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Two-dimensional magneto-optical trap of dysprosium atoms as a compact source for efficient
loading of a narrow-line three-dimensional magneto-optical trap
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We report on a scheme for loading dysprosium atoms into a narrow-line three-dimensional magneto-optical
trap (3D MOT). Our approach replaces the conventional Zeeman slower with a two-dimensional (2D) MOT
operating on the broad 421-nm line to create a high-flux beam of slow atoms. Even in the absence of a push beam,
we demonstrate efficient loading of the 3D MOT, which operates on the narrower 626-nm intercombination line.
Adding push beams working at either 421 nm or 626 nm, significant enhancement of the loading rate is achieved.
We reach the best performance, with an enhancement factor of 3.6, using a push beam red-detuned to the 626-nm
line. With loading rates greater than 108 atoms/s achieved at a moderate oven reservoir temperature of 800◦ C, our
method offers similar or greater performance than Zeeman-slower-based systems. Our 2D-MOT-based approach
constitutes a promising first step towards state-of-the-art quantum gas experiments with several advantages over
the Zeeman-slower-based setup and is readily adaptable to other open-shell lanthanides.
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I. INTRODUCTION

Over the last decade, ultracold gases of open- f -shell lan-
thanide atoms, such as Er and Dy, have become a platform
of choice for studying novel quantum phenomena [1]. Their
electronic ground state’s structures provide these atoms with
remarkable properties: the presence of a closed outer 6s shell
yields electronic transitions with similar properties to those
of Yb or Sr. The open 4 f shell confers on these atoms an
even wider variety of transitions, a large effective spin, and
a large magnetic moment, among the largest of the periodic
table. In particular, the latter feature allows to explore the
quantum effects of long-range and anisotropic interactions
using ultracold gases of open-shell lanthanides [1].

The spectrum complexity brought up by the open-shell
character of the magnetic lanthanides had, however, refrained
the scientific effort to laser-cool such species for years.
In 2006, a breakthrough experiment by . McClelland and
Hanssen [2] demonstrated the possibility of laser-cooling Er
on the tens-of-MHz-broad transition at 401 nm, despite the
existence of numerous decay channels. This work paved the
way for many experiments bringing open-shell lanthanides
to ultracold temperatures [1,3–15] and quantum degeneracy
[16–20].

A particular advantage of the lanthanides is the existence
of closed narrow transitions (i.e., of linewidth comparable
to or smaller than the recoil frequency, see, e.g., Ref. [21]).
These transitions allow for reaching ultralow temperatures
even within the Doppler cooling regime and were exploited
in laser cooling schemes. In particular, magneto-optical traps
(MOTs) of open-shell lanthanides working on ultranarrow
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lines have been loaded from broad-line three-dimensional
(3D) MOTs [3–5], similarly to Sr and Yb [22,23]. Among all
the closed narrow transitions of lanthanides, the intercombi-
nation line stands out by its intermediate linewidth of a few
hundreds of kHz, which allows for MOTs with capture veloc-
ities on the order of 10 m/s and Doppler temperatures in the
few-µK range. Following works on Yb [23], MOTs working
on the intercombination line have been directly loaded from
slow atomic beams, enabling a simplified cooling scheme
[1,7,8,10,11].

Another particular feature of open-shell lanthanides is their
high melting point ∼1000◦ C. To produce the slow atomic
beam required for 3D-MOT loading, all previous open-shell-
lanthanide experiments use a similar scheme based on a
high-temperature oven aligned with an axial Zeeman slower
working on the atom’s broadest cooling transition [1,3–15].
Besides Zeeman slowers, two-dimensional (2D) MOTs have
been proven to be convenient high-flux sources of slow atoms
for many of the laser-cooled atomic species as demonstrated
in the seminal work o the authors of Ref. [24]. This has been
applied to a wide range of species, in particular, species using
an oven for a first vaporization stage, like Li [25], Na [26],
Sr [27,28], Yb [29,30], and more recently, even to species
needing a refrigerated source like Hg [31]. Among others,
the advantages of 2D-MOT sources over Zeeman slowers
are the high compactness of the setups and the absence of
a direct view between the science chamber and the oven
output. This is particularly beneficial for species like open-
shell lanthanides, for which Zeeman slower light needs to
be reflected from a mirror inside the vacuum setup to avoid
material deposition on the viewport. In this case, a 2D MOT
allows for better optical access around the science chamber
and a simplified integration of a glass cell. Yet despite all
these benefits, a 2D MOT has not been realized for open-shell
lanthanides.
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FIG. 1. Experimental setup. (a) Energy level diagram of Dy in wavelength λ for the levels of total electronic angular-momentum quantum
number J = 8 and J = 9. The state’s color indicates its parity (blue, odd; red, even). The used transitions are marked by the arrows.
(b) Sketch of the experimental setup showing the main vacuum components and optical paths. (Inset) Typical absorption image of a 3D
MOT. (c) Section view of the setup at the oven and 2D-MOT chamber. The aperture set at the effusion cell output is illustrated as well as an
instance of magnet block. (d) Sketch of the 3D-MOT capture process within our experimental geometry. The atoms in the jet entering with
v � vcap can be stopped within the capture region of radius Rcap. This region is limited by the beam extent, and therefore, the viewports’ clear
aperture.

In this paper, we report on an apparatus in which a 3D MOT
of Dy atoms working on the intercombination line is loaded
from a 2D MOT operating on the broadest cooling transition.
We observe efficient loading of the 3D MOT with comparable
rates φ3D � 108 atoms/s and saturation atom numbers Nsat ≈
3 × 108 as in Dy experiments based on Zeeman slowers, but
at a lower oven operation temperature. The 3D MOT can
be loaded even in the absence of an additional beam that
pushes the atoms from the 2D to the 3D MOT (hereafter called
the push beam). Using a push beam working on either the
broad or the narrow transition, the loading of the 3D MOT
is significantly enhanced with a maximal enhancement factor
of 3.6 achieved using a red-detuned push beam close to the
intercombination line.

The paper is organized as follows. In Sec. II, we briefly
review the relevant characteristics of Dy atoms and the main
components of our experimental setup and present the 2D-
MOT and 3D-MOT schemes. In Sec. III, the measurement
scheme used for our optimization and characterization of the
2D- or 3D-MOT source is described. In Sec. IV, we report
on the optimization procedure applied to our 2D-MOT source
and its achievement in the absence of a push beam. In Sec. V,
we further introduce a push beam and describe the observed

enhancement of the 3D-MOT loading, comparing broad- and
narrow-line push configurations. Finally, in Sec. VI, the op-
timal 3D-MOT parameters for its loading in the absence and
presence of push beams are investigated, compared, and com-
prehended in relation to the velocity features of the 2D-MOT
atomic beam and of the 3D-MOT capture process.

