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Spin squeezing with arbitrary quadratic collective-spin interactions
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Spin squeezing is vitally important in quantum metrology and quantum information science. The noise
reduction resulting from spin squeezing can surpass the standard quantum limit and even reach the Heisenberg
limit (HL) in some special circumstances. However, systems that can reach the HL are very limited. Here, we
study the spin squeezing in atomic systems with a generic form of the quadratic collective-spin interaction, which
can be described by the Lipkin-Meshkov-Glick model. We find that the squeezing properties are determined by
the initial states and the anisotropic parameters. Moreover, we propose a pulse rotation scheme to transform
the model into a two-axis twisting model with Heisenberg-limited spin squeezing. Our study paves the way for

reaching HL in a broad variety of systems.
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I. INTRODUCTION

Squeezed spin states (SSSs) [1,2] are entangled quantum
states of a collection of spins in which the uncertainty of one
spin component perpendicular to the mean spin direction is
reduced below the standard quantum limit (SQL). Owing to
its property of reduced spin fluctuations, it has a variety of
applications in the study of many-body entanglement [3—13],
high-precision measurements [14-21], and quantum infor-
mation science [22-25]. Many methods have been proposed
to realize spin squeezing, such as the atom-light interac-
tion [26], and quantum nondemolition measurement [27]. One
important way to deterministically generate spin squeezing is
utilizing the dynamical evolution of the squeezing interaction,
which is accomplished via collective-spin systems with a non-
linear interaction [2]. Typical squeezing interactions include
the one-axis twisting (OAT) interaction and two-axis twisting
(TAT) interaction. The noise reduction of the TAT model can
reach the Heisenberg limit (HL), but the physical realization
of the TAT model is difficult. It is shown that the OAT model
can be transformed into the TAT model using repeated Rabi
pulses [28], but the more general cases with other types of
quadratic collective-spin interactions are still unknown.

Except for OAT and TAT interactions, the more general
form of the quadratic collective-spin interaction can be de-
scribed by the Lipkin-Meshkov-Glick (LMG) model. The
LMG model was first introduced in nuclear physics [29-34],
which provides a simple description of the tunneling of
bosons between two degenerate levels and can thus be used
to describe many physical systems such as two-mode Bose-
Einstein condensates [35] or Josephson junctions [36]. A
recent study shows that the LMG model could achieve
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Heisenberg-limited metrological gain, however, it requires
time reversal [37]. How to directly achieve spin squeezing
with Heisenberg-limited noise reduction with a wide range of
interactions still remains unknown.

Here, we study the spin squeezing properties in the LMG
model with different anisotropic parameters. We find that the
initial state and the anisotropic parameter play important roles
in the spin squeezing. We propose an implementable way to
transform the LMG model into an effective TAT model by
making use of rotation pulses along different axes on a Bloch
sphere, which gives a convenient way to generate efficient
spin squeezing reaching the HL. We also analyze the influence
of noises and find that our scheme is robust to fluctuations in
pulse areas and pulse separations.

The paper is organized as follows. In Sec. II, we first
introduce the system model of the quadratic collective-spin
interaction, which can be described by the LMG model. In
Sec. III, we investigate the performance of spin squeezing
in the LMG mode and present the optimal initial state for
spin squeezing in the LMG model. In Sec. IV, we prove that
the designed rotation pulse method can transform the LMG
model into an effective TAT interaction. We also show that
the method is robust to different noises according to numerical
simulations.

