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Single-photon optical bistability in a small nonlinear cavity
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We theoretically investigated the bistability in a small Fabry-Perot interferometer (FPI) with the optical
wavelength size cavity, the nonlinear Kerr medium, and only a few photons, on average, excited by the external
quantum field. Analytical expressions for the stationary mean photon number, the bistability domain, the field,
and the photon number fluctuation spectra are obtained. Multiple stationary states of the FPI cavity field with
different spectra are possible at realistic conditions, for example, in the FPI with the photonic crystal cavity and
the semiconductor-doped glass nonlinear medium.
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I. INTRODUCTION

Recent technological progress has led to a considerable
reduction of the optical integrated circuit element size [1,2]
in photonic quantum technologies (PQT) [3]. An essential
element of PQT is a miniature Fabri-Perot interferometer
(FPI) [4–6] to be part of a variety of devices, such as the
optical delay lines [7], the wavelength-division multiplexers
[8], laser cavities [9], and so on. The bistable miniature FPI
is considered an essential element for PQT and is necessary
for ultra-low photonic signal processing [10,11]. FPI with a
nonlinear medium has optical bistability [12–14] and operates
as an optical transistor [15], where noiseless amplification is
possible [15,16].

A small FPI, with a cavity of the size of the optical
wavelength, is appropriate for PQT. When the nonlinear Kerr
medium is in the FPI cavity, the cavity refractive index
and the FPI mode frequency depend on the number of the
cavity photons, leading to dispersive optical bistability at cer-
tain conditions [12–14,17]. In particular, a nonzero detuning
between the FPI mode and the input field frequencies is neces-
sary for bistability [14]. The detuning reduces the number of
photons in the FPI cavity. Thus, one expects a small number of
photons in a small FPI with the detuning, as we will see below.
So it is essential to investigate whether a bistability is possible
with only a few, one or even less than one photon, on average,
in the FPI cavity. Such investigation is complicated because
the photon fluctuations cannot be neglected or considered
perturbations of a small number of photons. The purpose of
this paper is to contribute to such an investigation.

Here we analyze, by the analytical approach, the bista-
bility in the small FPI with the nonlinear Kerr medium,
excited by the field where the quantum fluctuations are signif-
icant and not a perturbation. The linearized theory previously
analyzed optical bistability in the FPI with the field quan-
tum fluctuations considered perturbations [18]. Meanwhile,
the exact quantum steady-state equation of [18], found with
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the help of P-representation, did not exhibit bistability or
hysteresis.

Section II describes a simplified model of the nonlinear
FPI, (i.e., the FPI with a nonlinear Kerr medium inside) shown
in Fig. 1, with only one semitransparent mirror. We write
equations of motion for such a model. Section III presents
analytical formulas for the field, and the photon number
fluctuation spectra of the mode of the FPI introduced in
Sec. II. The derivation of formulas of Sec. III is given in the
Appendix. Section III generalizes results for a simple FPI in
Fig. 1 to the FPI with two semitransparent mirrors shown
in Fig. 2. Section IV describes the bistability conditions for
the nonlinear FPI, excited by the external quantum field and
shows the example of the FPI field spectra at the bistability.
Section V estimates the values of parameters necessary for
the optical bistability in the small FPI with a few photons in
the cavity. We discuss the results in the discussion Sec. VI and
finalize the paper in the conclusion in Sec. VII.

II. MODEL AND EQUATIONS OF MOTION

To simplify the analysis, we consider, in the beginning, the
FPI with only one semitransparent and one perfectly reflecting
mirror, is shown in Fig. 1. Then we generalize the approach to
the FPI with two semitransparent mirrors shown in Fig. 2.

The cavity of the FPI is filled with the Kerr medium whose
refractive index depends on the cavity field intensity. The
mode of the FPI cavity is excited by the quantum input field
taken from a laser or a light-emitting diode (LED). The input
field Bose operator is âine−iωint ; âin is the field amplitude op-
erator, and the input field spectrum is centered on the optical
carrier frequency ωin. The input field enters the FPI through
the semitransparent mirror with the transmission rate κ .

We suppose that the FPI cavity length is λ/2, where λ is the
input field wavelength and assume that the main FPI cavity
mode is excited; ωin is close to the frequency ω0 of the center
of the excited FPI mode spectrum. We neglect the excitation
of the other FPI modes.