II. EXPERIMENTAL SETUP AND 2D- OR 3D-MOT
SCHEME

The Dy electronic levels and transitions of interest for
this work are depicted in Fig. 1(a) and connect its ground
state of total angular-momentum quantum number J = 8
to excited states with J ′ = 9 [32]. The broad transition of
wavelength λ421 = 2π/k421 = 421.291 nm has a linewidth of
�421 = 2π × 32.2 MHz and a saturation intensity of I421

sat =
564 W/m2. The narrower intercombination line of wave-
length λ626 = 2π/k626 = 626.082 nm has a linewidth of
�626 = 2π × 136 kHz and a saturation intensity of I626

sat =
720 mW/m2. The ground state, 421-nm, and 626-nm excited
states have similar g factors of gJ = 1.24, g(421)

J ′ = 1.22, and
g(626)

J ′ = 1.29, respectively.
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The 421-nm and 626-nm laser lights used to ad-
dress these transitions are generated by two commercial
frequency-doubled amplified diode lasers (DLC TA-SHG
PRO) from TOPTICA Photonics AG. The lasers are oper-
ated with 800-mW and 1.6-W output power, respectively.
Both lasers are frequency-locked to a commercial ultralow
expansion cavity from Stable Laser Systems using the offset-
sideband Pound-Drever-Hall scheme [33]. The cavity has a
1.46 GHz free spectral range and a finesse determined by
means of cavity-ring-down measurements to be 21 170(60)
at 842 nm and 20 760(40) at 626 nm, corresponding, respec-
tively, to the wavelengths used to lock the 421-nm and 626-nm
lasers.

The vacuum apparatus for our experiment is depicted in
Fig. 1(b). It consists of one high-temperature dual-filament
effusion cell (DFC-40-25-WK-2B) from CreaTec Fischer &
Co. GmbH, and of two chambers (the 2D-MOT chamber and
the science chamber) connected via a differential pumping
section. Most vacuum components have been produced by
SAES Rial Vacuum out of stainless steel (grade 316L or
316LN) or titanium. Pressures on the order of 10−9 mbar and
10−11 mbar are achieved in the 2D-MOT and science cham-
bers, respectively.

Solid Dy pieces are placed in the reservoir region of the
effusion cell and are vaporized by heating this region up
to 800◦ C. The relatively low temperature of the reservoir
region was chosen to spare material and allow for a long
lifetime of the source. Figure 1(c) details the setup design
from the effusion-cell output to the 2D-MOT chamber. The
oven is inserted into the 2D-MOT chamber, transversely to the
2D-MOT axis (x-axis). The distance between the oven’s last
aperture and the center of the 2D-MOT chamber (40.8 mm) is
minimized with the aim of maximizing the incoming atomic
flux in the 2D MOT. A Dy atomic vapor jet is formed by a
custom-designed set of apertures located in the hot-lip region
of the effusion cell, which is heated up to 1100◦ C. A last cold
aperture, connected to the oven water-cooling system, enables
to filter out the part of the atomic jet exiting the oven at angles
larger than 7.5◦.

The atoms exiting the oven into the 2D-MOT chamber
experience the forces induced by the cooling beams. The
cooling beams are made up of a single 421-nm laser beam
propagating through the chamber in a bow-tie σ+σ− retro-
reflected configuration. The bow-tie plane (yz plane), together
with the magnetic-field configuration (see below), defines the
2D-MOT axis as the orthogonal x axis [see Figs. 1(b) and
1(c)]. The laser beam has a power of 430 mW and waist of
16 mm [34]. The laser beam path does not include any active
optical components to ensure a high effective power on the
atoms. Therefore, the beam frequency can only be altered
through the laser locking point, and its power via mechanical
means.

Eight stacks of permanent magnets are placed symmet-
rically on both sides of the 2D-MOT chamber, as partially
illustrated in Fig. 1(c), to provide the 2D-MOT magnetic field.
The magnetic field is zero-valued along the 2D-MOT axis
and oriented along the cooling beams on their propagation
axes. It has a roughly uniform gradient in the yz plane over
the chamber’s central region whose magnitude, b′

2D, can be

adjusted by changing the number of magnets. Hereafter, the
values of b′

2D correspond to the theoretical expectations for a
perfect arrangement of magnet stacks and no other magnetic
source. Increasing the number of magnets by one in each
of the eight blocks increases the gradient by approximately
4.4 G/cm. A gradient of up to 44.4 G/cm can be generated
with our current magnet-holder design. To optimize the per-
formance of the 2D MOT, we adjust the divergence of the
cooling beam, its detuning from resonance δ2D, as well as the
number and positions of the magnets. We note that, due to
the permanent magnets implemented, adjusting the 2D-MOT
magnetic field involves an important manual aspect.

The atoms trapped in the 2D MOT can travel along the
x direction and reach the center of the science chamber.
The distance between the two chamber centers along x was
minimized during our design process. It equals 347 mm and
includes a 55.7-mm-long differential pumping section, which
is inserted into the 2D-MOT chamber. The differential pump-
ing section is of conical shape and has an aperture diameter
of 2 mm on one end and 5.9 mm on the other. At the center
of the science chamber, a 3D MOT is formed using three
orthogonal retro-reflected 626-nm laser beams and a pair of
magnetic coils. The coils are aligned along the z axis and
connected in anti-Helmholtz configuration to provide a mag-
netic gradient b′

3D up to 4 G/cm in the current configuration.
Hereafter, the values of b′

3D correspond to the gradient in the
xy plane extracted from numerical calculations using our coil
geometry. In the present setup an additional pair of magnetic
coils, aligned along the z axis and connected in Helmholtz
configuration can be used to apply a tunable offset magnetic
field along the z direction, aligned with gravity.

An important constraint related to the narrow-linewidth
transition used for our 3D-MOT scheme is the low capture
velocity of the 3D MOT, vcap. The principle of the capturing
process is illustrated in Fig. 1(d): atoms of the 2D-MOT jet
with an initial axial velocity vx < vcap have to be stopped by
the 3D-MOT radiation pressure within the 3D-MOT capture
region of radius Rcap. An upper bound on vcap can be estimated
in the limit of an infinitely saturated transition, where the
atoms scatter photons at a rate �626/2 independent of the light
detuning. In this approximation, a constant radiation pressure
force is exerted onto the atoms over the 3D-MOT capture
region, yielding vcap �

√
2Rcaph̄�626k626,x/m, with k626,x the

recoil momentum transferred by one photon along the x axis
(h̄ is the reduced Planck’s constant), see, e.g., Ref. [21]. With
our geometry [see Fig. 1(d)], k626,x = k626/

