ref. [4], we can employ a single 85Rb atom
(nuclear spin I = 5/2, D2 line, and wavelength 780 nm) on
the 5 2S1/2 → 5 2P3/2 transition as a possible candidate [83]
for the ONF CQED system. The designated three-level V -
type atomic states can be chosen as follows: The ground
state |0〉 = |5 2S1/2, F = 3〉, and the two excited states |1〉 =
|5 2P3/2, F = 4〉 and |2〉 = |5 2P3/2, F = 3〉 (see Fig. 1), where
F is the total angular momentum quantum number and marks
the hyperfine state. The damping rates of the excited states
|1〉 and |2〉 to the ground state |0〉 are �11 = 2π × 6.1 MHz
and �22 = 5/9 × 2π × 6.1 MHz, respectively. The branch-
ing ratio for a decay from |2〉 to |0〉 is 5/9 [4,83,84]. The
cross-damping rate between the excited states |1〉 and |2〉 is
�12 � √

�11�22 = √
5/9 × 2π × 6.1 MHz (assuming that all

the transition dipole moments are parallel to each other and
real) [4]. In recent years, VIC has been investigated theoreti-
cally in several single-atom systems, such as V -type systems
[85,86], �-type systems [87], and ladder-type systems [88],
and has been demonstrated experimentally in atomic en-
sembles [4,25,89,90] where the single-atom approximation

has been adopted in the theoretical model of fitting. In the
multiatom systems, the interference effect arising from the
VIC between the two closely spaced excited levels has been
well demonstrated experimentally [89]. It is reasonable to
anticipate that the experimental demonstration of VIC in the

FIG. 2. Schematic diagram of the energy levels showing the
zero-, one-, and two-photon states (horizontal gray lines without
arrows) and the transition pathways (color lines with arrows) of the
coupled ONF CQED system. States are marked as |m, n〉, where the
first number m = 0, 1, 2 corresponds to the state of the three-level
atom and the second number represents the photonic Fock state for
the cavity mode with the photon number n = 0, 1, 2. The yellow
double arrows mean the different energy-level transitions caused by
the coupling of the external driving laser with the strength η. The
green double arrows represent the different energy-level transitions
resulting from the cavity-atom coupling g. The blue double arrows
denote the different energy-level transitions as a result of the Rabi
frequency �. The red double arrows indicate the different energy-
level transitions induced by the VIC (i.e., �12). When the different
energy-level transitions induced by the VIC (the red double arrows)
exist, the VIQB can occur. The emergence of the VIQB demonstrates
the existence of quantum interference in the ONF CQED system,
which can enable unconventional photon antibunching based on the
destructive quantum interference between the different transition
pathways.
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single-atom systems may further reveal the interaction be-
tween the two closely spaced excited levels, which may have
potential applications in quantum optics.

A tapered ONF-based cavity provides a unique fiber-in-
line platform for the ONF CQED system [56]. The tapered
ONF can be fabricated by adiabatically tapering commercial
single-mode optical fiber using a heat-and-pull technique [55].
The ONF-based cavity can be formed by laser-writing two
fiber Bragg gratings (FBGs) into the ONF using a focused ion
beam milling technique [91,92], termed the FBG nanofiber
cavity, or by introducing two photonic crystal (PC) defect
structures into the ONF using a femtosecond laser ablation
technique [93,94], termed the PC nanofiber cavity. The FBG-
PC nanofiber cavity by combining the above two approaches
has also been reported in Ref. [56]. On the other hand, a single
atom trapped in the vicinity of the ONF can be achieved with
several techniques [54,56,95–99].

