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Spontaneous parametric down-conversion (SPDC) has shown great promise in the generation of pure and
indistinguishable single photons. Photon pairs produced in bulk crystals are highly correlated in terms of
transverse space and frequency. These correlations limit the indistinguishability of photons and result in
inefficient photon sources. Domain-engineered crystals with a Gaussian nonlinear response have been explored
to minimize spectral correlations. Here we study the impact of such domain engineering on spatial correlations
of generated photons. We show that crystals with a Gaussian nonlinear response reduce the spatial correlations
between photons. However, the Gaussian nonlinear response is not sufficient to fully eliminate the spatial
correlations. Therefore, the development of a comprehensive method to minimize these correlations remains an
open challenge. Our solution to this problem involves simultaneous engineering of the pump beam and crystal.
We achieve purity of single-photon state up to 99% without any spatial filtering. Our findings provide valuable
insights into the spatial waveform generated in structured SPDC crystals, with implications for applications such
as boson sampling.
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I. INTRODUCTION

Recent years have seen an increased interest in the poten-
tial applications of quantum-based technologies. Particularly
noteworthy examples are measurement-based quantum com-
puting [1,2], photonic boson sampling [3,4], and photonic
quantum repeaters [5]. All these protocols require a sufficient
amount of perfectly indistinguishable and pure single pho-
tons. Here indistinguishability refers to the identical quantum
properties of photons, while purity quantifies the degree to
which a single photon is isolated from the environment. A
highly pure single photon exhibits minimal correlation with
its surroundings, which ensures its integrity as an independent
quantum entity.

A reliable source for single photons is the nonlinear pro-
cess of spontaneous parametric down-conversion (SPDC). In
SPDC, a nonlinear crystal converts the high-energy photons
of a laser beam into photon pairs, also known as the signal
and the idler. Spontaneous parametric down-conversion offers
two significant advantages as a single photon source. First, it
is relatively simple to implement in experiments. Second, the
detection of the signal photon indicates the presence of the
idler photon (heralding). However, SPDC in common bulk
crystals is limited by its probabilistic nature. Not all photon
pairs are generated in the same state; they may be distinguish-
able. Moreover, the two photons are correlated with each other
in terms of transverse space [6–8] and frequency [9]. Suppose
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a measurement is performed only on a single photon, without
consideration of the entire composite system. In that scenario,
the measured photon will be in a mixed state due to the cor-
relation with the second photon. Here we refer to the reduced
mixed state of a single photon as a single-photon state. We
also distinguish between the spatial and the spectral purity of
the single-photon state, which are associated with spatial and
spectral correlations between signal and idler photons. The
single photon is denoted as pure if no correlation exists with
its pair photon.

The most straightforward approach for elimination of the
correlation between signal and idler photons is to employ
spatial and spectral filtering techniques [3]. Spatial filtering is
achieved by the projection of the state into single-mode fibers
(SMFs) that accept only photons in a Gaussian mode. Spectral
filtering, on the other hand, involves the use of narrowband
filters to select specific wavelengths for the signal and idler
photons.

Although filtering can ensure high purity of the single-
photon state, it is associated with high optical losses. Recent
studies have explored that domain-engineered crystals can
effectively minimize the spectral correlations between signal
and idler photons [10–17] without using spectral filtering.
Domain-engineered crystal with Gaussian nonlinear response
can deliver spectral purity of about 99%. However, these stud-
ies have only considered the spectral properties of photons,
where the photons have still been spatially filtered to be in a
single Gaussian mode.

Until the present, no study has specifically focused on the
impact of domain engineering on the spatial properties of
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generated photons in SPDC. We address the question if
spatially pure and indistinguishable single photons can be
generated from domain-engineered crystals. This can elimi-
nate the need for spatial filtering of photons. We will follow
three steps in this work, in order to answer that particular
question. First, we will analyze how a Gaussian nonlinear
response affects the spatial properties of photons and how it
improves the spatial purity of the single-photon state. Second,
we will show that another nonlinear response exists, which
improves the spatial purity of the single-photon state in com-
parison to the Gaussian nonlinear response. In the final step,
we will modify the spatial distribution of the pump beam, in
order to further enhance the spatial purity. The knowledge
gained in this study will take us a step closer to generating
spatiospectral pure photons from SPDC without any filtering.