II. THE SYSTEM MODEL

We consider a system of mutually interacting spin-1/2
particles described by the following Hamiltonian,

H =" Xxapo)of, ()
j<k

where oy is the Pauli operator of the jth spin and o, 8 €
{x,y, z}. The parameter x,pg characterizes the strength of the
interaction in different directions. To ensure the Hermiticity
of the Hamiltonian, we have x.p = xgo. Here, we have the
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assumption that the interactions between individual spins are
the same. This assumption holds when there are all-to-all
interactions rather than just dipole-dipole interactions, which
is valid under some systems such as nuclear systems [31],
cavity QED [9], and ion traps [10]. Now we introduce the
co}lective—spin operators S, = gz ; og. Letting 7 =1, and
using

Ou0p = iZSaﬁyoy + Sups (2)
v

where g4, is the Levi-Civita symbol and 8. is the Kronecker
delta, Eq. (1) becomes

H=2 Z XaﬂSaSﬂ + HO, (3)

a,felx,y.z}

where Hj is a constant and can be neglected. H preserves the
magnitude of the total spin $* = Y__ S2, namely,

[H,5%] =0, (4)

which means S? is a constant. The Hamiltonian can be written
as

H = STAS, &)

where Aqp =2xqp. A is a real symmetric matrix, which
means it can be diagonalized by a linear transformation,

A=07'DQ, (6)

in which @ is an orthogonal matrix and D is a diagonal matrix
whose nonzero elements are eigenvalues of A. Letting S =
0S8, we can turn the Hamiltonian into the canonical form,

H= Y xs. )
)

ae{x,yz

For convenience, in the following we redefine the spin op-
erator S, by omitting the tilde. We select the corresponding S,
of the largest x, as S, and the minimum as S, i.e., x, = x, =
Xz Using the relation ), Si = §?, the transformed Hamilto-
nian reads

H = (x: — xS + (Xy — x:)S; + 5% (8)

Letting x = xx — Xz ¥ = (Xy — X2)/(Xx — X:), and ignoring
the constant term, we obtain the general form of the Hamilto-
nian of the LMG model,

H = x($2+y52). ©)

Therefore, any system with the Hamiltonian in the form of
Eq. (1) can be transformed to the standard form of the LMG
model as Eq. (9). What is worth mentioning is that we ignore
the linear interaction between the spin and external magnetic
field. The reason is that a linear interaction itself cannot gen-
erate spin squeezing, and the linear interaction could be easily
canceled in the experimental system using suitable pulse
sequences.

Under the condition x, > x, > x;, we have 0 <y < 1.
Furthermore, note that if 0.5 < y < 1, we have

H=x(S+yS;—8)=—x[S+0 -S| (10
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FIG. 1. Time evolution of the squeezing parameter £2 for
anisotropic parameter y = 0.25 with different initial ¢ and 6. (a) ¢ =
/2, 6 changes from O to 7 /2. (b) 8 = 7 /2, ¢ changes from 0 to
/2.

which is equivalent to X[S)% + (1 - y)Sf,] if we switch the x
axis and the z axis. Hence, we only need to consider the situ-
ation when 0 < y < 0.5. Especially, when y = 0 (y = 0.5),
the LMG Hamiltonian reduces to the OAT (TAT) Hamiltonian.

III. SPIN SQUEEZING OF THE LMG MODEL

To describe the properties of SSS, we investigate the
squeezing parameter given by Kitagawa and Ueda [2],

_ AAS;, )

2
§ N 1D
where the subscript 7i; refers to an arbitrary axis perpendic-
ular to the mean spin direction, where the minimum value of
(AS)? is obtained. The inequality £2 < 1 indicates that the
state is squeezed.

The Hamiltonian of the LMG model is a typical kind of
nonlinear interaction, which produces SSS by time evolution.
We choose the coherent spin states as the initial states, which

can be described by
|9’ ¢) — ei@(Sx sin¢—S‘-c0s¢) |], J) , (12)

where 0 is the angle between the z axis and the collective-spin
vector (polar angle), while ¢ is the angle between the x axis
and the vertical plane containing the collective-spin vector
(azimuth angle).

Typical examples of the time evolution of £2 are presented
in Fig. 1. It reveals that the squeezing parameter reaches a
local minimum in a short timescale. For a certain y, the
minimum squeezing parameter and the corresponding time
varies with the initial 6 and ¢.