For our proposed ONF CQED system consisting of a sin-
gle 85Rb atom confined in a tapered ONF-based cavity, the
resonance frequency ωc of the cavity mode can be modulated
to be near resonance with the transition frequency ω20 of the
excited transition |2〉 ↔ |0〉, that is, ωc = ω20 = 2πc/λ (c is
the speed of light and λ is 780 nm). The ONF-based cavity
field is a guided field with a small effective cross-section area.
As a result, even when the finesse of the ONF-based cav-
ity is moderate and the length of the ONF-based cavity is
long, the interplay between the guided field and the atom can
still be substantial [54,100]. The motivation behind the use
of a nanofiber cavity is to controllably generate the guided-
mode photon antibunching, which can be easily transmitted
over a long distance for quantum communication purposes.
For example, the cavity with the linewidth (the total damp-
ing rate of the ONF cavity mode) is κ = 2π × 6.4 MHz
(the damping rates of the left- and right-hand cavity mirrors
κe1 = κe2 = 2π × 1.6 MHz, and the inner damping rate κi =
2π × 3.2 MHz), the length is L = 33 cm [54], and the finesse
(roughly the number of intracavity photon round trips during
the cavity decay time) is F = πc/(κL) = 71. The cavity-atom
coupling strength g for the excited transition |2〉 ↔ |0〉 se-
lected in this paper can be implemented in the experiment
[54]. Specifically, the typical cavity-atom coupling strength
g = 2π × (1.3, 1.9, 2.9, 4.3, 7.8) MHz is within a reasonable
range of experimental parameters [54,100–102]. To sum up,
all parameters discussed here for the implementation of our
scheme are accessible experimentally.

V. RESULTS AND DISCUSSIONS ABOUT
CORRELATION g(2)(0)

First of all, we focus on the relationship between the pho-
ton antibunching and the quantum beat dynamics. We plot
the normalized equal-time second-order intensity correlation
function g(2)(0) as a function of the driving detuning �p/2π

in Figs. 3(a)–3(d) and the atomic population σ22 = 〈σ̂22〉 (i.e.,
the expectation value of the population operator σ̂22) as a
function of time t in Figs. 3(e)–3(h), corresponding to the
four different cases of g/2π = 1.3 MHz [see Figs. 3(a) and
3(e)], g/2π = 2.9 MHz [see Figs. 3(b) and 3(f)], g/2π =
4.3 MHz [see Figs. 3(c) and 3(g)], and g/2π = 7.8 MHz [see
Figs. 3(d) and 3(h)]. The derivation of the atomic population

σ22 is detailed in the Appendix. The red dotted lines corre-
spond to g(2)(0) and σ22 with VIC and the blue solid lines
correspond to g(2)(0) and σ22 without VIC, respectively. In
Figs. 3(e)–3(h), the left red vertical axis and the right blue
vertical axis correspond to the red dotted lines and the blue
solid lines, respectively. In order to more explicitly illustrate
the relationship between the oscillation frequency and the
cavity-atom coupling strength g/2π in the VIQB [see the red
dotted lines in the insets of Figs. 3(e)–3(h)], we can utilize the
time difference �tn (n = 1, 2, 3, 4) between the first (orange
dash-dotted vertical lines) and second (green dotted vertical
lines) oscillation minimum of σ22 to provide a more intuitive
view in the respective zoom-in regions. According to the
four different cases of g/2π = 1.3 MHz [�t1 = 1.30µs; see
Fig. 3(e)], g/2π = 2.9 MHz [�t1 = 1.27 µs; see Fig. 3(f)],
g/2π = 4.3 MHz [�t1 = 1.12 µs; see Fig. 3(g)], and g/2π =
7.8 MHz [�t1 = 0.86 µs; see Fig. 3(h)], it can be observed
that the time difference between the first and second oscilla-
tion minimum of σ22 decreases as the cavity-atom coupling
strength g/2π gradually increases. It can be clearly seen from
Figs. 3(a)–3(h) that the emergence of the VIQB [see the red
dotted lines in Figs. 3(e)–3(h)] corresponds to the occurrence
of the strong photon antibunching in a broad parameter region
of the driving detuning [see the red dotted lines in Figs. 3(a)–
3(d)]. On the contrary, when the VIQB disappears [see the
blue solid lines in Figs. 3(e)–3(h)], the antibunching effect
also vanishes [see the blue solid lines in Figs. 3(a)–3(d)]
in the ONF CQED system. When the different energy-level
transitions induced by the VIC (see the red double arrows in
Fig. 2) exist, the VIQB can occur. The emergence of the VIQB
demonstrates the existence of quantum interference in the
ONF CQED system, which can realize unconventional photon
antibunching based on the destructive quantum interference
between the different transition pathways. That is to say, the
VIQB can enable strong photon antibunching, which is use-
ful for building a tunable single-photon source and enabling
potential applications in quantum information processing and
quantum communications.