II. THEORY AND RESULTS

We consider the following assumptions and approxima-
tions throughout this work: All interacting beams are assumed
to be paraxial since typical optical setups support only parax-
ial rays; we consider only the scalar fields instead of vector
fields, since the polarization of the interacting beams is
typically fixed and remains constant in the experimental real-
izations of SPDC; the pump beam propagates along the z axis
and is focused in the middle of the nonlinear crystal placed
at z = 0; signal and idler beams propagate close to the pump
direction, known as the quasicollinear regime; the narrowband
approximation is applied, so only the central frequencies are
generated that fulfill the energy conservation ωp = ωs + ωi;
the transverse extension of the crystal is much larger than the
pump beam waist. These assumptions and their impact on the
biphoton state are discussed in more detail in our previous
works [18,19].

By applying these assumptions and approximations, the
state of photon pairs, also known as the spatial biphoton state,
obtains a simple expression [20,21]

|�〉 =
∫∫

dqsdqi�(qs, qi )â
†
s (qs)â†

i (qi ) |vac〉 . (1)

Here qs,i represent the transverse components of wave vectors
of signal and idler photons and â†

s,i(qs,i ) are the corresponding
creation operators, respectively. The biphoton mode function
function is given by [6,22]

�(qs, qi ) = N0Vp(qs + qi )
∫ L/2

−L/2
dz χ (2)(z) exp(i�kzz), (2)

which contains the high-dimensional spatial structure of
SPDC. In Eq. (2), N0 is the normalization factor, L is the
crystal length, Vp is the spatial distribution of the pump beam,
χ (2) is the effective second-order susceptibility of the crystal,
and �kz is the phase mismatch in the z direction. The �kz

reads, in the cylindrical coordinates q = (ρ, ϕ) [18],

�kz = ρ2
s

kp − ks

2kpks
+ ρ2

i

kp − ki

2kpki
− ρsρi

kp
cos(ϕi − ϕs), (3)

where k is the momentum vector k j = n j ω j/c, n is the refrac-
tive index, and c is the speed of light in vacuum. The pump is

modeled by a common Gaussian beam profile

Vp(qs + qi ) = wp√
2π

exp

(
− w2

p

4
|qs + qi|2

)
,

with a beam waist wp, unless stated otherwise.
Let us now consider the mathematical framework for cal-

culation of the spatial purity. Assume we are interested only
in the idler photon and the signal photon is lost. Consequently,
we need to calculate the average outcome for each measure-
ment on the idler photon by summing over all possible states
of the signal photon. Mathematically, the averaging over the
signal photon is obtained by tracing out the signal photon state
from the joint state

ρidler = Trsignal(ρ), (4)

where the density operator of the biphoton state is ρ =
|�〉〈�|. The corresponding purity P = Tr(ρ2

idler ) of the re-
duced idler state is calculated with the expression [23]

P =
∫

dqsdqidq′
sdq′

i�(qs, qi )�
∗(q′

s, qi )

× �(q′
s, q′

i )�
∗(qs, q′

i ), (5)

where we utilized Eqs. (1) and (4). The expression (5) remains
the same if we switch the idler and signal photons, since
Tr(ρ2

idler ) = Tr(ρ2
signal ). In general, the purity of the single-

photon state is always equal to or less than one. The purity
P = 1 heralds that there is no entanglement between signal
and idler photons, i.e., the biphoton state can be written as a
product state |�〉 = |�〉s |�〉i. In this regard, the purity of the
single-photon state is closely related to the Schmidt number
K = 1/P [24], which quantifies the amount of entanglement
between signal and idler photons.

A. Optimal parameters for high purity

The crystal and pump parameters should be chosen care-
fully in order to achieve high purity for the single-photon
state. Here we will mainly analyze the dependence of the pu-
rity on two parameters, the crystal length L and the beam waist
wp. We have used potassium titanyl phosphate (KTP) crystal
phase matched for type-II SPDC in our calculations. The
pump laser operates at wavelengths close to λp = 775 nm.
This process produces two orthogonally polarized photons
with a central wavelength of 1550 nm. Note that the results
presented in this work exhibit minimal variations across all
phase-matching conditions. This reason is that the disper-
sion relations of different phase-matching conditions have
a weaker impact on the spatial degrees of freedom (DOFs)
compared to their influence on the spectral DOFs.