√
2 and even with

MOT-beam sizes equal to the viewports’ clear aperture (yield-
ing Rcap = 35/

√
2 mm), we estimate the maximum capture

velocity of our 626-nm 3D MOT to be vcap � 11 m/s. To favor
the loading of atoms into the 3D MOT, we thus use relatively
large 3D-MOT beam waists of w3D = 12 mm with a power of
P3D ≈ 85 mW per beam, so as to nearly fulfill the above esti-
mates of the capture radius and velocity. Note that the atoms
fall under gravity when traveling from the 2D-MOT to the 3D-
MOT chamber, which might compromise their capture. With
a horizontal velocity of 11 m/s, the falling distance is 4.9 mm
and is smaller than Rcap. Furthermore, if the atoms emerge
from the 2D-MOT with an 11 m/s velocity oriented 15 mrad
upward, the fall is suppressed. The relevant parameters for the
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optimization of the 3D-MOT loading are the detuning of the
3D-MOT beams, δ3D, and the magnetic-field gradient, b′

3D.
In the following, we focus on the isotope 164Dy (atom

mass m = 164 amu, with amu being the atomic mass unit),
which has the highest natural abundance. To gain first in-
sights into the expected performance of our 2D-MOT-based
source and the relevant parameter ranges, we perform Monte
Carlo simulations of the 2D- and 3D-MOT capture processes
along the lines of Ref. [28], see Appendix B and Ref. [35]
for details. Using an oven temperature of T = 1000◦ C, our
simulations indicate that a maximal 2D-MOT flux is achieved
for b′

2D = 31 G/cm and δ2D = −2.1 �421 and is estimated to
φ2D ≈ 3 × 1010 atoms/s for 164Dy. The 3D-MOT loading pro-
cess can also be included in the simulation. However, due
to the large fraction of unloaded trajectories over the full
process and our limited number of simulated trajectories (see
Appendix B), the extracted 3D-MOT loading rates show large
fluctuations. In the simulations, loading into the 3D-MOT is
detected when adding a push beam and 3D-MOT loading rates
on the order of 9 × 108 atoms/s were extracted for 164Dy.
Based on these simulation results and their parameters, we
started our experimental search. In the experiment, we ob-
served a 3D-MOT loading even without an additional push
beam. This experimental observation serves as the starting
point for our optimization process.

III. MEASUREMENT PROTOCOL

In the following, we characterize the performance of our
2D-MOT-based atom source through the achieved 3D-MOT
loading rates and atom numbers. Our experimental procedure
is as follows: In a first step we switch on the 2D-MOT, op-
tional push, and 3D-MOT beams, the offset-field and gradient
coils, with fixed parameter values for a time tload. We then
switch off the 2D-MOT and push beams, and hold the cloud
for 70 ms without changing any other parameter values except
the offset field [36]. Finally, we switch off the 3D-MOT light
and gradient field, let the cloud fall and expand for a short
time of flight (TOF) tTOF (typically tTOF = 5 ms), and take an
absorption image using horizontally linearly polarized 421-
nm light propagating along the y axis. The absorption signal
is recorded on a complementary metal oxide semiconductor
(CMOS) camera (Hamamatsu Orca Spark) via an imaging
lens providing a magnification of 0.438. The imaging pulses
last for 25 µs. The imaging beam is operated on resonance,
with an intensity below 0.2 mW/cm2 and a waist of about
10 mm. An exemplary image is shown in the inset of Fig. 1(b).

For the present characterization, we do not compress the
gas by decreasing the light detuning and intensity after the
3D-MOT loading stage. Therefore, the cloud has a relatively
high temperature of about 500 µK while the remnant field
is estimated to be around 0.4 G. At these temperature and
magnetic-field values, the atomic population is expected to
be depolarized and all Zeeman substates occupied. Assuming
an equal population of all substates, the light-scattering cross
section σ is identical for any light polarization and is given
by renormalizing the bare cross section σ0 = 3λ2

421/2π by the
average of the squares of the Clebsch-Gordan coefficients for
our J = 8 → J ′ = 9 dipole transition, over the initial Zee-
man substates. This yields σ = 0.3725σ0. We observe that

the absorption signal does not depend on the imaging light
polarization, which experimentally supports the use of σ =
0.3725σ0.

By integrating over a region of interest in the absorption
images, we extract the atom number N in the 3D MOT at
the end of the sequence. The statistical uncertainty on N is
typically of 5% and we estimate the systematic uncertainty
to be of about 4% with dominant contributions from the
imaging magnification and unequal populations of Zeeman
substates at finite temperature. To optimize our setup, we
mostly rely on a simple scheme that consists in measuring N
for a characteristic tload = 4 s, hereafter referred to as N4s. To
further characterize our system, we record loading curves of
N versus tload, which we fit to an exponential growth function,
N (t ) = Nsat (1 − e−t/τ ), to extract the 3D-MOT loading rate
φ3D = Nsat/τ and the saturation atom number Nsat.

We note that the resonance frequencies for the 421-nm
and 626-nm lights are extracted from the 3D-MOT images.
The 421-nm resonance frequency is directly extracted from
the maximum in the absorption signal when scanning the fre-
quency of the imaging light. The resonance frequency for the
626-nm light is determined by shining an additional 626-nm
beam onto the atoms during the first milliseconds of their time
of flight and monitoring the atom-number depletion versus the
beam frequency via absorption imaging after time of flight.

IV. OPTIMIZATION OF THE 2D MOT, WITHOUT
PUSH BEAM

In our setup, the optimization of the 2D-MOT parameters
is performed, following the first observation of a 3D-MOT
loading, in the absence of a push beam. Here we report
on the protocol followed in the optimization process and
the performance achieved in this configuration. We start
the optimization process by setting the 2D-MOT parameters
close to the simulated optimum (see Sec. II), where a 3D-
MOT loading is detected (b′

2D = 35.4 G/cm, δ2D = −2�421).
We scan the 3D-MOT gradient and detuning to maximize
the 3D-MOT loading, yielding b′

3D = 0.9 G/cm and δ3D =
−55.8(3)�626. Using this 3D-MOT setting, we go on by
changing the 2D-MOT parameters as follows: choosing a
given number of magnets per stack, we start by setting the
magnet stacks at their design positions. In this configuration,
we optimize the divergence of the 2D-MOT cooling beam
[37] and its detuning δ2D by maximizing N4s. We then adjust
the position of each magnet stack and iterate on the beam
parameters.