When the VIQB exists (red dotted lines), in the weak-
coupling regime [i.e., g < (κ, �1), where �1 = �11 + �12]
[103], a strong antibunching can be observed on the center at
�p/2π = 0 MHz for g/2π = 1.3 MHz [see Fig. 3(a)], where
the value of g(2)(0) arrives at g(2)(0) � 0.021. The strong an-
tibunching [g(2)(0) � 0.021] corresponds to a single-photon
purity P = 1 − g(2)(0) = 0.979 in the ONF CQED system
[73,74]. Similarly, the strong antibunching [g(2)(0) � 0.025]
can be observed on both sides around �p/2π � ±8.9 MHz
for g/2π = 2.9 MHz [see Fig. 3(b)] and the strong anti-
bunching [g(2)(0) � 0.013] can be observed on both sides
around �p/2π � ±11.6 MHz for g/2π = 4.3 MHz [see
Fig. 3(c)]. With increasing the cavity-atom coupling strength
g/2π , entering into the strong-coupling regime (i.e., g > κ),
the strong photon antibunching [g(2)(0) � 0.003] can also
be observed on both sides around �p/2π � ±16 MHz for
g/2π = 7.8 MHz [see Fig. 3(d)]. Conversely, in the absence
of the VIQB (blue solid lines), there is no antibunching effect
[e.g., at �p/2π = 0 MHz in Fig. 3(c), g(2)(0) � 5.3 corre-
sponds to the photon bunching].

Physically, the occurrence of the strong antibunching ef-
fect is due to the fact that the introduction of VIC adds a

023727-7



ZHIMING WU, JIAHUA LI, AND YING WU PHYSICAL REVIEW A 108, 023727 (2023)

FIG. 3. [(a)–(d)] The normalized equal-time second-order intensity correlation function g(2)(0) as a function of the driving detuning
�p/2π with the VIC (�12 = √

5/9 × 2π × 6.1 MHz; red dotted lines) and without the VIC (�12 = 0; blue solid lines), corresponding to
the four different cases (a) g/2π = 1.3 MHz, (b) g/2π = 2.9 MHz, (c) g/2π = 4.3 MHz, and (d) g/2π = 7.8 MHz. In the case with VIC, the
comparisons between the numerical results [red dotted lines, calculated numerically by the quantum master equation (3)] and the analytical
results [purple circles, calculated analytically by the closed-form expressions (22)–(25)] are shown in the insets, where the insets use the
normal vertical axis to better display the fitting results. [(e)–(h)] The atomic population σ22 as a function of time t corresponding to (a)–(d),
respectively. In (e)–(h), the left red vertical axis and the right blue vertical axis show the atomic population σ22 with VIC (red dotted lines)
and without VIC (the blue solid lines) in the ONF CQED system, respectively. The orange dash-dotted vertical lines and the green dotted
vertical lines show the time t corresponding to the first and second oscillation minimum of σ22 with VIC, respectively. �tn (n = 1, 2, 3, 4)
represents the time difference between the first and second oscillation minimum of σ22 with VIC. The enlarged views of the first and second
oscillation minimum of σ22 with VIC are shown in the insets, where the time abscissa axis in the insets only shows the time t corresponding
to the first and second oscillation minimum for clarity and simplicity. [(i)–(l)] The intensity Ic of the ONF-based cavity emission light as a
function of the driving detuning �p/2π with VIC (red dotted lines) and without VIC (blue solid lines) corresponding to (a)–(d), respectively.
The system parameters for all panels are chosen as κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π = 5/9 × 6.1 MHz, �/2π = 0.65 MHz,
η/2π = 0.01 MHz, �/2π = 0 MHz, and �c/2π = 0 MHz, typically from a recent experiment [4].