In Fig. 2(a), we plot the color map of the minimum squeez-
ing parameter as functions of the initial ¢ and 6 for fixed y
(for example, y = 0.25). It reveals that the optimal initial state
with the best squeezing is |0, ¢) = |7 /2, 7 /2). Similarly, we
change y and plot the color maps, with the optimal initial ¢
and @ plotted in Figs. 2(b) and 2(c). We can see that when
y varies from 0 to 0.5, the LMG model obtains the optimal
squeezing when the initial state is |7 /2, w/2). This can be

023722-2



SPIN SQUEEZING WITH ARBITRARY QUADRATIC ...

PHYSICAL REVIEW A 108, 023722 (2023)

@) 3 v=0.25 ()1 o
0.7 .
0.8 30.5
m
4= 0.6 0.5
8 08007 02 03 04 05
= Y
S04 ©) 4
> 0.3 '
i ioos
0.1
. -
0 0.2 04

0.
i : 1 02 0. 4 0.
6 (units of ) 80010 y03 04 05

FIG. 2. Minimum squeezing parameter £2 as a function of the
initial 6 and ¢. (b) The optimal initial-state azimuth angle ¢, when
£2 reaches its minimum in the condition of different y. (c) The
optimal initial-state polar angle 8, when &2 reaches its minimum in
the condition of different y. The anisotropic parameter is y = 0.25.

understood in an intuitive sense: When 0 < y < 0.5, we have
H=yx[(1-y)S; —yS:+7S], (13)

which can be seen as two countertwisting squeezings acting
around the x axis and z axis, respectively, and along the y axis
these two effects reach the optimal cases at the same time.
Thus the optimal initial state is always |7 /2, 7 /2).

Now we let the initial state be the optimal case |7 /2, 7 /2),
which could be realized through optical pumping and a 7 /2
pulse along the x axis, and we track how the minimum
squeezing parameter &2 changes when y varies from 0 to
0.5. The results are shown in Fig. 3. We can conclude that
the squeezing performance monotonically depends on y for
0 <y <£0.5.When y = 0.5, the LMG model attains its min-
imum £2, and the corresponding time is also the shortest,
corresponding to the TAT squeezing. Therefore, to reach the
best squeezing performance, we should ensure the anisotropic
parameter approaches y = 0.5.

However, when the anisotropic parameter takes other
values, the squeezing performance degrades. To solve this
problem, we propose to introduce rotation pulses capable of
transforming the LMG model into the TAT model.

0.05— —
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FIG. 3. (a) Minimum squeezing parameter for different

anisotropic parameters y. (b) The corresponding time it takes to get
the minimum squeezing parameter for different y. The horizontal
dashed lines correspond to the results of the TAT model.
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FIG. 4. (a) An illustration of the pulse sequences. The overall
process could be viewed as the repetition of (a). (b) The pulse method
could also be viewed as the cyclic rotation around the « axis on the
Bloch sphere.

IV. TRANSFORMING LMG INTO TAT

Inspired by the previous study of transforming the OAT
interaction into the TAT interaction [28], our idea is to trans-
form the LMG model into the TAT model by making use of
multiple 7 /2 pulses, which can be realized using the coupling
term 2,5, (¢ = x,y,z). In the Rabi limit || > N|x]|, the
nonlinear interaction can be neglected while the collective
spin undergoes a driven Rabi oscillation. By making use of
a multipulse sequence along the « axis (@ = x, y, z), we can
rotate the spin along the « axis and affect the dynamic of
squeezing. A /2 pulse corresponds to fj;o Qut)dt =m /2,

which leads to the result that R, /zeiSIZfRa,,, 2 = €%, where
Ry = e S« and « is the axis that is perpendicular to the o
axis and B axis. The multipulse sequence is periodic, and the
frequency is determined by y and the axis we choose.