The output field with the amplitude Bose operator âout

leaves the FPI through the semitransparent mirror. The
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FIG. 1. Scheme of the nonlinear FPI with the semitransparent
mirror on the right and the perfectly reflected mirror on the left.
Notations are explained in the text.

amplitude Bose operator of the excited FPI mode is â. The
input and the output field mean powers are pin = 〈â+

inâin〉,
and pout = 〈â+

outâout〉, respectively. We denote quantum-
mechanical averaging as 〈. . .〉, the mean values (and the
c-number coefficients) by letters without hats (as a), and op-
erators by letters with hats (as â).

The Hamiltonian of the FPI shown in Fig. 1 written in the
interaction picture, the rotating wave approximation, and with
the normal ordering of Bose operators is

H = h̄δ0â+â − h̄δ1

2
â+â+ââ + �̂, (1)

where the detuning δ0 = ω0 − ωin � ω0, ωin; δ1 is the nonlin-
earity coefficient of the Kerr medium, the multiplier −1/2 in
−h̄δ1/2 is introduced for convenience; �̂ describes the input
field coming to the FPI and the field leaving the FPI through
the semitransparent mirror. Note that δ1 ∼ ñ2/V , where ñ2 is
the Kerr medium nonlinear coefficient used in the literature
[19] and V is the FPI cavity mode volume. A small V , of the
size about the optical wavelength, provides a large δ1, enough
for the bistability with only a few photons in the FPI cavity, as
discussed in Sec. VI.

Hamiltonian (1) leads to the Heisenberg equation of motion
for â

˙̂a = −(iδ0 + κ )â + iδ1n̂â +
√

2κ âin, (2)

where n̂ = â+â is the photon number operator. The terms −κ â
and

√
2κ âin describe the cavity field decay and the external

field coming through the semitransparent mirror. According
to the input-output theory [20,21] these terms are added to
Eq. (2).

If the FPI is excited by the coherent classical field, and
quantum fluctuations of the FPI field are neglected, then the
operators â and âin in Eq. (2) must be replaced by c-number
variables a and ain; the photon number operator n̂ is replaced
by |a|2, so Eq. (2) turns into the classical equation has multiple
stationary solutions [12–14,17].

The quantum equation (2) can be solved, in principle, by
the perturbation procedure: We separate in n̂ the mean photon

FIG. 2. The scheme of the nonlinear FPI with two semitrans-
parent mirrors. âvac is the vacuum field coming through the output
mirror. The rest of the notations are explained in the text.

number n and the photon number fluctuations δn̂; insert n̂ =
n + δn̂ into Eq. (2), neglect by δn̂ and obtain

˙̂a = −(iδ0 + κ )â + iδ1nâ +
√

2κ âin. (3)

Equation (3) is linear in operators and can be solved by
the operator Fourier transform. The mean photon number
n can be found from the stationary solution of Eq. (3) by
the procedure similar to the one in [22–24] used for the laser
equations.

Equation (2) can be approximated by Eq. (3) if the photon
number fluctuations are small relative to n. It is not true at
n � 1 when the photon number fluctuations are not small
and cannot be neglected. The following sections show how
to modify Eq. (3) when the photon number fluctuations are
not small.

III. FLUCTUATION SPECTRA

We represent operators in Eq. (2) by Fourier expansions

Â(t ) = (2π )−1
∫ ∞

−∞
Â(ω)e−iωt dω, (4)

where Â means â, âin, or n̂â; obtain the algebraic relation
for the Fourier component operator â(ω), and find a formal
solution

â(ω) = iδ1(n̂â)ω + √
2κ âin(ω)

i(δ0 − ω) + κ
. (5)

Here (n̂â)ω is the Fourier component of the operator product
n̂â. Note that we use the multiplier e−iωt in Fourier expan-
sions. In particular,

Â+(t ) = (2π )−1
∫ ∞

−∞
(Â+)ωe−iωt dω. (6)

It follows from Eqs. (4) and (6) that the Fourier-component
operator (Â+)ω = [Â(−ω)]+ ≡ Â+(−ω).