For each number of magnets per stack implemented, we
identify the best values of the 2D-MOT parameters and we
finally record the full 3D-MOT loading curve in the opti-
mized configuration. Examples of such loading curves and
their fits (see Sec. III) are shown in Fig. 2(a), inset. Fig-
ure 2(a) displays the dependence of the fitted loading rate
φ3D with the magnetic gradient b′

2D. A maximum loading
rate of φ3D = 2.7(2) × 107 atoms/s and a saturation atom
number of Nsat = 9.9(2) × 107 is found for the configuration
with six magnets per stack (b′

2D ≈ 26.7 G/cm) and δ2D =
−1.95(1)�421. We compare these experimental observations
to the expectations from our Monte Carlo simulations, see
Sec. II and Appendix B for details. So as to obtain reliable
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FIG. 2. 2D-MOT optimization without push beam. (a) Experi-
mental 3D-MOT loading rate φ3D (circles, left axis) and simulated
2D-MOT flux φ2D (green line and dots, right axis) as a function
of the 2D-MOT magnetic gradient b′

2D. The 3D-MOT parameters
were fixed to b′

3D = 0.9 G/cm, δ3D = −55.8(3)�626 and the 2D-MOT
configurations (including δ2D) were individually optimized, see text.
The inset shows the experimental 3D-MOT loading curves and expo-
nential fits from which the rates are extracted and the errorbars show
the standard deviation of three experimental runs. (b) Experimental
φ3D (blue circles) and simulated φ2D (green line and dots) as a
function of the 2D-MOT detuning δ2D at the experimental optimal
gradient b′

2D = 26.7 G/cm. The 3D-MOT parameters were fixed to
b′

3D = 0.42 G/cm, δ3D = −42.6(3)�626. In (a) and (b), the errorbars
are the 63% confidence interval from the fit. The shaded area shows
the standard deviation of three simulation runs.

results despite limited sampling, we do not include the 3D-
MOT loading step and simulate only the 2D-MOT loading
process. Figure 2(a) shows the simulated 2D-MOT flux as a
function of b′

2D with an oven at T = 800◦ C and at the value
of δ2D for which this rate is maximal, like in the experi-
mental procedure. We observe that the optimal b′

2D and δ2D

are comparable yet respectively slightly smaller and larger in
magnitude for the experimental φ3D compared to the simu-
lated φ2D (optimum at b′

2D = 32 G/cm and δ2D = −2.1�421).
Both in experiment and theory, we find that the optimum value
of |δ2D| slightly varies over the explored b′

2D range by about
0.2 �421 and 0.7 �421, respectively. The similarity between the
experiment and simulation results is remarkable given the
approximations made in the simulations, see Appendix B. The

simulations do not necessarily provide the quantitative optima
for different parameters, but are a suitable tool to identify the
relevant range of parameters, see Sec. II.

In the optimized magnetic configuration identified above,
we further investigate the influence of the 2D-MOT detuning
and record the full 3D-MOT loading curve for different values
of δ2D. The extracted loading rates are shown in Fig. 2(b).
Over the investigated δ2D range (1�421), the variations of
φ3D are rather symmetric around its maximum and its value
changes by less than 50%. In Fig. 2(b), we also show the simu-
lated 2D-MOT flux at b′

2D = 26.7 G/cm. The variations of the
simulated φ2D match those of the experimental φ3D well. Ex-
perimentally, the maximum is found at δ2D = −1.95(1)�421

with a loading rate of φ3D = 2.7(1) × 107 atoms/s and a
saturation atom number of Nsat = 12.2(1) × 107. We note
that different 3D-MOT parameters were used compared to
Fig. 2(a), which explains the slightly different loading per-
formances (see also Sec.VI).

V. PUSH-BEAM ENHANCEMENT

To further increase the loading rate of our 3D MOT, we
implement a push-beam scheme, as typically done in 2D-
MOT setups, see, e.g., Refs. [24–31,38,39]: we additionally
shine a beam propagating through the apparatus along +x,
see Fig. 1(b). This beam has a frequency close to one of
the transitions of Dy and, via radiation pressure, pushes the
atoms from the 2D MOT to the science chamber in a velocity-
selective way. In the case of Dy, similarly to Yb [29,30,38],
two convenient choices are possible: the push beam can be
near-resonant either with the 626-nm intercombination line
or with the broad 421-nm one. To determine which choice is
more beneficial, we implemented both sequentially and com-
pared their experimental achievements. We note that, in both
cases, a beam-walking optimization yields a configuration in
which the push beam goes through the differential pumping
stage and is detected on the opposite side of the science
chamber. The push-beam waist is wpush ≈ 0.8 mm, and, to
control the effect of the push beam, we vary its power Ppush

and detuning δpush. In either case (421 nm or 626 nm), an
optimization on the push-beam parameters clearly improves
the 3D-MOT loading.

We perform a systematic experimental study of the
3D-MOT atom number N4s while varying the push-beam
parameters in a range where improved 3D-MOT loading is
found. Figures 3(a) and 3(b) show the enhancement factor
defined by the ratio of N4s obtained in a configuration with
and without a push beam operating at [Fig. 3(a)] 421 nm
and [Fig. 3(b)] 626 nm. Here we use b′

3D = 0.42 G/cm, δ3D =
−42.6(3)�626, and the reference without push beam is N4s =
7.5(3) × 107 [see also Figs. 4(a), 4(b) and 4(c)]. In both
Figs. 3(a) and 3(b), the enhancement factor at fixed Ppush

shows a maximum for varying δpush. We now describe the
power dependence of this maximum. In either case (421 nm
and 626 nm), the δpush value at which the maximum is
found increases in absolute value for increasing Ppush. Yet,
the power dependence shows different features in the two
cases. In particular, the value of the maximum enhance-
ment factor itself shows distinct variations with Ppush. In
the case of the 421-nm push beam, this maximum enhance-
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FIG. 3. Push-beam effect. Enhancement factor in the atom number in 3D MOT at tload = 4s, N4s, obtained by the addition of a (a) 421-nm
and (b) 626-nm push beam, as a function of the push-beam power Ppush and detuning δpush. The 3D-MOT parameters were set to b′

3D =
0.42 G/cm, δ3D = −42.6(3)�626. The reference without push beam is N4s = 7.5(3) × 107. Ppush is tuned through the amplitude of the driving
signal of an acousto-optic modulator. The Ppush values are extracted via a rescaling of the measured [for (a), frequency-dependent] power in front
of the entrance viewport at fixed diffraction efficiency. (c) Velocity-dependent force 1 exerted by the 421-nm (blue lines) and 626-nm (red lines)
push beams for the characteristic parameters highlighted by triangle (solid lines) and star (dashed lines) symbols in (a) and (b), respectively.
The forces are calculated assuming no magnetic field. The inset shows a zoom-in in the relevant low-velocity region. The gray-shaded area
illustrates a Gaussian approximation of the expected velocity distribution of the 2D-MOT atomic beam.

ment factor is nearly independent of Ppush. In contrast, in the
626-nm case, it shows an overall optimum in power, corre-
sponding to Ppush = 18 mW. Overall, the push beam on the
narrow transition is found to outperform the one on the broad

transition and yields the maximal enhancement factor ob-
served of 3.6(2).