few additional transition pathways to the ONF CQED system
and leads to the destructive quantum interference between
different transition pathways for two-photon excitation. As
displayed in Fig. 2, quantum interference can occur be-
tween the two different two-photon excitation pathways. More
specifically, pathway (i) involves direct input of two photons
into the cavity mode via the external driving, which we refer

to as the direct pathway, i.e., |0s, 0〉 η→ |0s, 1〉
√

2η→ |0s, 2〉; and
pathway (ii) is the indirect pathway facilitated by the con-

trol field and the VIC, i.e., |0s, 0〉 �→ |1s, 0〉 η→ |1s, 1〉 �12/2→
|2s, 1〉

√
2g→ |0s, 2〉. In order to illustrate the influence of the

introduction of VIC (i.e., �12) on the indirect pathway (i.e.,

|1s, 1〉 �12/2→ |2s, 1〉), through numerical calculations, we can
obtain the probabilities |C11|2 and |C21|2 corresponding to
the states |1s, 1〉 and |2s, 1〉, respectively. For example, when
g/2π = 2.9 MHz and �p/2π = 0 MHz [see Fig. 3(b)], in
the absence of VIC, the probabilities are |C11|2 = 2.2 × 10−7

and |C21|2 = 1.7 × 10−11, indicating that the probability of
the state |2s, 1〉 is four orders of magnitude smaller than that
of the state |1s, 1〉. However, in the presence of the VIC,
the probabilities are |C11|2 = 4.1 × 10−4 and |C21|2 = 3.8 ×
10−5, where the probability of the state |2s, 1〉 is only one
order of magnitude smaller than that of the state |1s, 1〉. The
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discrepancy in the reductions between the probabilities |C11|2
and |C21|2 from four orders of magnitude (without VIC) to
one order of magnitude (with VIC) verifies the role of VIC in
bridging the photon transfer from state |1s, 1〉 to state |2s, 1〉
(i.e., |1s, 1〉 �12/2→ |2s, 1〉; see the red double arrows in Fig. 2).
The important influence of VIC on the photon transfer from
state |1s, 1〉 to state |2s, 1〉 can also be seen from the process of
calculating the probability amplitude C21 [see Eq. (14)] [82].
By introducing VIC, the photon transfer from state |1s, 1〉
to state |2s, 1〉 (i.e., |1s, 1〉 �12/2→ |2s, 1〉) can be constructed,
which has potential significance in energy transfer studies

[104–106]. As foreseen, the pathway |1s, 1〉 �12/2→ |2s, 1〉 can
also be bridged by a coherent microwave or radio frequency
(RF) field. The difference in both approaches is that the
VIC is incoherent (dissipative) while the microwave- or RF-
based coupling is coherent. Unlike the previous works [42,43]
on cavity-coupling cavity-induced quantum interference, the
photons from both pathways (i) and (ii) cannot occupy the
two-photon state |0s, 2〉 due to the interference of these two
excitation pathways. In other words, the destructive quan-
tum interference between different transition pathways can
reduce the probability in the two-photon excited state. As a
consequence, the strong antibunching effect induced by the
quantum interference can be realized. It is worth stressing that
the above results can be based on the weak-coupling regime
of CQED [see Figs. 3(a)–3(c)], highlighting the crucial role of
VIC in the pathway interference.

In addition, the comparisons between the numerical and
analytical results for the normalized equal-time second-order
intensity correlation function g(2)(0) with VIC are revealed
in the insets of Figs. 3(a)–3(d). The red dotted lines and the
purple circles correspond to the numerical simulation results
given by the master equation (3) and the analytical results
given by the closed-form expressions (22)–(25) based on the
Schrödinger equation in the steady state, respectively. The
insets show that the numerical simulation results for g(2)(0)
are in good agreement with the analytical calculations. This
means that, in the scenario of a weak cavity driving, the
analytical solutions derived from the Schrödinger equation
approach in the steady state can well reproduce the full nu-
merical solutions obtained by the master equation approach.

On the other hand, it can be easily seen from Figs. 3(a)–
3(d) that the occurrence of the photon antibunching corre-
sponds to the existence of the VIC effect (the red dotted
lines). This means that the photon antibunching can be an
important witness for the VIC effect and can be used to probe
the existence of the VIC effect, which is different from the
previous work in Ref. [4] that employs the VIQB effect to
probe the existence of the VIC effect. The method that the
photon antibunching can serve as a tool to probe the existence
of the VIC effect can be used for investigating the energy
transfer [104–106]. The construction of the bridge between
the photon antibunching and the VIC effect has potential
applications in quantum information processing and quantum
optics [107,108].