Initially, we will examine the spatial purity of the single-
photon state in a standard periodically poled KTP crystal. The
presented results are also valid for bulk crystals, producing
quasicollinear SPDC. Subsequently, we assess the perfor-
mance of KTP and bulk crystals relative to domain-engineered
crystals with a Gaussian and also with a more general nonlin-
ear response.
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FIG. 1. Spatial purity as a function of the pump beam waist wp

and crystal length L for a standard periodically poled or bulk crystal.
The purity reaches its maximum P = 0.73 along the black dashed
curve, corresponding to the beam parameter ξp = 1.42.

1. Periodically poled crystal

Bulk and periodically poled crystals possess a sinc-shaped
phase-matching function

�(qs, qi ) = N0Vp(qs + qi )Lsinc(L�kz/2). (6)

We can directly insert the expression (6) into Eq. (5) and cal-
culate the purity of the single-photon state. Alternatively, we
can keep our calculations more general and insert the expres-
sion (2) into Eq. (5) and perform the integrals for the general
χ (2). The eight integrals over the transverse momentum can
be solved analytically, while the four integrals over z need to
be performed numerically. The sinclike behavior of the phase
matching is reconstructed by either inserting a periodically
changing function for χ (2) into Eq. (2) or by inserting χ (2) = 1
for bulk crystals. Both lead to the same result.

Figure 1 shows the spatial purity as a function of the beam
waist wp and the crystal length L. Notably, the purity remains
approximately constant along the curves L ∝ w2

p. This is not
surprising, since the spatial biphoton state should depend only
on the dimensionless focusing parameter wp = wp/

√
λpL al-

ready discussed in Refs. [25,26] or, equivalently, the beam
parameter ξp = L/kpw

2
p discussed in Ref. [27] assuming the

degeneracy condition ks ≈ ki ≈ kp/2. The highest possible
purity P = 0.73, which remains constant on the black dashed
curve corresponding to the beam parameter ξp ≈ 1.42. This
implies that we have the freedom to choose any pair (wp, L)
on this curve.

Most SPDC experiments include SMFs, where the higher
the pair collection probability, the more efficient the setup.
Therefore, the choice of the proper pair (wp, L) along the
curve can be based on the optimization of the pair collection
probability into the SMF. The projection modes of the SMF
are known to be approximately Gaussian [28]

U (q,w) = w√
2π

exp

(
− w2

4
|q|2

)
.

FIG. 2. Pair collection probability into the SMF as a function
of the pump ξp and signal ξs beam parameters, where the condi-
tion ξs = ξi is assumed. The highest pair collection probability is
achieved at the same beam parameter ξp = 1.42, which simultane-
ously maximizes the purity.

Therefore, the pair collection probability into the SMF is
given by the expression

R(2) =
∣∣∣∣
∫∫

dqsdqi�(qs, qi )[U (qs,ws)]∗[U (qi,wi )]
∗
∣∣∣∣
2

, (7)

where ws and wi are the collection waists of the signal and
idler beams, respectively. The integrals in Eq. (7) can be
solved analytically for the degenerate scenario ks = ki = kp/2
[27]. The authors of Ref. [27] have shown that the highest
coupling efficiency is achieved for the beam parameter ξs =
ξi = ξp = 1.39 with a pair collection probability into the SMF
of R(2) ≈ 82%. Figure 2 shows the pair collection probability
as a function of pump and signal (idler) beam parameters. We
calculated numerically similar values of ξp ≈ 1.42 and ξs =
ξi ≈ 1.43, which lead to R(2) ≈ 82.2%. Due to birefringence
in the type-II quasi-phase-matching configuration considered
in our work, these parameters deviate slightly from the results
of Ref. [27], which were obtained under the assumption of
degeneracy, ks = ki = kp/2.