These experimental findings can be comprehended from a
description of the push-beam effect, which is rooted in the

FIG. 4. 3D-MOT with and without push beam. (a)–(c) Experimental 3D-MOT atom number N4s as a function of the 3D-MOT detuning
δ3D and gradient b′

3D, in (a) the absence or the presence of a (b) 421-nm and (c) 626-nm push beam. The other parameters are set to the optimal
values identified in Figs. 2 and 3. In particular, we set (b) δpush = −8.3�421, Ppush = 0.26 mW and (c) δpush = −82.3(3)�626, Ppush = 12 mW.
(d) 3D-MOT detuning δ∗

3D at which the maximal N4s is achieved at fixed b′
3D. The values are extracted from the scans shown in panels (a)

[black square], (b) [blue triangle], and (c) [red circle] and are plotted as a function of b′
3D. (e) Optimal values of N4s, N∗, as a function of b′

3D.
Same code as (d). (f) 3D-MOT loading rate as a function of the 3D-MOT beam power P3D, with a 626-nm push beam of δpush = −82.3(3)�626,
Ppush = 18mW, and b′

3D = 0.42 G/cm, δ3D = −42.6(3)�626. The inset shows the corresponding full 3D-MOT loading curve (circles) and their
exponential fits (lines). The different colors correspond to the different P3D values. In (d)–(f), the error bars show the standard deviation of
three experimental repetitions.
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radiation pressure force

Fpush(vx ) = h̄kex
�

2

s0

(1 + s0)

1

1 + 4 (δpush−kvx )2

(1+s0 )�2

. (1)

Here k is the push-beam wave number, s0 =
2Ppush/(πw2

pushIsat ) is the saturation parameter, � and Isat are
the associated transition’s linewidth and saturation intensity.
The force (1) is directed along the push-beam propagation
direction of unit vector ex, and its magnitude depends on
the atom’s velocity along x, vx, through the Doppler effect.
More precisely it is a Lorentzian function of vx, of center
δpush/k, of width

√
1 + s0 �/k, and of amplitude on resonance

h̄k �
2

s0
(1+s0 ) . The effects of the push-beam parameters are as

follows. Varying δpush changes the velocity class with which
the force is resonant. Changing Ppush alters s0 and has a
twofold effect: (i) it scales the resonant amplitude of the
force up by the factor s0

1+s0
and (ii) it broadens the range of

velocities addressed by the force by
√

1 + s0. The effects (i)
and (ii) dominate at low and high saturation, respectively.
Note that Eq. (1) assumes no effect of the magnetic field,
which theoretically cancels along the propagation axis of the
push beam.

The drastically different linewidths of the 421-nm and
626-nm transition result in a different operation of the corre-
sponding push beams. The 421-nm push beam may generate
much larger forces than the 626-nm beam. In particular, a
force magnitude corresponding to the saturated 626-nm case
is generated with a 421-nm beam of saturation parameter as
low as s0 = 0.0021. Furthermore, the bare velocity widths
of the force �/k are also different, equal to 0.085 m/s and
13.6 m/s for the 626-nm and 421-nm transition, respectively.
This is to be compared with the expected spread of velocity
distribution of the 2D MOT of about 4 m/s defined by its half
width at half maximum.

These different linewidths, together with the powers used
in experiment [40], result in broadly different force profiles
in the optimal push configurations. Figure 3(c) sketches such
force profiles as expected from Eq. (1). In both the 421-nm
and 626-nm cases, improved loading conditions are achieved
for red detunings, δpush < 0, which corresponds to a resonant
pushing of atoms traveling against the push beam propagation
(vx < 0). Yet the resonant velocity classes are vastly different
with vx ∼ −10 m/s (vx ∼ −100 m/s) for the 626-nm (421-
nm) case. Therefore, in the 421-nm case, mostly the detuned
“tail” of the radiative force is involved in pushing the atoms.
On the contrary, the much weaker force generated by the 626-
nm light is used on and close to its resonance.

The 421-nm and 626-nm push beams also operate at con-
siderably different saturation parameters of s0 � 0.5 and 3 ×
103 < s0 < 60 × 103, respectively. Following the discussion
on the effects (i) and (ii), a change in power thus affects the
force profiles of the 421-nm and 626-nm lights differently.
As illustrated in Fig. 3(c) through two typical situations of
different Ppush, an increase in power for the 421-nm beam
mostly yields a scaling up of the resonant force magnitude.
In contrast, the 626-nm push operates at roughly constant
(saturated) resonant force magnitude and the change in power
mainly yields a broadening of the resonance.

Relevant to the push-beam effect on our 2D-MOT are the
force profiles in the small |vx| range encompassing the 2D-
MOT velocity distribution, see Fig. 3(c), inset. The power
dependences of the force in this range explain the behaviors
of the maximal enhancement observed in Figs. 3(a) and 3(b).
The overall shift to larger |δpush| values for increasing Ppush

is justified as follows: increasing Ppush at fixed δpush yields a
detrimental effect of pushing the atoms with positive vx too
much (via power scaling or broadening of the force) such that
the final vx may exceed the 3D-MOT capture velocity vcap.
Instead, shifting δpush to larger negative values prevents this
effect and additionally yields the benefit of pushing atoms
with larger negative vx back towards the 3D MOT.

This shift has, however, different impacts in the 421-nm
and 626-nm cases due to their different operation regimes.
In the 421-nm case, the small |vx| range corresponds to a
far-detuned regime in which the amplitude scaling is well
compensated by a shift of the resonance. Therefore, when
increasing Ppush, δpush is adjusted such that the force profile
in this |vx| range is kept basically unchanged. The push-
beam effect is thus nearly power-independent and so is the
enhancement factor. In the 626-nm case, instead, the force
profile in the optimal-enhancement condition changes with
Ppush in the small |vx| range, affecting the push efficiency.
At low power, the range of velocity classes addressed by
the force is small compared to the velocity distribution itself,
yielding a low push efficiency. As described above, increasing
Ppush, the 626-nm force broadens with a saturated resonant
amplitude. Therefore if one tries to keep a constant push
effect (i.e., force profile) in the small negative vx range while
increasing Ppush, the saturation and power broadening effects
imply an increasing detrimental push effect on the positive
vx range. Hence, at too large power, either the push effect
on vx > 0 or on vx < 0 is not optimal, and an optimum
efficiency is expected at an intermediate power. At the opti-
mum Ppush = 18 mW, the 626-nm push force has an expected
velocity width of about 7 m/s, comparable to the expected
width of the 2D-MOT distribution. The fact that the 626-nm
force profile can be adapted to strongly push the vx � 0 class
with a reduced impact on the vx ∼ 10 m/s one may explain
the observed better performance of the 626-nm push beam.
We note that a foreseeable way to further improve the load-
ing of the 3D MOT, instead of relying on the simple power
broadening of the push beam, is to introduce sidebands in
the push-beam frequency, see, e.g., Refs. [8,10,29,30]. This
approach could allow tailoring the velocity-dependent line-
shape of the force to effectively address different velocity
classes.