As shown in Fig. 4(a), each period is made up of the
following: a —m /2 pulse along the « axis, a free evolution
for 6t1, a w /2 along the « axis, and a free evolution for §t,.
The period is 7. = 6t + 81, neglecting the time needed for
applying the two 7 /2 pulses. Figure 4(b) shows that the cyclic
47 /2 could be viewed as rotations on the Bloch sphere. By
adjusting the relationship between 8¢ and 4f,, we can trans-
form the LMG model into TAT. One general Hamiltonian for
the TAT interaction is Hrar = S5y + Sy for 6 =7/2, ¢ =
47 /4 [2]. By changing the initial states and twisting axes, the
TAT interaction could also be expressed as Hrar o S2 — SZ,
Hrar o §2 — Sg, and Hrar o S2 — S2. In the Bloch sphere, the
first expression indicates ¢ = 7 /2, 6 = 0, while the middle
expression indicates ¢ = 0, & = 7 /2 and the last expression
indicates that ¢ = /2, 6 = 7 /2. According to S} 4 S} +
Sz2 =528~ Sz2 =2(82 + 0.555) — 82, 82 will not influence
the properties of spin squeezing, so we simply ignore it. For
Himg = x (52 + ySi), if we choose the z axis to be the « axis,
the time evolution operates for a single period as follows:

Q2 2 (<2 2
U =e l(SXJrVSy)thRZ’_ﬂ/Ze I(SXJFVSV)thRZ,”/Z

Q2 2 Q2 2
= ¢ IS HY SN —iSi+YSOxt2 (14)

Using the Baker-Campbell-Hausdorff formula, we find
U, & ISty 4834l for small ¢. To transform the
LMG model into TAT twisting, the coefficients should satisfy

I +yh

=0.50r2. (15)
vt +1n

023722-3



HU, LI, ZHANG, HUANG, ZHANG, AND LIU

PHYSICAL REVIEW A 108, 023722 (2023)

1
T2 . r
O B LMG &
.
v, ® TAT . -
a
'.;vv A, A Ypuse o L.t B
5v, V Zpusef =" £
LTI A, o a" W
HAS .
S 017 onavy M, o " B
®e"a_ Vv “a o%at v
o BV s, M v
o "alv AL o v’
o "maly - v
L] N v

%o ""Eggaanntots, v 4
. gL, ]

e P 44X asAda

00000 VVyyyyvv VY AAdL sa,adnatd
0.01 . .
0.00 0.04 0.08 0.12

t (units of )

FIG. 5. Numerical analysis of the squeezing parameter of the
LMG model (black square), TAT (red circle), the LMG model after
pulse sequences along the y axis (blue up-triangle), and the LMG
model after pulse sequences along the z axis (green down-triangle)
with N = 100, y = 0.1. For 0 < y < 0.5, pulse sequences along the
z axis will have a higher squeezing strength, thus leading to faster
squeezing.

Then the relationship between y and #,/¢; should satisfy

b_y=2 2r-1 (16)
o 2y—1  y-=2
Accordingly, we obtain the effective Hamiltonian
i X+ Do 2
HM = T(Sx +257), (17)
or
e X+ o, 2
H" = T(zsx +57). (18)

Similarly, if we choose the y axis to be the « axis, we have
the time evolution operator for a single period:

_ —i(S24yS2)xt —i(S2+yS2)xt
Uy=e (S; y‘)X'Ry,,n/ge ( V<)X2Ry’n/2
_i(§21,62 _i(§24,62
- Z(Sx+ySy)the l(S;+ySy)X72. (19)

To achieve TAT, we require f/t; = (y + 1)/(—y +2) or
t1/tr = (y + 1)/(—y + 2). Then the resultant Hamiltonians
read

ff
= X0

257 +5;), (20)
or

£f xQy -1
=

S; +253). (21)
However, if we choose the x axis to be the « axis, we will find
that for 0 < y < 0.5, #;/t, < 0, which means it is impossible
to transform the LMG model into TAT twisting making use
of a multipulse sequence along the x axis. The above pulse
sequences are numerically verified with the results present in
Fig. 5.