The stationary field spectrum n(ω) satisfies the relation
〈(â+)ωâ(ω′)〉 = n(ω)δ(ω + ω′). Using Eq. (5), we find

n(ω) = δ2
1〈(â+n̂)−ω(n̂â)ω〉 + iδ1

√
2κ[〈â+

in(ω)(n̂â)ω〉 − 〈(â+n̂)−ωâin(ω)〉] + 2κ pin(ω)

(δ0 − ω)2 + κ2
, (7)
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where pin(ω) = 〈â+
in(ω)âin(ω)〉 is the input field power spec-

trum. To find n(ω) we must calculate 〈(â+n̂)−ω(n̂â)ω〉 and
〈â+

in(ω)(n̂â)ω〉. It is found in the Appendix that

〈â+
in(ω)(n̂â)ω〉 = 2n

√
2κ pin(ω)

i(δn − ω) + κ
, (8)

where δn is a nonlinear detunung

δn = δ0 − 2δ1n. (9)

The energy conservation law for the FPI in Fig. 1 re-
quires pin(ω) = pout(ω), where pout(ω) = 〈â+

out(ω)âout(ω)〉 is
the output field power spectrum. It follows from the energy
conservation law that

〈(â+n̂)−ω(n̂â)ω〉 = 8κn2 pin(ω)

(δn − ω)2 + κ2
, (10)

as shown in the Appendix. Substituting the results (8) and
(10) and 〈(â+n̂)−ωâin(ω)〉 = 〈â+

in(ω)(n̂â)ω〉∗ into Eq. (7) we
find the FPI cavity mode spectrum

n(ω) = 2κ pin(ω)

(δn − ω)2 + κ2
. (11)

In a similar way, we obtain the spectrum (n + 1)ω of the
antinormal ordered operator product ââ+. (n + 1)ω is given
by Eq. (11) with the replacement of pin(ω) by pin(ω) +
1. Thus, we find a “commutator spectrum” [â, â+]ω =
(n + 1)ω − n(ω) ≡ c(ω)

c(ω) = 2κ

(δn − ω)2 + κ2
, (12)

(2π )−1
∫ ∞
−∞[â, â+]ωdω = 1 as it must be for the cavity-mode

Bose operators [20,21].
Formulas (11) and (12) and the formula

δ2n(ω) = 1

2π

∫ ∞

−∞
n(ω + ω′)n(ω′)dω

′

+ 1

4π

∫ ∞

−∞
[n(ω′ + ω) + n(ω′ − ω)]c(ω′)dω

′

(13)

derived in [25] let us find the stationary field n(ω) and the
photon number fluctuation δ2n(ω) spectra of the FPI cavity
mode excited by the external quantum field.

One can see that the results (11) and (12) follow from an
effective Hamiltonian

Heff = h̄(δ0 − 2δ1n)â+â + �̂ (14)

quadratic in operators â and â+. Taking into account
〈â+â+ââ〉 = 2n2, we note that the mean 2h̄δ1n〈â+â〉 =
2h̄δ1n2 of the nonlinear term in the effective Hamiltonian (14)
is two times larger then the mean (h̄δ1/2)〈â+â+ââ〉 = h̄δ1n2

of the nonlinear term in the exact Hamiltonian (1).
The analysis in the Appendix, leading to results (11) and

(12), takes into account the photon number fluctuations, ne-
glected in the term iδ1nâ in the approximate Eq. (3). The
replacement δ1 → 2δ1 in Eq. (3) (equivalent to the replace-
ment of the Hamiltonian H by Heff) leads to the same results
as the ones found in the Appendix and, therefore, enough for
taking into account the photon number fluctuations related

to the nonlinear term in Hamiltonian (1), at least for the
calculations of n, n(ω), and δ2n(ω) in the stationary case.

We use the effective Hamiltonian (14) to analyze of the FPI
with two semi-transparent mirrors in the following subsection.

FPI with two semitransparent mirrors

Now we consider the FPI with two semitransparent mir-
rors, the nonlinear medium, and the linear absorption inside
the cavity. We denote κin, (κout) the transmission rate of the
input (output) FPI mirrors; κabs is the rate of the linear absorp-
tion in the FPI cavity. The field with the amplitude operator
âr is reflected from the input mirror and the field with the
operator ât is transmitted through the FPI, as shown in Fig. 2.
The effective Hamiltonian for the FPI in Fig. 2 is the same as
Heff given by Eq. (14) with only the dissipative term �̂ being
different.

