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Tunable nonreciprocal photon correlations induced by directional quantum squeezing
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We investigate nonreciprocal photon correlations in coupled microring resonators with directional quantum
squeezing (quantum parametric amplification). We show that the degeneracy of two whispering-gallery modes
(WGMs) in a microring resonator are broken by applying parametric amplification to one of the WGMs,
which makes tunable chiral photon-qubit coupling and chiral photon hopping between two resonators feasible.
Selecting optimal quantum squeezing strength, we predict the appearance of nonreciprocal unconventional
photon blockade resulting from the interferences among different photon transition-dissipative paths both
analytically and numerically. Moreover, flexible conversion between photon bunching and antibunching can
be easily realized in a wide range of parameter regimes by modulating the quantum squeezing field. This work
provides an alternative way for tunable nonreciprocal photon coherence manipulations in chiral quantum science
and technologies.
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I. INTRODUCTION

Photon correlations are one of the quantum correlations,
standing for the effective photon-photon coherence inter-
actions, which are important in fundamental science and
have wide applications in quantum technologies, such as
quantum communication [1–3], quantum computation [4,5],
quantum metrology [6,7], and spectroscopy and microscopy
[8,9]. Because flying photons rarely interact with one another,
manipulating the strongly photonic correlations between in-
dividual photons is a long-term research topic in quantum
optics. Effective nonlinearities at the single-photon level are
necessary for generating strong correlated photon pairs [10],
which can be introduced by strong coupling between the
light field and single emitters in high-finesse cavities [11–18]
or tight-confinement waveguide [19–28]. Nonlinearities in
Kerr resonators [29–32], optomechanical systems [33–37],
many-body systems [38–42], and other nonlinear processes
like spontaneous four-wave mixing [43–45], etc, are used
to induce correlated two photons as well. To quantitatively
distinguish distinct correlated photon pairs, the second-order
correlation function is usually adopted, which reflects the in-
tensity correlations at two space-time points [46]. Correlated
photon pairs are categorized as bunching or antibunching by
equal-time second-order correlation functions greater or less
than unity. Photon bunching states indicate that two photons
are attracted to each other, whereas antibunching states indi-
cate that the photons repel each other.

Photon antibunching is a nonclassical quantum phenomena
that obeys sub-Poissonian statistics and is used to identify
single-photon sources [47,48]. Strong photon antibunching
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also refers to photon blockade, which indicates that the ex-
citation of the first photon prevents the injection of the second
photon into a cavity, resulting in repulsive photon-photon
interactions. According to different physical realization mech-
anisms, there are two types of photon blockade: conventional
photon blockade (CPB) and unconventional photon blockade
(UPB). UPB is created by destructive interferences between
different photon-driven-dissipative routes [49–61], whereas
CPB is caused by large anharmonic energy levels resulting
in energy mismatch for the second input photon [29,62–64].
Both CPB and UPB have been demonstrated in experiments
[15,65–71]. Recently, CPB or UPB combining with quantum
nonreciprocity, known as nonreciprocal photon blockade, has
attracted much attention [72–81], which extends the potential
applications into chiral quantum information processing [82].
The nonreciprocal photon blockade, where the photon block-
ade emerges for light input from one direction while photon
tunneling (photon bunching) arises from the other direction,
is usually studied in the spinning ring resonators [83,84].
The induced Sagnac-Fizeau shifts in spinning ring resonators
cause degeneracy breaking for two WGMs, which is regarded
as the crucial factor for yielding system nonreciprocity. How-
ever, rotating the resonators would inevitably introduce the
thermal phonons into the system, and the photon correlations
at single quantum level could be impacted, especially for the
systems involving mechanical degrees of freedom, such as
the nonreciprocal UPB investigated with an optomechanical
resonator [73]. Thus, one appealing challenge is how to re-
alize nonreciprocal photon blockage or photon correlations
in optical microring resonators without spinning and without
mechanical degrees of freedom.