Apart from that, it is worth mentioning that the intensity
of the emitted light from the ONF-based cavity is propor-
tional to Ic = 〈Ŝ†

outŜout〉 = κe2〈â†â〉 = κe2n (collected photons
per second, i.e., the so-called source brightness [52]), where

the average intracavity photon number is expressed by n =
〈â†â〉. We also plot the intensity Ic of the ONF-based cavity
emission light as a function of the driving detuning �p/2π

with VIC (red dotted lines) and without VIC (blue solid
lines) in Figs. 3(i)–3(l), corresponding to the four different
cases of g/2π = 1.3 MHz [see Fig. 3(i)], g/2π = 2.9 MHz
[see Fig. 3(j)], g/2π = 4.3 MHz [see Fig. 3(k)], and g/2π =
7.8 MHz [see Fig. 3(l)]. By comparing Figs. 3(a)–3(d) and
3(i)–3(l), it is observed that the strong antibunching effect
can be detected near the large brightness at the same time
in the ONF CQED system. In this scenario, the ONF CQED
system can be regarded as an effective single-photon source
device, which provides a guiding significance for practical
experimental design to a certain extent.

In all the analysis above, however, we have not yet taken
into account the nonresonant case of the control field, namely,
�/2π �= 0. In order to more clearly show the influence of
the control detuning parameter on the photon statistics of
the ONF CQED system, we plot the two-dimensional color-
scale map of the normalized equal-time second-order intensity
correlation function g(2)(0) as a function of the driving de-
tuning �p/2π as well as the control detuning �/2π with
VIC in Fig. 4. It can be clearly seen from the figure that
the photon antibunching can occur when the control laser
frequency ω is near resonance with the excited frequency
ω10 (i.e., �/2π → 0; the dark blue area). What is more, the
antibunching effect of the system can be improved by increas-
ing the cavity-atom coupling strength g/2π . By comparing
Figs. 4(a) (g/2π = 1.3 MHz), 4(b) (g/2π = 2.9 MHz), 4(c)
(g/2π = 4.3 MHz), and 4(d) (g/2π = 7.8 MHz), the dark
blue area of g(2)(0) broadens with the increase of the cavity-
atom coupling strength g/2π . As compared to the previous
scheme [103] of generating strong photon antibunching at
near zero driving detuning in a three-level system, the strong
photon antibunching can be achieved in a broad parameter
region of the driving detuning in our scheme. This widened
dark blue area of g(2)(0) relaxes the requirement for the
driving frequency, which is conducive to achieving strong
photon antibunching and realizing a tunable single-photon
source.

To clearly show how the cavity-atom coupling strength
g/2π affects the antibunching effect of the system, we plot
the normalized equal-time second-order intensity correlation
function g(2)(0) as a function of the driving detuning �p/2π

for five different values of g/2π with VIC in Fig. 5(a). As
shown in Fig. 5(a), it can be observed that (i) the value of
g(2)(0) increases with increasing the cavity-atom coupling
strength g/2π gradually near �p/2π = 0 and the degree
of the photon antibunching decreases; (ii) when the driving
detuning �p/2π is large, for example, �p/2π = 16 MHz,
the value of g(2)(0) rapidly decreases with increasing g/2π

gradually and the degree of the photon antibunching quickly
increases; and (iii) a strong photon antibunching [g(2)(0) �
0.003] can occur at �p/2π = 16 MHz for g/2π = 7.8 MHz.
When the driving detuning is near �p/2π = 0 MHz, a
stronger photon antibunching effect [i.e., a smaller value of
g(2)(0)] corresponds to a smaller g/2π , which can relax the re-
quirement for the cavity-atom coupling strength g/2π . Photon
antibunching can occur in the weak-coupling regime [g/2π =
(1.3, 1.9, 2.9, 4.3) MHz], which is beneficial to the use of
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FIG. 4. Contour plot of the normalized equal-time second-order intensity correlation function g(2)(0) as a function of the driving detuning
�p/2π as well as the control detuning �/2π with VIC, corresponding to the four different cases of (a) g/2π = 1.3 MHz, (b) g/2π =
2.9 MHz, (c) g/2π = 4.3 MHz, and (d) g/2π = 7.8 MHz. The color bar on the right-hand side represents the magnitude of g(2)(0) and panels
(a)–(d) share the same color bar. The other parameters are chosen as κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π = 5/9 × 6.1 MHz,
�12/2π = √

5/9 × 6.1 MHz, �/2π = 0.65 MHz, η/2π = 0.01 MHz, and �c/2π = 0 MHz, respectively.

low-finesse cavities that are readily accessible in many CQED
systems. Also, with the increase of the cavity-atom coupling
strength (g/2π = 7.8 MHz), a smaller value of g(2)(0) can
be achieved; i.e., the photon antibunching effect can become
stronger.