There are three dissipative channels in the FPI in Fig. 2:
Two semitransparent mirrors and the linear absorption in the
cavity. We derive Heisenberg equations of motion for â from
the effective Hamiltonian (14), adding dissipative terms for
each channel to the equation of motion following the input-
output theory [20,21]. We solve the equation of motion the
same way as Eq. (2), obtaining the FPI cavity field spectrum

n(ω) = 2κin pin(ω)

(δn − ω)2 + κ2
cav

(15)

and the cavity field commutator spectrum [see Eq. (12)]

c(ω) = 2κcav

(δn − ω)2 + κ2
cav

. (16)

Here

κcav = κin + κout + κabs (17)

is the FPI cavity mode decay rate for all decay channels.
Formulas (15) and (16), together with formula (13), let us
calculate the stationary mean photon number, the field, and
the photon number fluctuation spectra of the mode of the FPI
shown in Fig. 2.

IV. OPTICAL BISTABILITY WITH A SMALL
NUMBER OF PHOTONS

A. Stationary mean values

We rewrite the photon number and the commutator spectra
(15) and (16) as

n(ω) = (κin/κcav)pin(ω)L(ω + δn, κcav). (18)

and

c(ω) = L(ω + δn, κcav). (19)

Here and below

L(ω, κ ) = 2κ/(ω2 + κ2) (20)

is a normalized Lorenz function, (2π )−1
∫ ∞
−∞ L(ω, κ )dω = 1.

We take the spectrum pin(ω) of the input field, with the half-
width κs

pin(ω) = pinL(ω, κs), (21)

where pin is the FPI input power in photons per second.
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Using the identity (2π )−1
∫ ∞
−∞ L(ω + δ, κ1)L(ω, κ2) =

L(δ, κ1 + κ2) and relations (18) and (21) we calculate the
mean photon number in the FPI mode

n = 1

2π

∫ ∞

−∞
n(ω)dω = peffL(δn, κeff ), (22)

where

peff = (κin/κcav)pin, κeff = κs + κcav, (23)

the nonlinear detuning δn is determined by Eq. (9).
The power of the field transmitted through the FPI is pout =

2κoutn or

pout = 2κout peffL(δn, κeff ). (24)

The result for the semi-classical case [12,13] is recovered
from Eq. (24) at κs = 0, so κeff = κcav; the multiplier 2
must be removed from the expression (9) for the nonlinear
detuning δn.

B. Bistability conditions

We find the bistability conditions from Eq. (22) the way
similar to the semi-classical optical bistability theory [12] and
the catastrophe theory [13,26].

We introduce normalized parameters

Y = 2peff/κeff, �0 = δ0/κeff, �1 = 2δ1/κeff, (25)

considering Y as a function of n and rewrite Eq. (22) as

Y = Y (n) ≡ n[1 + (�0 − n�1)2]. (26)

Equation (26) is well-known in the semi-classical theory of
dispersive optical bistability in the cavity [12]. Parameters
(25), however, are different from ones in the semi-classical
theory where 2δ1 and κeff = κcav + κs must be replaced,
respectively, by δ1 and κcav.

Equation (26) is a cubic equation for n with one, two, or
three real roots depending on the values of Y and �0,1 [27].
We plot Y (n) in Fig. 3 and see, that Eq. (26) has two roots,
when

∂Y (n)/∂n = 0 (27)

is satisfied together with Eq. (26). Solving the set of equa-
tions (26) and (27), respectively, to n and Y we find the roots
of Eq. (26)

n± = (
2�0 ±

√
�2

0 − 3
)
/3�1, (28)

at Y± = 2p±/κeff, where

p± = κeffn±[1 + (�0 − n±�1)2]/2, (29)

Equations (28) and (29) define a surface, separating regions
with one and three solutions of Eq. (26) in the parameter
space. Three solutions of Eq. (26) exist at p− < p < p+,
otherwise there is only one solution, as shown in Fig. 3.

According to Eq. (28) n± is real and, therefore, the parame-
ter region with three solutions exists, if �2

0 � 3, which means
that

|δ0| > δmin =
√

3κeff. (30)

FIG. 3. The normalized input field power Y , given by Eq. (26),
as a function of the mean photon number n. When the condition (30)
is satisfied, there are three stationary n: n1 < n2 < n3 for some Y ,
Y− < Y < Y+, shown by the horizontal line crossing curve 1. The
dashed part of curve 1 corresponds to the unstable stationary solution
as n2. Equation (26) has two stationary solutions when Y = Y±. One
of the solutions at Y = Y+ is n+, the solution at Y = Y− is n−; n± is
given by Eq. (28). There is only one stationary n for any Y , when
condition (30) is not true, as for curve 2.