In this work, all-optical nonreciprocal photon correlations
in microring resonators are studied without the need for
Sagnac-Fizeau shifts produced by spinning the resonator,
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where two degenerate WGMs in the resonator are split due
to one WGM being squeezed by using directional para-
metric amplification. Parametric amplification has recently
been focused on enhancing the effective coupling strength
between various quantum systems [37,85–88]. Directional
parametric amplification has been used in microring resonator
systems to realize frequency conversion [89,90], obtain pho-
ton sources [91], and study optical nonreciprocity [92]. In
particular, Ref. [92] considers using nonreciprocity to con-
struct diodes and quasicirculators. In our work, under the
optimal conditions, nonreciprocal UPB emerges from interfer-
ences among three-photon transition-dissipative routes. The
chiral couplings between two different polarized two-level
systems (TLSs) and corresponding polarized resonator modes
provide photon nonlinear transition paths, which in turn leads
to symmetric response of the system to external driving when
the directional quantum squeezing is not applied. Further-
more, the interference parameters of degenerate modes split,
chiral photon hopping and chiral photon-qubit coupling are
tunable by adjusting the directional quantum squeezing, al-
lowing for flexible conversion modulations between photon
bunching and antibunching in a wide parameter range. Non-
reciprocal photon correlations are thus obtained over broad
parameter windows. The research advances the manipulation
of correlated photons and the development of a prospective
nonreciprocal quantum device in chiral quantum optics.

II. MODEL

Consider two microring resonators, A and B, built of high-
quality χ (2) nonlinear thin-film materials. As illustrated in
Fig. 1, the two resonators evanescently interact with each
other. Due to the strong coherent laser pump field from port 3,
the clockwise (CW) WGM in B, b�, is exposed to paramet-
ric amplification (directional quantum squeezing) under the
two-mode phase matching condition [90,92], while the coun-
terclockwise (CCW) WGM, b�, is decoupled. The evanescent
field of the CW mode outside resonator B corresponds to σ−
polarized transverse magnetic (TM) modes and only couples
to the TLS t1 with a σ−-polarized transition, while the evanes-
cent field of the CCW mode outside resonator B corresponds
to σ+ polarized TM modes and only couples to the TLS
t2 with a σ+-polarized transition [16,93–96]. The interaction
strengths between B modes and t1,2 are J , which is feasible
for Rb atoms [93]. In Fig. 1(a), driving field input from port
1 excites CCW mode a� in A which couples to b� in B with
the hopping rate of g. In this situation, the Hamiltonian of the
whole system is expressed as (set h̄ = 1)

Ĥ = ĤF + ĤI + ĤD + ĤP,

ĤF = �1â†
�â� + �2b̂†

�b̂� + �0σ̂
+
1 σ̂−

1 ,

ĤI = g(â†
�b̂� + b̂†

�â�) + J (σ̂+
1 b̂� + σ̂−

1 b̂†
�),

ĤD = ε(â†
�e−i�t + â�ei�t ),

ĤP = �p

2
(b̂†2

� + b̂2
�), (1)

where ĤF is the free Hamiltonian for the resonators and the
TLS, while ĤI is the interaction Hamiltonian. â†

� (â�) is the
creation (annihilation) operator of CCW mode in resonator

FIG. 1. Diagram of realizing nonreciprocal photon correlations.
A strong pump field and a broadband squeezed vacuum field are
input from port 3, where the pump field makes CW mode b̂� in
resonator B squeezed as b̂�s (directional quantum squeezing), while
the squeezed-vacuum field keeps the dissipation of b̂�s the same
as that in regular mode. (a) Input driving field from port 1 excites
the CCW mode â� in resonator A and interacts with the b̂�s in B.
(b) Input driving field from port 2 excites the CW mode â� in A and
interacts with the CCW mode b̂� in B.