For the case of the 626-nm push beam, we additionally
observe a rather unexpected behavior in Fig. 3(b): N4s shows
multiple local maxima when varying δpush at fixed Ppush. This
effect may be explained by the possible presence of a remnant
magnetic field along the push-beam propagation axis. Such
a magnetic field makes the vectorial nature of the push-beam
transition (J = 8 → J ′ = 9) become relevant and modifies the
simple picture of Eq. (1) and Fig. 3(c). In particular, this yields
different resonant conditions for the push-beam light com-
ponents driving the σ+, π , and σ− transitions, respectively.
Therefore, the total force profile, given by the sum of these
three contributions, would then present three distinct peaks
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with different resonant velocities, and amplitudes and widths
set by the light-polarization composition. The relevance of
this effect is supported by an observed change in the relative
strengths of the maxima in N4s when changing the push-beam
polarization. We note that the best performance is found with
a push beam of horizontal linear polarization.

VI. 3D-MOT PARAMETERS AND CAPTURE WITH AND
WITHOUT PUSH BEAM

In a final study, we investigate the optimal 3D-MOT set-
tings and their variations without, with a 421-nm, and with a
626-nm push beam. We set the push-beam parameters to the
values providing the optimal enhancement factors in Fig. 3.
Figures 4(a), 4(b), and 4(c) show the atom number N4s, while
scanning the 3D-MOT detuning δ3D and magnetic gradient
b′

3D in these three push-beam configurations. The three plots
differ in their overall magnitude, but show qualitatively sim-
ilar variations with δ3D and b′

3D. In all three cases, for each
b′

3D value, N4s shows a maximum (noted N∗) when varying
δ3D. The optimum is found at a negative detuning δ∗

3D whose
magnitude |δ∗

3D| increases with b′
3D. An overall optimum in

N4s is found at a finite value of the (b′
3D, δ3D) set.

In the following, we compare the variations of δ∗
3D and N∗

with b′
3D quantitatively in the three aforementioned configura-

tions to understand the capture process. We extract δ∗
3D from

the three sets of experimental data of Figs. 4(a), 4(b), and
4(c) and display them as a function of b′

3D in Fig. 4(d). We
observe that the variations of δ∗

3D versus b′
3D are similar in

the presence of 421-nm and 626-nm push beams but slightly
differ from the case without push beam. Furthermore, in all
three cases, δ∗

3D appears to obey a roughly linear dependence
on b′

3D: δ∗
3D = μRb′

3D + δ0. Based on a simple theory of the
3D-MOT-capture process inspired from Ref. [21] that we
develop in Appendix C [see also Fig. 1(d)], we can interpret
the linear-dependence parameters in terms of effective cap-
ture parameters [see Eq. (C4)]. The offset detuning relates to
an effective capture velocity in the limit of small gradients
(b′ → 0), v0 via δ0 = −k626v0/

√
8, matching the relation ex-

pected in optical molasses. The slope relates to an effective
capture radius with large gradients (b′ → ∞): μR ∝ R∞. A
linear fit yields v0 = [7.8(1), 7.5(1), 5.6(2)] m/s and R∞ =
[17(1), 19.1(7), 32(2)] mm for [with 626-nm push, with 421-
nm push, without push]. The increase in v0 and decrease of
R∞ found when adding a push beam reveal a change in the
velocity distribution of the atomic beam emerging from the
2D MOT. It evidences the boost in velocities and the decrease
in spreading provided by the push beams.

Our theory of the 3D-MOT capture process implies varia-
tions of the capture radius and velocity with b′

3D. In particular,
vcap increases linearly with b′

3D. Ultimately, this limits the
validity of our description to an intermediate gradient range
as the capture parameters are bounded by the geometry and
maximal radiative force, see Sec. II and Appendix C. These
variations also enable us to comprehend the changes with
b′

3D in the loading efficiency and therefore in N∗. Let us first
describe the experimental observations. Figure 4(e) depicts
the variations of N∗ with b′

3D, as extracted from Figs. 4(a),
4(b), and 4(c). We observe that N∗ varies with b′

3D follow-
ing a similar trend between the three configurations: Starting

TABLE I. Values of the different relevant parameters for optimal
operation of our combined 2D- and 3D-MOT scheme. The waists
w2D, wpush, w3D and the powers P2D, P3D were simply set to their
values and not optimized. Other values are the results of our opti-
mization process described in this paper.

Parameter Value Unit

2D MOT λ2D 421 nm
P2D 430 mW
w2D 16 mm
b′

2D 26.7 G/cm
δ2D −1.95 �421

s2D 1.9

Push λpush 626 nm
Ppush 18 mW
wpush 0.8 mm
δpush −82.3 �626

spush 25 000

3D MOT (loading) λ3D 626 nm
P3D 85 mW
w3D 12 mm
b′

3D 0.42 G/cm
δ3D −42.6 �626

s3D 520

from small b′
3D, N∗ sharply increases and then slowly de-

creases when increasing b′
3D. A maximum of N∗ is found at

an intermediate b′
3D whose value depends on the push-beam

configuration. The optimum b′
3D is the lowest when no push

beam is used and takes the value b′
3D = 0.31 G/cm. The op-

timum is shifted to larger values when using a push beam,
namely, b′

3D = 0.42 G/cm (0.51 G/cm) with the 626-nm (421-
nm) push beam. We also observe a steeper decrease of N∗

at large b′
3D with a push beam compared to the case without

push beam. Let us now understand this behavior based on
the capture-process theory. The increase of N∗ at small b′

3D,
is justified by the corresponding increase of vcap, enabling
to capture a larger fraction of the atomic distribution. The
gain earned by increasing vcap saturates once it encompasses
the full velocity distribution of the atomic beam or reaches
the upper bound of vcap � 11 m/s imposed by our 3D-MOT
configuration as introduced in Sec. II. For larger values of
b′

3D, a decrease of the capture efficiency is foreseen since the
radiation pressure profile is not anymore optimized for the
low velocities of the atomic jet. The weaker dependence of
N∗ on b′

3D in the absence of a push beam at large b′
3D shall

relate to the different velocity distributions in the atomic jet
between the configurations. Using the relation of Appendix C,
we can estimate the capture velocities for the optimal b′

3D to
vcap = [10.1(2), 10.7(2), 8.8(3)] m/s for [with 626-nm push,
with 421-nm push, without push]. The different optimal b′

3D
can therefore be interpreted as a requirement to increase the
capture velocities when introducing the push beams.