To make the squeezing occur faster, we need to shorten
the squeezing time, which means getting a higher squeezing
strength x°. As Fig. 6(a) shows, for 0 < y < 0.5, the pulse
along the z axis gets a higher effective strength, which is
xS = x(14y)/3, and the squeezing time of the z-pulse
method is also shorter compared with the y-axis pulse method.

Therefore, for a LMG model with an arbitrary anisotropic
parameter y ranging from O to 0.5, we can transform it into
a TAT interaction by using a multipulse along different axes,
and the squeezing performance of the LMG model after the

(a) (b)
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FIG. 6. (a) Squeezing time of the y-pulse method (blue up-
triangle), and z-pulse method (green down-triangle) with different
y. Insets: Effective squeezing strength of the y-pulse and z-pulse
methods. (b) Squeezing ratio of the OAT, TAT, LMG, and pulse
method.

pulse sequences will also reach Heisenberg scaling, which is
as good as the TAT case, as compared in Fig. 6(b).
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FIG. 7. Numerical analysis of the influence of noises for our
scheme with N = 100, y = 0.1. The blue curves crowding together
denote the results of 100 independent simulations under different
noises. (a) Evolution of the squeezing parameter £2 for 10% level
of Gaussian stochastic noise adding on the pulse separation. (b) Evo-
lution of the squeezing parameter £2 for 0.02% level of Gaussian
stochastic noise adding on the pulse area. (c) Evolution of the squeez-
ing parameter £2 for 0.01% level of Gaussian stochastic noise adding
on y. (d) Evolution of the squeezing parameter &2 for 1% level
of Gaussian stochastic noise adding on interaction strength x. (e)
Evolution of the squeezing parameter &2 for 3% level of Gaussian
stochastic noise adding on atom number N. (f) Evolution of the
squeezing parameter £ for 0.1% level of Gaussian stochastic noise
adding on pulse stability.

023722-4



SPIN SQUEEZING WITH ARBITRARY QUADRATIC ...

PHYSICAL REVIEW A 108, 023722 (2023)

Our scheme is robust to different kinds of noises. We carry
out the numerical simulation by adding Gaussian stochastic
noises, i.e., assuming the fluctuating pulse areas, pulse sep-
arations, pulse stability, y, atom number N, and interaction
strength x, are subject to Gaussian distribution with a stan-
dard deviation of different ranges of the average value. The
squeezing parameters of 100 independent simulations under
different types of noises are respectively shown in Fig. 7. The
numerical simulations show that our method is not only robust
to internal system noise such as the uncertainty of determining
y, the uncertainty of determining the atom number N, the
uncertainty of the interaction strength y, but also external
noise such as pulse area noise, pulse separation noise, and
pulse phase instability. Under certain kinds and ranges of
noise, the best attainable squeezing of our method can almost
achieve the optimal squeezing of the effective TAT dynamics.

As for the spin decoherence, our method itself will not
bring new resources of decoherence but extend the squeezing
time, while the coherence time for atoms such as dysprosium
is very long in spin squeezing [38], so we ignore the impact
of extending the evolution time for spin decoherence.

V. CONCLUSION

In conclusion, we study the spin squeezing in systems with
a quadratic collective-spin interaction, which can be described

by the LMG model. We find that the squeezing performance
depends on the initial state and the anisotropic parameter.
We show that the best initial state for H = x(S? + ySg)
is |w /2, w/2), which holds for different anisotropic paralh-
eters y. We propose an implementable way with rotation
pulses to transform the LMG model into the TAT model
with Heisenberg-limited spin squeezing. We find that pulse
sequences applied along the z axis will result in a larger
squeezing strength xfff = x(1 + y)/3 compared to the pulse
sequences along the y axis, Xfff = x(1 —2y)/3. In addition,
our scheme is robust to noise in pulse areas and pulse sepa-
rations. Our work will significantly increase the systems that
could reach the Heisenberg scaling and will push the frontier
of quantum metrology.
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