To better illustrate the above-mentioned results presented
in Fig. 5(a), we plot the normalized equal-time second-order
intensity correlation function g(2)(0) as a function of the
cavity-atom coupling strength g/2π for the case of the driving
detuning �p/2π = 0 MHz (the red dotted line and the purple
circles) and �p/2π = 16 MHz (the blue solid line and the
green triangles) with VIC in Fig. 5(b). It can be clearly seen

FIG. 5. (a) The normalized equal-time second-order intensity
correlation function g(2)(0) as a function of the driving detuning
�p/2π for the five different values of the cavity-atom coupling
strength g/2π with VIC. The inset shows an enlarged view of g(2)(0)
near �p/2π = 0. (b) The normalized equal-time second-order in-
tensity correlation function g(2)(0) as a function of the cavity-atom
coupling strength g/2π for the case of the driving detuning �p/2π =
0 (the red dotted line and the purple circles) and �p/2π = 16 MHz
(the blue solid line and the green triangles) with VIC. The panel uses
the normal vertical axis to better display the fitting results. The red
dotted line and the blue solid line correspond to the numerical results
calculated by the quantum master equation (3). The purple circles
and the green triangles correspond to the analytical results calcu-
lated by the closed-form expressions (22)–(25). The other parameters
are chosen as κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π =
5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz, �/2π = 0.65 MHz,
η/2π = 0.01 MHz, �/2π = 0 MHz, and �c/2π = 0 MHz,
respectively.

from Fig. 5(b) that when �p/2π = 0 MHz (the red dotted
line and the purple circles), the value of g(2)(0) increases with
increasing g/2π gradually. When �p/2π = 16 MHz (the blue
solid line and the green triangles), the value of g(2)(0) rapidly
decreases with increasing g/2π gradually, which is consistent
with that shown in Fig. 5(a). In Fig. 5(b), the numerical results
(the red dotted line and the blue solid line) of the normal-
ized equal-time second-order intensity correlation function
g(2)(0) obtained from the quantum master equation (3) are
compared with the analytical results (the purple circles and the
green triangles) given in Eqs. (22)–(25) from the Schrödinger
equation in the steady-state limit, and they both are in good
agreement.

Based on the numerical approach given by the quan-
tum master equation (3), we now explore how the statistical
property of the ONF CQED system is impacted by the cavity-
atom coupling strength g/2π , the driving strength η/2π , and
the control-field Rabi frequency �/2π by plotting the two-
dimensional color-scale map of the normalized equal-time
second-order intensity correlation function g(2)(0) in Fig. 6.
It can be clearly seen from Fig. 6(a) that the strong photon
antibunching (the dark blue area) can occur at a weak driving
strength (near η/2π = 0.01 MHz) and a certain cavity-atom
coupling strength (near g/2π = 2.9 MHz). In looking at the
result of Fig. 6(b), we find that the strong photon antibunching
(the dark blue area) can emerge at a weak driving strength
(near η/2π = 0.01 MHz) and a certain control-field Rabi
frequency (near �/2π = 0.65 MHz). With the increase of
the driving strength [i.e., η ∼ (g, κ )], the photon bunching
(the red, yellow, and green areas) can appear in the ONF
CQED system, while the photon antibunching effect becomes
weaker (the blue area becomes smaller and the blue be-
comes lighter). By tuning the driving strength η/2π , the
conversion between the photon antibunching (the blue area)
and the photon bunching (the red, yellow, and green areas)
can be achieved in the ONF CQED system. From what
has been analyzed above, we can reach the conclusion that
the strong photon antibunching (the dark blue area) in the
present ONF CQED system can be well generated by ad-
justing the cavity-atom coupling strength g/2π , the driving
strength η/2π , and the control-field Rabi frequency �/2π

appropriately.
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FIG. 6. (a) Contour plot of the normalized equal-time second-
order intensity correlation function g(2)(0) as a function of the driving
strength η/2π as well as the cavity-atom coupling strength g/2π