So the absolute value of the detuning δ0 must be sufficiently
large to have multiple stationary solutions.

Following the semi-classical analysis and applying the
Heisenberg correspondence principle [28], we suppose that
the solution n2 from three solutions n1 < n2 < n3 of Eq. (26)
(see Fig. 3) is unstable and two other solutions n1,3 are stable
relatively small deviations. So Eqs. (28) and (29) determine
the borders of the FPI bistability region in the parameter
space.

Taking n± positive we see from Eqs. (28) and (25) that δ0

and δ1 must have the same signs for bistability. Physically,
it means a positive feedback between the mean number of
photons n and the nonlinear detuning δn. Note the minus sign
in Eq. (9) for δn: While n grows, the detuning δn decreases,
providing, in turn, the increase of n at δ0 > 0.

If we slowly decrease peff from some peff > p+ or increase
peff from peff < p− and cross the bistability region p+ < p <

p−, the transition from one stationary FPI state to another state
happens at peff = p±.

Figure 4 shows the bistability regions inside the area re-
stricted by p±(δ0) solid curves for the quantum FPI with
δ1/κcav = 1.8 and κs/κcav = 1. The dashed curves in Fig. 4 re-
strict the bistability region for the classical FPI with δ1/κcav =
1.8, κs = 0, and δ1 replaced by δ1/2 in Eq. (29). The bista-
bility region for the quantum FPI is smaller. It begins at the
larger detuning than the bistability region for the classical
FPI. Figure 5 shows examples of the stationary n(δ0) for the
quantum and the classical FPI at some peff values with or
without the bistability in the FPI. Similar curves are presented,
for example, in [29] for the classical nonlinear oscillator. We
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FIG. 4. The bistability region for the quantum FPI is between
the solid curves p±(δ0) (curves 1 and 2; p+ > p−); there is only
one stationary n otherwise. Curves are plotted for δ1/κcav = 1.8,
κs/κcav = 1. The dashed curves 3 and 4 restrict the bistability region
for the semi-classical FPI. The dashed horizontal line marks the value
peff/κcav = 1.3 taken for n(δ0 ) curves 3 and 6 in Fig. 5.

see from Figs. 4 and 5 that the bistability regions and the
stationary n are substantially different for the quantum and
the classical FPI.

Figure 6 shows the input field spectrum given by Eq. (21)
(the dashed curve 1) and the output field spectra pout(ω) =
2κoutn(ω) for parameters belonging to the bistability region;
κin = κout, κabs = 0, δ0/κcav = 4.4, δ1/κcav = 1.8, κs/κcav =
1, and peff/κcav = 1.3. The field has two stationary states
in the FPI: With n = 1.3 and n = 0.4; spectra 2 and 3, re-
spectively, shown in Fig. 6, correspond to these states. Each
stationary state has a specific field and photon number fluc-
tuation spectra. The integration of δ2n(ω) [see Eq. (13)]
over frequencies demonstrates the photon number variance

FIG. 5. Stationary n(δ0 ) of the quantum FPI shown by the solid
curves 1,2,3 for peff/κcav = 0.3, 0.855 and 1.3; correspondingly,
δ1/κcav = 1.8, κs/κcav = 1; and for the semi-classical FPI shown by
the dashed curves 4, 5, and 6 for peff/κcav = 0.3, 0.428, and 1.3.
There is no bistability in curves 1 and 4 for a small peff; curves 2
and 5 correspond to the very beginning of the bistability region in
Fig. 4 at p+ = p−; the bistability is for curves 3 and 6. The vertical
dashed line marks δ0/κeff = 4.4; points a and b correspond to two
coexisting stationary solutions with spectra shown in Fig. 6.

FIG. 6. The input field spectrum, α = in (the dashed curve 1)
and the output field spectra α = out (the solid curves 2 and 3) of
two stationary states of the FPI coexisting at the bistability when
δ0/κcav = 4.4. Two stationary n = 1.3 and 0.4 correspond to the
spectra curves 2 and 3 and points a and b, respectively, on the n(δ0 )
curve 3 in Fig. 5.

δ2n = n(n + 1) for both stationary states (with a different n
for each state) [25].

V. PARAMETERS FOR THE BISTABILITY
WITH A FEW PHOTONS

The results found above let us estimate when bistability is
possible in a small FPI with the nonlinear Kerr medium and a
few photons inside.