A, while b̂†
� (b̂�) is the creation (annihilation) operator of

CW mode in resonator B. �1,2 = ωa,b − ωp/2 are the detun-
ings, and ωa,b are the frequencies of the resonators (A, B).
σ+

1 = |e〉1〈g| (σ−
1 = |g〉1〈e|) is the TLS t1 transition opera-

tor with the energy ω0. �0 = ω0 − ωp/2 is t1 detuning and
� = ωin − ωp/2 is driving field detuning. The frequency of
the input driving field is ωin, and its strength is ε. ωp denotes
the pump frequency with the strength �p that is excited by the
external coherent laser field from port 3.

After executing Bogoliubov transformation b̂�s =
cosh(rp)b̂� + sinh rpb̂†

� [37,85], the Hamiltonian in Eq. (1)
can be translated into the squeezing picture as

Ĥ1 = �aâ†
1â1 + ε(â†

1 + â1) + �bsb̂
†
1b̂1 + �t σ̂

+
1 σ̂−

1

+ g1(â†
1b̂1 + b̂†

1â1) + J1(σ̂+
1 b̂1 + σ̂−

1 b̂†
1), (2)

where rp = ln[(1 + β )/(1 − β )]/4 is the squeezing parame-
ter, while β = �p/�2 is the pump ratio. â1 and b̂1 respectively
represent â� and b̂�s. �a,t = ωa,0 − ωin = �1,0 − � are the
effective energies of the resonator A and the TLS t1, re-
spectively, while �bs = �2(1 − β2)1/2 − � is the effective
energy of resonator B. g1 = gcosh(rp) [J1 = J cosh(rp)] is
the effective coupling strength between resonators A and B
(t1 and resonator B). Under the rotating-wave approximation,
g(J ) sinh rp � �1(�0) + �2(1 − β2)1/2, so counter-rotating
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FIG. 2. As a function of pump ratio β, the squeezing parameter
rp (inset figure), chiral coupling ratio η, and mode split ratio ξ are
displayed.

terms in Eq. (2), g sinh(rp)â†
1b̂†

1 + J sinh(rp)b̂†
1σ

+
1 + H.c., are

neglected, where H.c. means Hermitian conjugation.
When the driving field inputs through port 2, CW mode

a� in resonator A is excited and couples to b� in B. b�
is of σ+ polarization and only couples to the TLS t2 with
a σ+-polarized transition [93,94]. In this case, the system
Hamiltonian reads

Ĥ2 = �aâ†
2â2 + ε(â†

2 + â2) + �bb̂†
2b̂2 + �t σ̂

+
2 σ̂−

2

+ g2(â†
2b̂2 + b̂†

2â2) + J2(σ̂+
2 b̂2 + σ̂−

2 b̂†
2), (3)

where the effective energy of resonator B is �b = ωb − ωin =
�2 − �. â2 and b̂2 respectively represents â� and b̂�. �t is
the effective energy of the TLS t2. Hopping rate between the
two resonators is g2 = g and J2 = J is the coupling strength
between TLS t2 and resonator B.

It is worth noting that when the directional parametric
amplification is not applied, the system chirality introduced by
the polarization related chiral couplings of t1,2 and B modes
plays an important role in eliminating the counter-rotating
modes from the interaction, resulting in reciprocal response
for external driving fields. Because of the applied directional
parametric amplification, the system exhibits nonreciprocal
features when the driving field is input from port 1 or port
2. To quantify the difference between these two scenarios,
we define the mode split ratio ξ = �bs/�b and the chiral
coupling ratio η = J1/J2 = g1/g2. The squeezing parameter
(inset figure), chiral coupling ratio, and mode split ratio are
displayed against the external pump ratio in Fig. 2. Increasing
the pump ratio causes an increase in the squeezing parameter,
which indicates a greater squeezed extent for the CW mode in
resonator B. The frequency difference between the squeezed
CW mode and the CCW mode denotes the degenerate mode
split. The mode split ratio ξ , which deviates from 1 as β

increases, characterizes the breaking of modes’ degeneracy.
Similarly, deviation of η from 1 indicates the appearance of
system chirality. More squeezing results in a larger mode split
extent and higher system chirality. This is the foundation of
our work.