Remarkably, the optimal values of ξp required to achieve
maximum purity and pair collection probability into the SMF
are identical: The optimization of the purity is equivalent to
the optimization of the pair collection probability into the
SMF. Here is an explanation for this observation: By enhanc-
ing the purity, we force the signal and idler photons to be more
concentrated in a specific mode. Consequently, this reduces
the spread of the state across different modes. In an ideal
scenario, where P = 1, each photon occupies a single-mode
state, defined as |�〉 = |�〉s |�〉i (a product state). It turns out
that this single-mode state |�〉s,i corresponds to a Gaussian
state, when we try to enhance the spatial purity. Therefore, the
pair collection probability into the SMF, which accepts only
photons in a Gaussian mode, increases. However, we will see
in Sec. II D that the single mode, where the state is mostly
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FIG. 3. Comparison of normalized Gaussian nonlinear response
(blue solid line) with cosine series (red dotted line) susceptibility
function χ (2). The latter ensures higher purity for the single-photon
state compared to the Gaussian response.

concentrated, is the Gaussian state only if the pump is also
described by a Gaussian.

2. Gaussian nonlinear response

We demonstrate in this section that the spatial purity of
the single-photon state and pair collection probability into
the SMF can be significantly enhanced by using domain-
engineered crystals. We first employ a Gaussian nonlinear
response and investigate its impact on the purity of the single-
photon state. In the next section we will employ an optimized
nonlinear response and compare its performance with the
Gaussian nonlinear response.

A domain-engineered crystal with a Gaussian nonlinear re-
sponse can be described by χ (2) ∝ exp(−z2/σ 2) (see Fig. 3).
The behavior of the spatial purity for this state as a function of
wp and L is similar to Fig. 1. The purity of the single-photon
state remains approximately constant on curves corresponding
to L ∝ w2

p or equivalently to ξp = const.
Here we vary two parameters, namely, the width σ of

the Gaussian and the beam parameter ξp, in order to achieve
high purity. The maximum possible value of the spatial purity
can be increased up to P = 0.95 for the parameters ξp ≈ 3
and σ = L/4. The pair collection probability into the SMF is
enhanced up to R(2) ≈ 97%. As we see, domain engineering
has the same impact on the spatial properties of photons as
it has on the spectral properties: Domain-engineered crystals
with a Gaussian nonlinear response can reduce the spatial
correlations enormously (high spatial purity). However, the
spectral purity P = 0.99 achieved in the previous works is still
not accessible for the spatial DOFs of photons.

We might expect to achieve higher purity if a narrower
Gaussian function for the susceptibility (σ < L/4) is used.
This is because a narrower Gaussian function generates fewer
modes, which might result in a higher spatial purity of the
single-photon state. Surprisingly, the purity cannot be im-
proved by making σ smaller. While a Gaussian function with
a narrower width works well for the generation of spectrally
pure single-photon states, a more general function is needed
to improve the spatial purity of the single-photon state. The
reason is that the phase mismatch (3) in the z direction of

the spatial biphoton state is more complicated than the phase
mismatch of spectral biphoton state [29].

B. Crystal engineering

In this section we try to find a more general nonlinear
response that delivers higher purity than the Gaussian non-
linear response. We expect the optimal susceptibility function
χ (2)(z) to be symmetric to the axis z = 0, since the well-
working Gaussian function is symmetric to that axis too.
Therefore, we expand χ (2)(z) into cosine series, similar to
Fourier series for even functions

χ (2)(z) =
N∑

n=0

cn cos(nz/σ ), (8)

where the expansion coefficients cn are initially unknown
and σ = L/4. The purity as a function of cn, P =
P(c0, c1, . . . , cN ), can be constructed by inserting Eq. (8)
into Eq. (5). We truncate the sum at N = 7 in our analy-
sis. The following steps are performed in order to find the
optimal expansion coefficients cn. (i) We construct the func-
tion P = P(c0, c1, . . . , c7) and calculate its local maximum
for the fixed beam parameter ξp = 1.42 from the preceding
section. The function FindMaximum from Mathematica [30]
is used to calculate the local maximum of the function P =
P(c0, c1, . . . , c7). (ii) We construct the susceptibility function
χ (2)(z) based on the calculated coefficients c0, c1, c2, . . . , c7.
(iii) We optimize the purity as a function of the beam param-
eter, where the reconstructed susceptibility function χ (2)(z) is
used. (iv) We repeat the first three steps for the replaced opti-
mal beam parameter until the purity converges. The obtained
results are independent of σ , which just determines how fast
the cosine series converge.