Overall, the largest N∗ is found with the 626-nm push
beam. The optimal values of the parameters determined within
our optimization process are reported in Table I. Finally, we
study the full loading curve of the 3D MOT in this identified
optimal configuration. Additionally, we investigate the effect
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of changing the power of the 3D-MOT beams P3D. The load-
ing curves and the extracted loading rates are displayed in
Fig. 4(f). At the previously set value of P3D ≈ 85 mW, we
measure a loading rate of φ3D = 1.10(2) × 108 atoms/s and
a saturation number of Nsat = 2.80(2) × 108. By increasing
P3D, both the saturation atom numbers and loading rates first
sharply increase and then continue increasing at a slower rate.
With the maximal power accessible in the present setup of
≈130 mW per beam, we find a maximal loading rate of φ3D =
1.28(4) × 108 atoms/s and a saturation atom number of
Nsat = 3.76(9) × 108. We note that a gain in the loading rate
and saturation number seems still possible by increasing the
power yet further. In this work, we simply rely on the power
broadening of the 3D-MOT radiative force to increase the
capture of our narrow-line 3D MOT. Additional schemes, such
as spectral broadening [8,10,29,30] or angled-slowing beams
[15,41], could be considered for potential further performance
enhancement. We also note that the available power for the
2D-MOT cooling beam is presently technically limited, and
we expect that a larger available power will enhance the
present performance. The 3D-MOT loading achieved while
reducing P2D is reported in Appendix A. Finally, we stress
that increasing the oven temperature drastically increases the
loading rate. As declared earlier, we decided to proceed with
the optimization of our setup at a relatively low oven reservoir
temperature for enhancing the lifetime of our source.

VII. CONCLUSION

We demonstrate the successful operation of a Dy intercom-
bination line 3D MOT loaded from a 2D MOT working on
the broad 421-nm transition. The addition of a push beam
operating close to the intercombination line allows for the best
loading performance, with a more-than-three-fold increase in
the loading rate. We observe loading rates of φ3D > 1 × 108

atoms/s and a saturation number of Nsat ≈ 3 × 108. This is
similar or better compared to other cold-atom Dy setups based
on Zeeman slowers despite the lower oven temperatures at
which we operate, see, e.g., Refs. [4,5,8,10,12,15]. We note
that the loading of the intercombination-line 3D MOT is a
promising first step for quantum gas experiments. In partic-
ular, following the loading, a compression step can be applied
in which the power and the detuning absolute value of the
3D-MOT beams are decreased [8,10,12]. By applying such a
step to our samples, temperatures of 15 µK are achieved with
negligible atom loss.

We note that our setup has several advantages compared
to Zeeman-slower-based ones. These include its compact-
ness (our system is less than 1-m long), its lower energetic
consumption thanks to the use of permanent magnets and
lower oven temperature, as well as the absence of a direct
view between the oven and the center of the science chamber
which reduces collisions with hot atoms without the need of
a mechanical shutter and allows for a full optical switching
of the atomic beam compatible with fast-cycling experiments.
In future developments, a glass cell could directly be substi-
tuted for the metallic chamber and therefore allow for even
greater optical access and faster magnetic-field control with-
out, e.g., the need for additional transport of the atomic cloud.

Another interesting advantage of 3D MOTs of heavy atoms
working on narrow transitions is the possibility to remove
the MOT beam coming from the top, see, e.g., Ref. [12].
This setting allows for greater optical access, and, e.g., easier
integration of a high-resolution objective. In our setup, we
observed that a 3D MOT could also be loaded in such a five-
beam configuration, but we did not perform an optimization
in this setting yet.

Moreover, we note that we achieved and observed 2D
MOTs of other isotopes of Dy, namely, 162Dy and 163Dy.
We also tried and successfully loaded a 3D MOT of 163Dy.
161Dy could not be loaded on a first try and we suspect that a
repumping frequency should be added to the 2D-MOT light.

Our scheme thus constitutes a very favorable platform on
which to build more complex experiments. To cite only two
examples, based on such a 3D MOT, one could proceed with
(i) loading a dipole trap and performing evaporative cooling
to quantum degeneracy, or (ii) loading single atoms in ar-
rays of optical tweezers. Both platforms are highly promising
candidates for quantum simulation or quantum computation
purposes [42–45]. Finally, we also note that this scheme
should be readily adaptable to other open-shell lanthanide
species such as Er.
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APPENDIX A: 3D-MOT LOADING AS A FUNCTION
OF THE 2D-MOT POWER

In the main text, we used the maximal power available of
421-nm light for our 2D-MOT cooling beam. This is done to
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FIG. 5. 2D-MOT power dependence. Relative values of the
experimental 3D-MOT loading rate φ3D and saturation atom num-
bers Nsat as a function of the 2D-MOT power P2D. The values at
P2D = 400mW are used as references. The parameters are δpush =
−46.54(13) �626, Ppush = 12.5 mW, and b′

3D = 0.57 G/cm, δ3D =
−39.19(13)�626 and φ

(400)
3D = 8.1(2) × 107, N (400)

sat = 2.28(1) × 108.
The errorbars are the 63% confidence interval from the fit. The
lines are exponential growth fits yielding A = [3.84, 1.42] P0 =
[117, 106] mW and Psat = [923, 234] mW, respectively.

maximize the loading performance while we expect the satu-
rated regime not to be achieved for the 2D-MOT performances
on the broad transition, see also Refs. [25–28]. In this Ap-
pendix, we report on the change in the loading performances
with 2D-MOT cooling-beam power, P2D. Figure 5 shows the
relative variations in the loading rate φ3D and saturation atom
number Nsat with power together with their fits to exponential-
growth function A(1 − e−(P2D−P0 )/Psat ). The fit results show that
the saturation regime is not achieved for the available power
and increased performances are expected for increased power.

APPENDIX B: 2D-MOT SIMULATION

To estimate the performances of our 2D-MOT scheme as a
function of the values of its parameters we performed Monte
Carlo simulations of the trajectories of the atoms within the
radiative-pressure force field, closely following the line of the
authors of Ref. [28]. Here we review the essential elements of
the simulation, for more details see Ref. [35].

The simulation starts at the oven output at time t = 0.
Here, the positions and velocities of Nsim (typically Nsim =
50 000) atoms are sampled assuming a uniform spatial distri-
bution over the aperture and a thermal (T = 800◦ C) velocity
distribution emerging from a tubed aperture. We use the
transition regime approximation to describe its angular distri-
bution [46,47]. The distribution is cut to 7.5◦ and only velocity
v < 200 m/s are simulated.

At times t > 0, the atoms are submitted to the force field
that results from the four passes of the 2D-MOT cooling beam
via

F2D(r, v) =
4∑

i=1

h̄ki
�421

2

si(r, v)

1 + ∑
i si(r, v)

, (B1)

where ki is the wave vector of the beam at pass i (ki =
k421

±ey±ez√
2

with ex,y,z the unit vector in direction x, y, z) and
si is given by

si(r, v) = si,0(r)

1 + 4
(
δ

(i)
r,v/�421

)2 , (B2)

with si,0(r) = Ii(r)/I421
sat the local saturation parameter, Ii(r) =

2P2D/πw2
2D exp (−2r2/w2

2D) the local intensity [48]. The
local detuning δ

(i)
r,v in beam-pass i is position- and velocity-

dependent due to the Zeeman effect in the 2D-MOT magnetic
field B2D(r) and the Doppler effect

δ(i)
r,v = δ2D − ki · v + μB

h̄
g421

J ′ 	mi|B(r)|, (B3)

where 	mi = ±1 depending if the beam pass i drives the σ±
transition (i.e., defined by the sign of B · ki). We use an ideal
magnetic environment with B2D(r) = b′

2D(yez + zey).
The position r and velocity v of each atom are computed

in an iterative manner using a four-step Runge-Kutta method
with a time step 	t = 50 µs [49]. At each time step, Newton’s
second law is applied with Eq. (B1) providing the instanta-
neous acceleration. In addition to Eq. (B1), we also include
the effect of spontaneous emission approximately by an addi-
tional random force over the time step 	t :

Fspont(r, v) = h̄k421

√
�421

2

∑
i si(r, v)[

1 + ∑
i si(r, v)

]	t êspont, (B4)

where êspont is a random unit vector, which we randomly draw
at each time step of the simulation [50,51]. We note that
Eqs. (B1) to (B4) approximate the complex J = 8 → J ′ = 9
structure of Dy to a simpler J = 0 → J ′ = 1 structure. This
accounts for the light polarization effect but neglects the spin-
ful character of the ground state. Furthermore, the nonclosed
character of the cooling transition is omitted [5].