According to the authors of [19], the field-dependent re-
fractive index nr of the Kerr medium is

nr = n0 + ñ2I, (31)

where I is the intensity of the field, and ñ2 is a nonlinearity
coefficient in the refractive index, n0 is the field-independent
part of nr . For certainty, we consider ñ2 > 0 as it is in many
semiconductors, such as Si or GaAs [19]. As usual, we sup-
pose ñ2I � n0.

We consider a Fabri-Perot cavity, shown in Fig. 2, with
Kerr medium with the nonlinear refractive index nr given by
Eq. (31). The field of the intensity I is in the FPI main cavity
mode. We express nr (I ) in the mean number of photons n in
the FPI cavity. We take I = (n0c/8π )|E |2 [30], where c is the
speed of light in a vacuum, and E is the field amplitude. In
the quantum case, |E |2 is replaced by 〈Ê+Ê〉, where the field
amplitude operator Ê = √

4π h̄ω0/V â, â is a Bose operator
[31], V is the cavity-mode volume, ω0 is the carrier frequency
of the FPI mode. So we rewrite Eq. (31) in n = 〈â+â〉

nr = n0 + n2n, (32)

where

n2 = ñ2n0ch̄ω0/2V. (33)
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We will estimate how large the nonlinear coefficient ñ2 of the
refractive index (31) must be for the bistability when the mean
number of photons in the FPI cavity n = 1.

The resonant frequency ωm of the cavity mode is [30]

ωm = πcm

(n0 + n2n)L
≈ ω0(1 − n2n/n0), (34)

where ω0 = π cm/n0L, L is the length of the cavity, the inte-
ger m = 1 for the FPI main cavity mode, and n2n � n0. We
see 2δ1 = ω0n2/n0 ∼ ñ2/V from Eqs. (33), (34), and (9).

According to conditions (30), the bistability appears when
the external field frequency is detuned from the cavity mode
frequency at least on δ0 = √

3κeff where κeff is the sum of
all linewidths and decay rates given by Eqs. (23) and (17).
We express 2κeff = ω0/Q, where Q is an effective quality
factor of the main FPI cavity mode. Expressing δ1 and κeff

in Eq. (30) through n2, Q, and other parameters, we find that
the bistability is possible when 2n2n/

√
3n0 � 1/Q or, taking

n2 from Eq. (33), when

ñ2c(h̄ω0/
√

3V )nQ � 1. (35)

Condition (35) with n = 1 estimates the minimum value
min ñ2 of ñ2 necessary for the bistability with only a few
photons inside the FPI cavity. It must be

ñ2 > min ñ2 =
√

3V/(ch̄ω0Q). (36)

We take the frequency ω0 corresponding to the wavelength
λ0 = 1.55 μm; the volume of the main FPI cavity mode
V = (λ0/2n0)3, the linear refractive index n0 = 3.3 as in [32];
Q = 103. The quality factor Q ∼ 103/104 is achievable, for
example, in the photonic crystal microcavities [33]. For such
parameters, it must be ñ2 > 10−6 cm2/kWt for the bistability
with only a few photons in the FPI cavity. Such nonlinearity is
achievable, for example, in semiconductor-doped glasses with
a nonlinear response time ∼10−10/10−11 s [19].

VI. DISCUSSION

We find the bistability in the stationary states of the FPI
with a small number of photons in the cavity when the FPI is
excited by the quantum field and the quantum fluctuations of
the field are not small.

As a hypothesis, we assume that the upper and lower
branches of the stationary n(δ0) curve in Fig. 4 correspond
to the stationary states stable to small deviations from the
stationary state, as it is in the classical bistability [26]. Such
a stability hypothesis must be rigorously proved for the quan-
tum case elsewhere in the future.

Each stationary state of the FPI has its own fluctuations
and spectra, as, for example, the field spectra shown in Fig. 6.
This is the difference between the classical FPI excited by the
monochromatic field when only the stationary cavity or the
output fields (with no fluctuations) can be determined.

The bistability conditions for the quantum case are dif-
ferent from the ones in the semi-classical case [12,13]. The
linewidth of the input field is added to the total relaxation rate
of the FPI cavity mode, as in Eq. (23), and the effective nonlin-
ear coefficient 2δ1 in the nonlinear detuning (9) is two times

larger than the nonlinear coefficient δ1 in the semi-classical
case.