The final optimal value for the beam parameter is equal to
ξp = 3.67 and the corresponding cn coefficients are −0.2904,
0.6799, −0.4851, 0.3903, −0.2195, 0.1242, −0.0440, and
0.014 87 for n = 0, 1, 2, 3, 4, 5, 6, and 7, respectively. The cal-
culated cosine series and the Gaussian susceptibility functions
χ (2) are displayed in Fig. 3 for comparison. The optimized
susceptibility function χ (2)(z) indeed enhances the purity up
to 0.98 and the pair collection probability into the SMF up to
R(2) ≈ 99%. This shows that the Gaussian nonlinear response
is not the best choice to achieve high spatial purity for the
single-photon state. In order also to show how fast this cosine
series converges, we calculate the pair collection probability
as a function of the number of terms N in the cosine series
displayed in Fig. 4.

In Table I we summarize the performances of crystals with
different nonlinear responses in regard to spatial purity, pair
collection probability into the SMF, and heralding efficiency.
The heralding efficiency of the single photon is obtained by
tracing out the possible wave vectors of the partner photon
(here idler)

η =
∫

dqi

∣∣∣∣
∫

dqs�(qs, qi )[U (qs,ws)]∗
∣∣∣∣
2

.

It quantifies the probability that the detection of a signal pho-
ton in a Gaussian mode will lead to the successful detection
of its entangled partner.
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FIG. 4. Pair collection probability into the SMF, which depends
on the number of terms in the cosine series for χ (2)(z). We see that
even with a relatively small number of terms, such as N = 5, we can
achieve a high collection probability of 99%.

C. Custom poling

The effective nonlinearity of the crystal accessible in the
experiment is encoded in the phase-matching function. The
phase-matching function of a crystal with susceptibility given
by Eq. (8) reads

φ(�kz ) =
∫ L/2

−L/2
dz

7∑
n=0

cn cos (nz/σ ) exp(i�kzz)

= L

2

7∑
n=0

cn[sinc(2n − �kzL/2)

+ sinc(2n + �kzL/2)]. (9)

In this theoretical treatment, the susceptibility χ (2) is mod-
eled as a continuous function of z. However, in practice, the
susceptibility in a crystal typically modulates in a discontin-
uous manner, via discrete domain inversion of the nonlinear
susceptibility. Specifically, this results in a poling function
that only takes on values of ±χ

(2)
0 , where χ

(2)
0 is the modulus

of the susceptibility χ (2). To account for this, we employ a
domain-engineering process, wherein the nonlinear medium
consists of M domains of birefringent material, each with
a length of lc. These domains can be oriented in either the
up or the down direction. Consequently, the phase-matching
function for the entire crystal becomes a linear superposi-
tion of individual phase-matching functions for each crystal

TABLE I. Comparison of performances of different nonlinear
responses in terms of purity, pair collection probability into a SMF,
and heralding efficiency. The considered nonlinear responses are the
common sinclike behavior from periodically poled or bulk crystals
and the Gaussian and cosine series from domain-engineered crystals.

Parameter Sinc Gaussian Cosine

purity of the reduced state 0.73 0.95 0.98
coupling into the SMF 82% 97% 99%
heralding efficiency 99.4% 99.86% 99.98%

FIG. 5. Comparison of the normalized target phase-matching
function calculated by Eq. (9) (blue solid line) with the phase-
matching function of a custom poled crystal (red dotted line). Indeed,
the nontrivial target function can be very well designed by using
custom-poled crystals.

domain [12]

χ (2)(z) = χ
(2)
0

M∑
m=1

smrect

(
z − zm

lc

)
,

where sm takes on a value of either 1 or −1 depending on
the orientation of the domain and zm = (m − 1/2)lc − L/2
specifies the positions of the mth domain.