As previously discussed, the Bogoliubov transformation
transforms photon CW modes in resonator B into squeezing
picture, where its effective energy shifts and coupling strength

with other systems is enhanced. It is worth noting that the
external pump field will inevitably increase the dissipation of
CW modes, which could influence our discussions on photon
correlations at the single-quantum level. To eliminate this
influence, apply the broadband squeezed-vacuum field [37,85]
simultaneously from port 3, and the dissipation of squeezed
CW modes in resonator B will be unaltered from the normal
situation without pump field inputs. Considering the decay of
two resonators and TLSs, the evolution of the whole system
can be characterized by the master equation

∂ρ

∂t
= −i[Ĥζ , ρ] + κaL[âζ ]ρ + κbL[b̂ζ ]ρ + γ L[σ̂−

ζ ]ρ (4)

in the Markov and zero-temperature approximations, where
L[ô]ρ = ôρô† − (ô†ôρ + ρô†ô)/2 is the Lindblad superoper-
ator for operator ô. κa (κb) is the total decay rate of resonator
A (B), while γ is the decay rate of TLSs. ζ = 1, 2 denotes the
driving-field inputs from ports 1 and 2, respectively.

III. NONRECIPROCAL PHOTON CORRELATIONS

In this part, we are interested in the output photon cor-
relations from ports 1 and 2 when the driving field is input
from distinct ports. The equal-time second-order correlation
function g(2)(0) is used to characterize the photon correlations.
In the weak driving limit ε � κa,b, γ , to dominant order, the
density operator can be factorized as a pure state and the sys-
tem is governed by an effective non-Hermitian Hamiltonian
[97,98]

Ĥζ = Ĥζ − i
κa

2
â†

ζ âζ − i
κb

2
b̂†

ζ b̂ζ − i
γ

2
σ+

ζ σ−
ζ . (5)

In weak driving limit, photon correlations can be calculated
analytically by truncating the system photon number to two.
The wave function of the system is expressed as

|ψ〉ζ (t ) = C(ζ )
0,0,−|0, 0,−〉 + C(ζ )

1,0,−|1, 0,−〉
+ C(ζ )

0,1,−|0, 1,−〉 + C(ζ )
0,0,+|0, 0,+〉

+ C(ζ )
1,1,−|1, 1,−〉+C(ζ )

1,0,+|1, 0,+〉
+ C(ζ )

0,1,+|0, 1,+〉 + C(ζ )
2,0,−|2, 0,−〉

+ C(ζ )
0,2,−|0, 2,−〉, (6)

where ζ = 1, 2 denotes whether the driving field input is from
port 1 or port 2. Coefficients C(ζ )

i, j,± = C(ζ )
i, j,±(t ) are the proba-

bility amplitudes of the system in states |i, j,±〉. It denotes
that there are i photons in resonator A, j photons in resonator
B, and the TLS tζ in excited (ground) state. In the weak-
driving limit, consider different orders of ε/(κa,b, γ ); one
has [50]

∣∣C(ζ )
0,0,−

∣∣ � ∣∣C(ζ )
1,0,−

∣∣,
∣∣C(ζ )

0,1,−
∣∣,

∣∣C(ζ )
0,0,+

∣∣

� ∣∣C(ζ )
1,1,−

∣∣,
∣∣C(ζ )

1,0,+
∣∣,

∣∣C(ζ )
0,1,+

∣∣,
∣∣C(ζ )

2,0,−
∣∣,

∣∣C(ζ )
0,2,−

∣∣. (7)

The system steady state can be obtained by solving
∂|ψ〉ζ /∂t = 0 in Schrödinger equation i∂|ψ〉ζ /∂t = Ĥζ |ψ〉ζ
(see Appendix for calculation details). When the input weak
driving field is from port 1 (ζ = 1), the single excitation
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coefficients are obtained as

C(1)
0,0,+ = εJ1g1

�
,

C(1)
0,1,− = −ε�̄t g1

�
,

C(1)
1,0,− = ε

(
�̄bs�̄t − J2

1

)