The transition from one another stationary state occurs at
n = n± given by Eq. (28) when the stationary FPI states are
on the borders of the bistability region in Fig. 5. We do not
analyze the dynamics of such transitions. Transitions between
multiple classical stationary states were studied, for example,
in [34].

We show that the stationary mean photon number and the
low-order correlations: The field, and the photon number fluc-
tuation spectra can be found from the effective Hamiltonian
(14). It is shown in the Appendix that these results are a
good approximation of the exact results corresponding to the
exact Hamiltonian (1) in the stationary case. We did not an-
alyze the nonstationary dynamics (including small deviations
from the stationary states) and the higher-order correlations.
It will be done in the future. The low-order stationary corre-
lations found here are enough for practical purposes in many
cases [35].

Relations (A2), necessary for our calculations, are held
in the stationary case. With relations (A2), the cluster ex-
pansion approximation lets us replace the mean of the
four-order operator product in the integral in Eq. (A1) by
the sum (A3) of the binary operator products. We use the
energy conservation law to determine the frequency domain’s
fourth-order correlations; see Eq. (A8) and comments in the
Appendix.

Specific field and the photon number fluctuation spectra
inside and outside the cavity of the linear FPI are found in
[25]. The spectra of the nonlinear FPI can be obtained by
replacing the detuning δ0 in [25] with the nonlinear detuning
δ0 − 2δ1n.

We estimate that multiple stationary solutions are pos-
sible in a small FPI cavity, of the size of the order of
the optical wavelength, with a few photons and the non-
linear Kerr medium as, for example, semiconductor-doped
glass.

VII. CONCLUSION

We predict multiple stationary states in the theoretical
model of the small Fabry-Perot interferometer (FPI) with a
nonlinear Kerr medium and a few photons in the mode excited
by an external quantum field. Such multiple solutions are
necessary for optical bistability. The stationary mean photon
number, the bistability conditions, the field, and the photon
number fluctuation spectra are found analytically. Estimations
show that the multiple solutions appear at realistic condi-
tions, for example, in the photonic crystal FPI cavity of the
size of the optical wavelength with a semiconductor-doped
glass nonlinear medium. The results are helpful for the in-
vestigation, construction, and applications of small nonlinear
elements with FPI, as optical transistors, in the photonic inte-
grated circuits operating with quantum fields. Our treatment
of the FPI with a nonlinear medium presents an exam-
ple of solving the quantum nonlinear oscillator equations
analytically.

We hope the present results stimulate the experimental
studies of optical bistability in a small FPI with the nonlinear
Kerr medium and the quantum field.
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APPENDIX: CALCULATIONS OF CORRELATIONS

Here we find 〈â+
in(ω)(n̂â)ω〉 appears in Eq. (7). The opera-

tor product Fourier component is a convolution

(n̂â)ω = (2π )−1/2
∫ ∞

−∞
n̂(ω − ω1)â(ω1)dω1,

n̂(ω − ω1) = (2π )−1/2
∫ ∞

−∞
â+(ω2 + ω1 − ω)â(ω2)dω2.

Therefore,

(n̂â)ω = (2π )−1/2
∫ ∞

−∞
dω1dω2â+(ω2 + ω1 − ω)â(ω2)â(ω1)

and

〈â+
in(ω)(n̂â)ω〉 = 1

2π

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

× 〈â+
in(ω)â+(ω2 + ω1 − ω)â(ω2)â(ω1)〉.

(A1)

We simplify the integral (A1) using relations

〈â+(ω′)â(ω)〉 = n(ω)δ(ω′ − ω),

〈â(ω′)â+(ω)〉 = (n + 1)ωδ(ω′ − ω), (A2)

which hold in the stationary case. In Eq. (A2) n(ω) is the field
spectrum; we denote (n + 1)ω the spectrum for the antinor-
mally ordered operator product â(ω′)â+(ω).