In order to engineer the susceptibility functions χ (2) shown
in Fig. 3, the correct sequence sm of the relative orientation
of domains needs to be determined. Here we use the code
provided by Dosseva et al. [12] to find the customized poling
of the crystal for the cosine series χ (2). The blue solid line
in Fig. 5 shows the target phase-matching function given by
Eq. (9) and the red dotted line represents the phase-matching
function of the custom poled crystal obtained through the code
from Ref. [12]. Our calculations employ 1300 domains, each
with a length of 23 µm, resulting in a total crystal length of
L = 29.9 mm. As demonstrated in Fig. 5, the complex phase-
matching function described by Eq. (9) can be excellently
reproduced, confirming its applicability in real experimental
setups.

Except for the code provided in Ref. [12], many other
groups further developed algorithms to calculate the optimal
domain configuration for desired nonlinearity. For example,
more recent algorithms that can enhance the accuracy of do-
main engineering can be found in Refs. [14,16].

Overall, the effective nonlinearity of an engineered crystal
is lower than that of a periodically poled crystal of the same
length. However, in many experimental settings, the enhance-
ment in purity offsets the cost of reduced efficiency. Moreover,
it is usually possible to increase the power of the laser or use
a longer crystal in order to maintain the pair generation rate.

A natural next step for further investigation would be to
include both spectral and spatial DOFs of photons in the op-
timization scheme of the nonlinear response, in other words,
to design a source of pure spatiospectral photon pairs from
SPDC that requires no spectral or spatial filtering. The best
purity we achieve here using optimized nonlinear response,
P = 0.98, is still quite far from unity and the consideration
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of the spectral DOF would further decrease this value. There-
fore, achieving spatiospectral purity close to unity with only
domain-engineered crystals seems to be a very challenging
task.

D. Pump engineering

In this section we address the question if the engineering
of the pump can enhance the spatial purity of the single-
photon state. The engineering of the pump has been already
used to control the spatial correlation in SPDC [18,31–34].
Here pump engineering is similar to the crystal engineering
method. We make an ansatz of the superposition of Laguerre-
Gaussian (LG) beams for the pump

Vp =
∑
p,�

ap,�LG�
p. (10)

The mode numbers of the LG beam p and � are associated
with the radial momentum and projection of the orbital an-
gular momentum of photons, respectively. The method is the
same: Find the best set of coefficients ap,� which maximize
the spatial purity. This is a more difficult task than crystal
engineering, since the eight-dimensional integral in Eq. (5)
should be solved fully numerically if the pump is given by
Eq. (10). This calculation requires high numerical accuracy,
which makes it computationally expensive. Therefore, we
need to simplify the task to some extent.

We derived a general expression for the spatiospectral
biphoton state pumped by a LG beam in our previous work
[18]. In addition, the state was decomposed into LG modes as

|�〉 =
∞∑

ps,pi=0

∞∑
�s,�i=−∞

C�,�s,�i
p,ps,pi

|ps, �s〉 |pi, �i〉 , (11)

where �s,i and ps,i are the mode numbers of the signal and idler
photons, respectively. We omitted here the frequency depen-
dence of the coincidence amplitudes compared to Ref. [18]
since we only consider the narrowband regime. The full ex-
pression of the coincidence amplitudes C�,�s,�i

p,ps,pi
can be found

in Ref. [18]. If the pump beam is given by Eq. (10), the coinci-
dence amplitudes are updated to a similar linear superposition∑

p,� ap,�C�,�s,�i
p,ps,pi

. We can truncate the infinite summations in
Eq. (11) at reasonable mode number values and consider the
subspace state instead of the full state (1). This will enor-
mously simplify our calculation. The subspace state reads
then

|�s〉 =
H∑

ps,pi=0

U∑
�s,�i=−U

(∑
p,�

ap,�C
�,�s,�i
p,ps,pi

)
|ps, �s〉 |pi, �i〉 .

(12)

where H and U are the boundaries of the subspace.
We use the phase matching from Sec. II B and con-

struct the purity function depending on ap,� coefficients, P =
P(ap1,�1 , ap2,�2 , . . . , apn,�n ). The summation of pump beam
modes is carried out over the range of p = 0, 1, 2 and � =
−3,−2, . . . , 3. The highest possible purity in this range
equals P ≈ 0.99. This is an improvement to the purity P =
0.98 from the preceding section. However, the pair collection
probability drops off to 0.64 and the heralding efficiency to

FIG. 6. Mode distribution of the biphoton state in the LG basis
for (a) a Gaussian and (b) an engineered pump beam. The corre-
sponding beam profiles and the phase distributions are presented
at the bottom. The calculation has been performed for the phase-
matching function from Sec. II B.