for the control-field Rabi frequency �/2π = 0.65 MHz with VIC.
(b) Contour plot of the normalized equal-time second-order intensity
correlation function g(2)(0) as a function of the driving strength η/2π

as well as the control-field Rabi frequency �/2π for the cavity-atom
coupling strength g/2π = 2.9 MHz with VIC. The color bar on
the right-hand side of panels (a) and (b) represents the magnitude
of g(2)(0). The white contour lines in panels (a) and (b) corre-
spond to g(2)(0) = 1 (i.e., Poissonian light). The other parameters
are chosen as κ/2π = 6.4 MHz, �11/2π = 6.1 MHz, �22/2π =
5/9 × 6.1 MHz, �12/2π = √

5/9 × 6.1 MHz, �p/2π = 0 MHz,
�/2π = 0 MHz, and �c/2π = 0 MHz, respectively.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have investigated the use of coherence
statistics of photon antibunching to probe the existence of VIC
and demonstrated that the VIQB can enable strong photon an-
tibunching accompanying with large brightness in a coupled
ONF CQED system. We find that the occurrence of the photon
antibunching corresponds to the existence of VIC, indicating
that the photon antibunching can be an important witness
for VIC and can be used to probe the existence of VIC. By
tuning the system parameters appropriately, a strong photon
antibunching can occur in the weak-coupling “bad-cavity”
regime when the VIQB is present, as a result of the destructive
quantum interference between the different paths for two-
photon excitation, which is beneficial to the use of low-finesse
cavities that are readily accessible in many CQED systems. In
this case, the strong photon antibunching can be detected near
the strong intensity of the emitted light from the ONF-based
cavity at the same time, which provides a guiding significance
for practical experimental design to a certain extent. When the
driving laser frequency is near resonance with the frequency
of the cavity mode (i.e., the driving detuning is near zero), the
degree of the photon antibunching increases with the decrease
of the cavity-atom coupling strength, which can relax the
requirement for the cavity-atom coupling strength in the ONF
CQED system. Furthermore, we find that when the control de-
tuning is near zero, the driving frequency range for achieving
strong antibunching can be extended with the increase of the
cavity-atom coupling strength, which can relax the require-
ment for the driving frequency in the ONF CQED system.
This tunable atom-cavity scheme provides a possibility for the
generation of a tunable single-photon source. In addition, we
compare the analytical solutions of the second-order intensity
correlation function obtained from the closed-form formu-
las with the numerical solutions obtained from the master

equation, and they are in good agreement. Also, we comment
on a possible experimental implementation of our proposal
with existing state-of-the-art ONF CQED architecture. We
hope that the achievable results in our work can be useful for
building a tunable single-photon source and enabling potential
applications in quantum information processing [57,58] and
quantum communications [59,60].

As a direct extension, it would be interesting to study
the generation of telecom-band photons [e.g., O-band (1260–
1360 nm) and C-band (1530–1565 nm)] in optical fibers
due to their compatibility with existing fiber-optic infras-
tructure and the potential for minimal loss in fiber networks
[109–112]. According to the previous works [113,114], it may
be possible to replace Rb atom corresponding to 780 nm
photon emission with Er3+ ion corresponding to 1532 nm or
1536.46 nm photon emission (C-band). Besides this, adopting
the techniques introduced in Ref. [115], one can replace the
Rb atom corresponding to 780 nm photon emission with a
Ca+ ion corresponding to 866 nm photon emission which is
then converted to 1530 nm photon emission (C-band), while
preserving their quantum statistics. As shown in Ref. [116], by
demonstrating ion-photon entanglement, it may also be feasi-
ble to utilize 1310 nm photons (O-band) instead of 780 nm
photons. In our ONF CQED system, the extension of 780 nm
photons to low-loss telecom-band photons is left for further
study. Finally, it is worth pointing out that, compared to an-
other scheme [117] for implementing a 780 nm single-photon
source using resonant driving frequency, in our scheme the
strong photon antibunching can be achieved, on the one hand,
in a broad parameter region of the driving frequency, which
relaxes the requirement for the driving frequency, and on the
other hand, in the bad-cavity regime, which is much easier to
achieve, experimentally.