�
, (8)

where � = �̄t (g2
1 − �̄a�̄bs) + �̄aJ2

1 , �̄t = �t − iγ /2, �̄a =
�a − iκa/2, �̄bs = �bs − iκb/2. The coefficients of two ex-
citations are not presented here since they are complicated.
For the sake of simplicity, it is set to ωa = ωb, κa = κb = γ

hereafter.
According to input-output relations [99], one has â1,in =

ε/
√

γ while â2,out = â1
√

γ . When the input photons are from
port 1, the equal-time second-order correlation function for
the output photons from port 2 is

g(2)
1 (0) =

〈
â†2

2,outâ
2
2,out

〉

〈â†
2,outâ2,out〉2

=
〈
â†2

1 â2
1

〉

〈â†
1â1〉2

≈ 2
∣∣C(1)

2,0,−
∣∣2

∣∣C(1)
1,0,−

∣∣4 . (9)

Analytical photon correlations are derived by substituting
steady coefficient solutions into g(2)

1 (0). Similarly, the equal-
time second-order correlation function for photons exiting
port 1 can be determined. The correlation functions for the
two situations can be presented as

g(2)
ζ

(0) =
〈
â†2

ζ â2
ζ

〉

〈â†
ζ âζ 〉2

≈ 2
∣∣C(ζ )

2,0,−
∣∣2

∣∣C(ζ )
1,0,−

∣∣4 . (10)

Photon bunching or antibunching is denoted by g(2)
ζ (0) > 1

or g(2)
ζ (0) < 1. The mean photon number of the system is

much smaller than one for weak input driving fields, and
photon antibunching also represents for photon blockade [72],
i.e., nonclassical photon sub-Poissonian distributions. UPB
occurs if |C(ζ )

2,0,−| = 0 is satisfied, which makes g(2)
ζ (0) →

0. UPB is caused by the interference of distinct pho-
ton transition paths. Specifically, the interference is caused
by three photon driven paths: (a) direct driven excita-

tion, |1, 0,−〉
√

2ε−−→ |2, 0,−〉; (b) indirect driven transition,

|1, 0,−〉 gζ−→ |0, 1,−〉 ε−→ |1, 1,−〉
√

2gζ−−→ |2, 0,−〉; (c) indi-

rect driven transition, |1, 0,−〉 gζ−→ |0, 1,−〉 Jζ−→ |0, 0,+〉 ε−→
|1, 0,+〉 Jζ−→ |1, 1,−〉

√
2gζ−−→ |2, 0,−〉. In the presence of

proper parameters, destructive interference among these tran-
sition paths would result in little population on C(ζ )

2,0,− and
guarantee the appearance of UPB.

Based on Eqs. (10) and (4), one can explore the equal-time
second-order photon correlation functions analytically and
numerically. Equal-time second-order correlation functions
on a logarithmic scale are displayed in Fig. 3 as a function of
pump ratio. It shows that g(2)

2 (0) is unaffected by the pump ra-
tio due to decoupling, whereas g(2)

1 (0) decreases from a value
greater than 1 to that less than 1 with increasing the pump
ratio and reaches its lowest value at β 	 0.102. The analytical
findings correspond well with the numerical results. As the
pump ratio increases, the effective frequency of the squeezed

FIG. 3. The logarithmic scaled equal-time second-order func-
tions are shown by altering the pump ratio β. The horizontal dark
gray dashed line represents log10 g(2)

2 (0). The parameters are set to
J = 2γ , g = 3.2γ , � = 1 × 102g, and �1 = �2 = �0 = � + γ .

CW mode �bs = �2(1 − β2)1/2 − � in resonator B drops,
resulting in an increasing detuning between the squeezed CW
mode and the TLS t1 frequencies. A larger detuning of the
photon-TLS interaction means a gradually invalid nonlinear
response, i.e., the system nonlinearity is destroyed, and it
leads to the disappearance of photon correlations. Subse-
quently, the appearance of log10 g(2)

1 (0) → 0 does so for this
reason.