It follows from relations (A2) that 〈â+(ω′)â(ω)〉 = 0 and
â+(ω′) commute with â(ω) if ω = ω′. Therefore, â+(ω′) does
not correlate with â(ω) at ω = ω′ at the stationary case and
we replace the mean value in the integral (A1) by

〈â+
in(ω)â(ω2)〉〈â+(ω2 + ω1 − ω)â(ω1)〉
+〈â+

in(ω)â(ω1)〉〈â+(ω2 + ω1 − ω)â(ω2)〉 (A3)

everywhere besides ω1 = ω2 = ω, when arguments of op-
erators on the right part of Eq. (A1) are the same. The
field in the FPI is finite so it is reasonable to assume
that the 〈â+

in(ω)â+(ω)â(ω)â(ω)〉 does not diverge at any ω.
Then the single point ω1 = ω2 = ω gives a negligibly small
contribution to the integral in Eq. (A1). Therefore, we can ne-
glect the fourth-order correlation, i.e., the case ω1 = ω2 = ω

in Eq. (A1), and use the expression (A3) instead of
〈â+

in(ω)â+(ω2 + ω1 − ω)â(ω2)â(ω1)〉.
We rewrite Eq. (A3) with the help of the first relation (A2)

〈â+
in(ω)â(ω2)〉n(ω1)δ(ω2 − ω)

+〈â+
in(ω)â(ω1)〉n(ω2)δ(ω1 − ω), (A4)

replace 〈â+
in(ω)â+(ω2 + ω1 − ω)â(ω2)â(ω1)〉 by the expres-

sion (A4) in Eq. (A1), carry out the integration, and find

〈â+
in(ω)(n̂â)ω〉 = 2n〈â+

in(ω)â(ω)〉. (A5)

The replacement of 〈â+
in(ω)â+(ω2 + ω1 − ω)â(ω2)â(ω1)〉 by

Eq. (A3) is similar to the cluster expansion method [36,37],
where the mean of a high-order operator product is ap-
proximated employing the binary operator products. The
approximation is well known in the classical stochastic theory
as a “cumulant-neglect closure” [38,39] when the Gaussian
distribution approximates the exact classical distribution, so
high-order correlations became products of the second-order
correlations. In a difference between the cluster expansion
and the cumulant-neglect closure approaches applied in the
time domain, we make the expansion (A3) in the frequency
domain and use it in the integral (A1). In a difference with
the time domain, where 〈â+(t )â(t ′)〉 = 0 if t = t ′, relations
(A2) tell that 〈â+(ω)â(ω′)〉 = 0 if ω = ω′. So the replacement
of 〈â+

in(ω)â+(ω2 + ω1 − ω)â(ω2)â(ω1)〉 by Eq. (A3) in the
integral (A1) is a good approximation at the stationary case,
when relations (A2) are held.

The result (A5) leads to some explicit expressions. We find
〈â+

in(ω)â(ω)〉 deriving from Eq. (5)

〈â+
in(ω)â(ω)〉 = iδ1〈â+

in(ω)(n̂â)ω〉 + √
2κ pin(ω)

i(δ0 − ω) + κ
. (A6)

Substituting the result (A5) into Eq. (A6) we obtain that

〈â+
in(ω)â(ω)〉 =

√
2κ pin(ω)

i(δn − ω) + κ
, (A7)

where δn = δ0 − 2δ1n. Inserting the result (A7) into Eq. (A5)
we arrive to the result (8).

Now we find 〈(â+n̂)−ω(n̂â)ω〉 from the energy
conservation law pin(ω) = pout(ω), where pin(ω) =
〈â+

in(ω)âin(ω)〉(pout(ω) = 〈â+
out(ω)âout(ω)〉) is the input

(output) field power spectrum. The boundary conditions
at the semitransparent mirror of the FPI on Fig. 1 lead to
âout = √

2κ â − âin and we obtain that pout(ω) is

2κδ2
1〈(â+n̂)−ω(n̂â)ω〉 + i

√
2κδ1{[κ + i(δ0 − ω)]〈â+

in(ω)(n̂â)ω〉 − 〈(â+n̂)−ωâin(ω)〉[κ − i(δ0 − ω)]}
(δ0 − ω)2 + κ2

+ pin(ω).

The energy conservation law pin(ω) = pout(ω) requires, therefore,

2κδ2
1〈(â+n̂)−ω(n̂â)ω〉 + i

√
2κδ1{[κ + i(δ0 − ω)]〈â+

in(ω)(n̂â)ω〉 − 〈(â+n̂)−ωâin(ω)〉[κ − i(δ0 − ω)]} = 0. (A8)

Substituting the result (8) and the complex-conjugated one 〈(â+n̂)−ωâin(ω)〉 = 〈â+
in(ω)(n̂â)ω〉∗ to Eq. (A8) we obtain the result

(10) and calculate the field (11) and the commutator (16) spectra as explained in the main text.
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