99.3%, since the generated single mode is not the fundamental
Gaussian mode anymore.

Figure 6 shows the decomposition of signal and idler pho-
tons in the LG basis (correlation matrix) for the Gaussian and
the engineered pump. The engineered pump symmetrizes the
mode distributions but at the cost of the Gaussian mode. While
the generated single mode in the case of a Gaussian pump is
approximately the Gaussian mode, the single mode generated
by the engineered pump is now a superposition of LG modes.
This is the reason why the pair collection probability into the
SMF is decreased in the case of the engineered pump.

This kind of source might be interesting for experiments
which are sensitive not to the pair collection probability into
the SMF but rather to the purity of photons in some interfer-
ence experiments.

E. Efficiency of pump engineering

We showed that a shaped pump beam can enhance the
spatial purity. On the other hand, it is natural to ask if a shaped
pump beam decreases the pair creation probability compared
to Gaussian beam. In general, the efficiency of pair generation
will not suffer from the change of the pump from Gaussian
to the engineered pump too much if the intensity of the laser
remains the same. This statement can be proved by calculating
the total pair collection probability

Rtotal =
∫∫

dqsdqi|�(qs, qi )|2. (13)

These integrals are very easy to solve in the degenerate sce-
nario ks = ki = kp/2. If we use the notation q− = qs − qi and
q+ = qs + qi, the biphoton mode function in the degenerate
scenario becomes

�(q+, q−) = N0Vp(q+)φ(q−),
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where the phase-matching function φ(q−) reads

φ(q−) =
∫ L/2

−L/2
dz χ (2)(z) exp

(
i
|q−|2
2kp

z

)
.

The integrals in Eq. (13) can then be simplified according to
Ref. [29],

Rtotal = 1

4
N2

0

∫
dq−|φ(q−)|2, (14)

where it is assumed that the pump profile is normalized∫
dq+|V (q+)|2 = 1. It follows from Eq. (14) that the total

rate is independent of the pump beam profile as long as the
intensity of the laser remains constant. The total rate be-
comes dependent on the pump beam profile only if the crystal
produces nondegenerate SPDC. Nevertheless, based on our
calculations, this dependence is relatively weak.

Note that in this analysis we have not considered the
possible losses arising from the experimental realization of
transforming the Gaussian to an engineered pump beam pro-
file. Recent beam shaping approaches, such as multiplane
light conversion techniques using custom computer-generated
holograms [35,36], can transform spatial modes with, in prin-
ciple, unit efficiency.

III. CONCLUSION

In this work we studied the impact of domain engineering
on the spatial properties of SDPC. We answered the ques-
tion of how the spatial purity of the single-photon state can
be improved by using domain-engineered nonlinear crystals.
We found that a more general nonlinear response rather than
the Gaussian one exists that improves the spatial purity of

the single-photon state, pair collection probability into the
SMF, and heralding efficiency. We also showed that the spatial
purity can be enhanced further by engineering the pump beam,
but at the cost of the pair collection probability into the SMF.

Overall, it is not obvious that the generation of spatially
pure single photons from domain-engineered crystals is more
efficient than the spatially filtered photons produced in bulk
crystals. However, when it comes to generating spectrally pure
photons, the use of engineered crystals becomes the preferred
choice. This preference is driven by the significant challenges
associated with achieving the desired spectral state through
filtering. In general, the spectral filtering is more complex to
implement than spatial filtering. In this context, when con-
sidering both spatial and spectral DOFs simultaneously, the
use of filters will not be desired due to the spatiospectral
coupling in SPDC. Hence, the engineered crystals will offer
a more practical solution. The ultimate goal will be then the
generation of spatiospectral pure photons without any spatial
and spectral filtering.

Summarizing, our findings have important implications for
the use of quantum-based technologies, as they eliminate the
need for spatial filtering of photons and enable the generation
of high-purity photons without incurring significant optical
losses. Moreover, the insights acquired through this study
will move us one step closer to achieving the generation of
spatiospectral pure photons from SPDC without the need for
any filtering.
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