Analytical calculations with a set of parameters, �a =
�b = �t = γ , g = 3.2γ , and � = 1 × 102g, reveal that J 	
2γ and β 	 0.102 are required to yield C(1)

2,0,− and g(2)
1 (0) →

0, which is the optimal UPB condition. At the same time,
these specific parameters also lead to g(2)

2 (0) > 1. It indicates
that nonreciprocal photon blockade is obtained, i.e., the pho-
tons produced by various ports exhibit opposing correlation
features.

In Figs. 4(a) and 4(b), log10 g(2)
ζ (0) is shown as the

functions of photon-qubit interaction strength J and pho-
ton hopping rate g, respectively, where the legends, i-j,
numer./analy., stand for the numerical/analytical results for
photons input from port i and output from port j. Except
for the dips around about g 	 3.2γ and J 	 2γ , it can be
observed that the analytical results and the numerical results
are in good agreement. The distinct truncated photon number
space is what causes discrepancies between the analytical
and numerical conclusions around the dips. As has been
mentioned above, analytical calculations truncate the photon
number to two. Numerical computations are restricted to three
photons. The second-order correlation functions at about the
optimal UPB parameters are somewhat affected by higher
photon number excitations, which causes the analytical results
to be a bit bigger than the numerical values. In Fig. 4(a), when
fixing g = 3.2γ , a parameter window of nonreciprocal (op-
posite) photon correlations arises during 0.5γ � J � 3.3γ ,
which is marked by the shaded area SA 1. The parameter
window of nonreciprocal photon correlations also appears
during 0.5γ � g � 10γ when fixing J = 2γ in Fig. 4(b).

According to the preceding discussions, nonreciprocal
photon correlations exist over a wide range of parameter g
and also over a narrower parameter window of J . In Fig. 5,
g(2)

ζ (0) is further shown as a function of g and J . A contour
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FIG. 4. Equal-time second-order correlation functions
log10 g(2)

ζ (0) are displayed as functions with the parameters (a)
J and (b) g. The driving field input from port i and output from
port j are referred to as i- j. Numerical results are marked by a
green circle and a violet square, while analytical results are marked
by green and violet lines. The parameter window within which
nonreciprocal (opposite) photon correlations arise is shown by the
shaded region marked by SA 1. It is set to ε = 0.02γ , β = 0.102
and other parameters are same with that in Fig. 3.

line of log10 g(2)
ζ (0) 	 0 is added in the figures. Figure 5(a)

shows that photons output from port 2 nearly totally display
antibunching across the parameter space. When photons are
output from port 1 in Fig. 5(b), photon bunching is seen across
a wide range of g for the value of J � 3γ . The efficient region
for obtaining nonreciprocal photon correlations is indicated

FIG. 5. The results of log10 g(2)
1,2(0) against g and J are shown in

[(a),(b)]. The violet dashed line is the contour of log10 g(2)
1,2(0) 	 0.00.

The other parameters are same with that in Fig. 4.

FIG. 6. Plots of the equal-time second-order functions versus the
effective frequencies of the TLS, resonator, and driving field are
shown in panels [(a)–(c)], respectively. The shaded areas labeled SA
1 and SA 2 are two distinct parameter windows of nonreciprocal
photon correlations. The other parameters are same with that in
Fig. 4.

by the parameter space where different photon correlations
occur (ζ = 1, 2). It is evident that, in contrast to the photon-
qubit interaction strength J , nonreciprocal photon correlations
are less susceptible to the effects of photon hopping rate g.
This can be explained by the fact that the photon correlations
are more significantly affected by the nonlinearity induced
by the photon-qubit interaction, and the nonlinear response
significantly influences the photon interference.