ACKNOWLEDGMENTS

We are grateful to Xin-You Lü and Rong Yu for stimulating
discussions. The present research is supported partially by
the National Natural Science Foundation of China (NSFC)
through Grant No. 12275092 and by the National Key Re-
search and Development Program of China under Contract
No. 2021YFA1400700.

APPENDIX: CALCULATIONS FOR THE BEAT DYNAMICS

In this Appendix, we present the derivation of the atomic
population σ22 [see Figs. 3(e)–3(h)] using a perturbation
method [118] which is omitted in the main text. Based on
the formula ∂〈Ô〉/∂t = Tr[∂ (Ôρ̂ )/∂t] = Tr(Ô∂ρ̂/∂t ) [119]
and the Lindblad master equation (3), one can derive the
Heisenberg-Langevin equation of motion for the expectation
value of any operator Ô [118], with the form

∂〈Ô〉
∂t

= Tr{−i[Ô, Ĥrot]ρ̂ + Ô[κD(â)ρ̂

+�11D(σ̂01)ρ̂ + �22D(σ̂02)ρ̂

+�12(σ̂01ρ̂σ̂
†
02 − σ̂

†
02σ̂01ρ̂/2 − ρ̂σ̂

†
02σ̂01/2)

+�12(σ̂02ρ̂σ̂
†
01 − σ̂

†
01σ̂02ρ̂/2 − ρ̂σ̂

†
01σ̂02/2)]},

(A1)
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where Ĥrot corresponds to the effective Hamiltonian directly
yielded by Eq. (2) of the main text and 〈·〉 stands for the
expectation value. In accordance with the previous reports in
Refs. [118,120,121], we can ignore the entanglement between
the atom and the ONF cavity field. For the sake of brevity
in notations, we can define σlm = 〈σ̂lm〉 (l, m = 0, 1, 2) and
a = 〈â〉 in the weak-driving limit. Using the cyclic permuta-
tion of the trace [Tr(ÔQ̂) = Tr(Q̂Ô)], we finally can arrive at
the following Heisenberg-Langevin equations of motion for
the expectation values of σlm (l, m = 0, 1, 2) and a, which are
given by

σ̇00 = �11σ11 + �22σ22 + �12(σ12 + σ21) − iga∗σ02

+ igaσ20 − i�σ01 + i�σ10, (A2)

σ̇11 = −�11σ11 − �12(σ12 + σ21)/2 + i�σ01 − i�σ10,

(A3)

σ̇22 = −�22σ22 − �12(σ12 + σ21)/2 + iga∗σ02 − igaσ20,

(A4)

σ̇01 = −(i� + �11/2)σ01 − �12σ02/2 + igaσ21

+ i�(σ11 − σ00), (A5)

σ̇02 = −[i(�p + �c) + �22/2]σ02 − �12σ01/2

+ iga(σ22 − σ00) + i�σ12, (A6)

σ̇21 = −[i(� − �p − �c) + �11/2 + �22/2]σ21

−�12(σ11 + σ22)/2 + iga∗σ01 − i�σ20, (A7)

ȧ = −(i�p + κ/2)a − igσ02 + η, (A8)

where �11 and �22 are respectively the damping rates of the

excited states |1〉 and |2〉 to the ground state |0〉, which are
associated with the terms ±�11σ11 and ±�22σ22 in Eqs. (A2)–
(A4). �12 represents the cross-damping rate between the
excited states |1〉 and |2〉 (i.e., the VIC), which is associ-
ated with the terms �12(σ12 + σ21) and −�12(σ12 + σ21)/2
in Eqs. (A2)–(A4). This set of ordinary nonlinear differential
coupled equations describes the time evolution of the coupled
ONF CQED system. Above, the overdots represent the deriva-
tives with respect to time t .

In accordance with the previous experimental report in
Ref. [4], we can assume that the atomic populations in
the initial state are σ22 ≈ 0, σ11 ≈ 10−10, and σ00 ≈ 1, and
the absolute values of the coherences are |σ12| ≈ 0, |σ10| ≈
10−5, and |σ20| ≈ 0. The average photon number can be as-
sumed to |a|2 ≈ 0 at the initial time. By recurrently solving
Eqs. (A2)–(A8), without the need for making the truncation
approximation like the Schrödinger equation approach [i.e.,
Eq. (6)], we can well acquire the atomic population σ22 [see
Figs. 3(e)–3(h)] as a function of time t .
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