We stop the simulation after a total time of 10 ms
and count the number of atoms Ncap whose trajectories
are within 25 mrad solid angle from the x > 0 axis. We
then extract the 2D-MOT flux via φ2D = φsim(T )Ncap/Nsim

where φsim(T ) is the flux of atoms exiting the oven at
the temperature T accounting for the limits set in an-
gle and magnitude for the velocities of the simulated
atoms. For T = 800◦ C (T = 1000◦ C), φsim(T ) = 1.5 ×
1010 atoms/s [φsim(T ) = 1.9 × 1012 atoms/s] for 164Dy. The
actual oven temperature certainly lies in between these two
values due to the higher hot-lip temperature also partly heat-
ing the reservoir. The maximum flux φ2D found in Fig. 2,
using T = 800◦ C, is estimated in absolute value to φ2D =
3 × 108 164Dy atoms/s while using T = 1000◦ C, we find
a maximum φ2D = 3.5 × 1010 164Dy atoms/s. Therefore, the
fraction of loaded trajectories in our simulation is on the order
of 2% and very slightly larger at lower oven temperatures.
We also note that the total oven flux is about three orders of
magnitude larger than φsim.

Simulations further including the push beam and 3D-MOT
beams and counting the number of atoms loaded in the 3D
MOT were also performed. In this case, the force (1) is added
to the 2D-MOT force, and another force similar to Eq. (B1),
but summing over the six 3D-MOT beam passes and centered
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at x0 = +347 mm is included. In this case, we count the num-
ber of atoms trapped within a 10-mm radius around x0 while
extending the simulation time to 260 ms. We then calculate the
simulated φ3D similarly to φ2D. Using a push beam we find
that the fraction of loaded trajectories is again reduced by a
factor of ∼20 to 30 compared to the 2D-MOT results, yielding
very weak signals, Ncap of the order of ten with the used
Nsim = 50 000. This weak signal precludes reliable simulation
results for the 3D-MOT loading as highlighted in Secs. II
and IV.

APPENDIX C: BASIC THEORY OF THE 3D-MOT
CAPTURE PROCESS

We consider the process in which a 3D MOT with a six-
beam geometry similar to the sketch of Fig. 1(d) captures
atoms from an atomic beam propagating along +x axis. A
simple understanding can be drawn, following the lines of
Ref. [21], based on the phase-space-dependent detuning of
the cooling beams. Accounting for our beam geometry, the
detuning of an atom of position x′ and velocity vx writes

δ±
x′,vx

= δ3D ±
(

k626vx√
2

+ μ′
626b′

3Dx′

h̄

)
, (C1)

where + (–) holds for the two cooling beams propagating
against (along) the atomic beam. Here, x′ denotes the position
of the atoms with respect to the science chamber center (x′ =
x − x0), μ′

626 = g626
J ′ μB is the 626-nm-transition excited-state

differential magnetic moment and μB the Bohr magneton. The
capturing process mostly relies on the effect of the two beams
propagating against the atomic beam since it can be seen from
Eq. (C1) that they are brought closer to resonance for vx > 0
(i.e., as in the atomic beam), or for x′ > 0 (i.e., for atoms that
would go beyond the trap center). Hereafter, our capturing
model neglects the effect of the two other beams and simply
uses δ+

x′,vx
.

We define vcap as the maximal velocity of the atoms that
can be stopped within the capture region of radius Rcap. Here,
we assume that both vcap and Rcap depend on b′

3D. Following
Ref. [21], we then formulate that the optimal capture con-
figuration is achieved by adjusting δ3D and b′

3D such that the
atoms with a velocity vx = vcap(b′

3D) are on resonance at the

entrance and exit of the capture region [see highlighted points
in Fig. 1(d)]. This yields δ+

x′=−Rcap,vx=vcap(b′
3D ) = 0 at the en-

trance and δ+
x′=Rcap,vx=0 = 0 at the exit. This ensures a maximal

radiative force for this class of atoms. The entrance and exit
conditions yield, respectively,

δ∗
3D(b′

3D) ≈ μ′
626b′

3DRcap(b′
3D)

h̄
− k626vcap(b′

3D)√
2

, (C2)

δ∗
3D(b′

3D) ≈ −μ′
626b′

3DRcap(b′
3D)

h̄
, (C3)

where δ∗
3D(b′

3D) is the value of the detuning providing the
optimal capture configuration for the gradient b′

3D. Combining
these relations yields

δ∗
3D(b′

3D) ≈ −μ′
626b′

3DRcap

h̄
≈ −k626vcap√

8
. (C4)

The approximate relation (C4) can be combined with
the linear dependence observed experimentally, δ∗

3D(b′
3D) =

μRb′
3D + δ0, and allows giving a simple interpretation of the

parameters μR and δ0. The offset value at b′
3D = 0, δ0 =

δ∗
3D(b′

3D = 0) can be written as δ0 = −k626v0/
√

8 with v0 the
effective capture velocity at small gradients b′

3D → 0, match-
ing the formula expected in optical molasses [21]. The scaling
factor μR can instead be written as μR = −μ′

626R∞/h̄ with
R∞ the effective capture radius of the 3D MOT with large
gradient b′

3D → ∞.
The linear relation can also be combined with Eq. (C4) to

extract the dependence of the capture velocity and radius on
b′

3D:

vcap(b′
3D) = v0 +

√
8μ′

626b′
3DR∞

h̄k626
, (C5)

Rcap(b′
3D) = R∞ + h̄k626v0√

8μ′
626b′

3D

. (C6)

We find that vcap increases and Rcap decreases with the MOT
gradient, which matches theintuitively expected behaviors.
We note that both relations present nonphysical divergences,
either at large gradients for vcap or small gradients for Rcap,
which evidence the limitations of our simple model. More
precisely, the value of Rcap and vcap are ultimately bounded by
our beam geometry and the maximal force that can be applied,
as discussed in Sec. II.
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