Functions of g(2)
ζ (0) versus the effective TLS frequency �t ,

the effective resonator frequency �a (�a = �b), and the ef-
fective driving field frequency δ (δ = � − 102g) are depicted
in Figs. 6(a)–6(c), respectively, to examine the nonreciprocal
photon correlations in various parameter spaces. The analyt-
ical results match the numerical results well. Photons from
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port 2 display antibunching behavior while photons from port
1 display bunching behavior within the parameter window SA
1. Contrarily, in the parameter window denoted by shaded
region SA 2, there exist opposing nonreciprocal photon cor-
relations, with photons output from port 1 behaving in an
antibunching state while behaving in a bunching state from
port 2. Varied photon interferences during the distinct discon-
nected parameter windows are the root cause of the two types
of nonreciprocal photon correlations. As previously stated,
nonreciprocal UPB are caused by the specific parameter con-
dition. This gives us the idea to see if the adjustable system
chirality by modulating external pump field can make it pos-
sible for nonreciprocal photon correlations in a wide range
of consecutive parameters. In other words, photons output at
distinct ports always exhibit different correlations with one
another in widen parameter windows. The next part will be
devoted to this subject.

IV. TUNABILITY OF NONRECIPROCAL
PHOTON CORRELATIONS

Nonreciprocal photon correlations have been examined in
the last section in regard to various parameter spaces under
a fixed directional squeezing parameter. The nonreciprocal
photon correlations are contributed during distinct and dis-
connected frequency parameter windows (SA 1, SA 2). In
this section, we will research ways to expand the frequency
parameter spaces for nonreciprocal photon correlations by
tuning the squeezing pump field.

Two types of parameter windows (SA 1, SA 2) are illus-
trated for realizing nonreciprocal photon correlations in Fig. 6.
However, the parameter windows regarding the effective fre-
quencies of TLS, resonator, and input driving field appear to
be narrow, thus we hope to broaden the parameter windows
to boost the research practicality. Figure 3 has shown the
tunability of nonreciprocal photon correlations by modifying
the pump ratio, which is promising for use in broadening the
valuable parameter spaces for nonreciprocal photon correla-
tions. At the optimal UPB condition, log10 g(2)

1 (0) is displayed
against the effective frequencies of TLS, resonator, and the
input driving field for varied pump ratio β in Figs. 7(a),
7(b); 7(c), 7(d); and 7(e), 7(f), respectively. Figures 7(a),
7(c), 7(e) and 7(b), 7(d), 7(f) depict the equal-time second-
order correlation function in logarithmic scale within intervals
� − 0.05 and �0.05, respectively. It is observed that one can
always find a β to make log10 g(2)

1 (0) � −0.05 when the TLS
effective frequency �t ∈ [−10, 10]γ . Additionally, we can
nearly always locate a β to make log10 g(2)

1 (0) � 0.05 during
�t ∈ [−10, 10]γ . Regarding the effective frequency �a ∈
[0, 16]γ or δ ∈ [−6, 2]γ , log10 g(2)

1 (0) � −0.05 is always
achieved for one suitable β. Similarly, a β can almost always
be found to make log10 g(2)

1 (0) � 0.05 for �a ∈ [0, 16]γ or
δ ∈ [−6, 2]γ . The findings indicate a widening of the param-
eter space for nonreciprocal photon correlations. In particular,
for any parameter in these large parameter spaces, photon
antibunching state is always acquired at port 2 when the
photons output from port 1 exhibit bunching state. While for
the majority of regions in the widening parameter spaces,
photon bunching state is always achieved at port 2, if the
photons output from port 1 show antibunching state. In brief,

FIG. 7. For different pump ratio, log10 g(2)
1 (0) is shown in panels

(a), (b); (c), (d); and (e), (f), respectively, against the effective fre-
quencies of TLS, resonator, and input driving field. Panels (a), (c),
and (e) show results in the interval � − 0.05, whereas panels (b),
(d), and (f) show results in the interval �0.05. The other parameters
are the same as those in Fig. 4.

photon correlations produced from port 2 can be either anti-
bunching states or bunching states in a wide parameter range
by altering the external pump field. The changeability of the
split resonator modes, chiral photon hopping rate, and chiral
photon-TLS coupling rate are the main causes of the variable
interferences among the photon transition paths, which give
rise to the tunable nonreciprocal photon correlations. Thus,
these movable parameters allow the photon correlations to
be modified from optimal UPB to that with photon super-
Poissonian distributions.

V. EXPERIMENTAL FEASIBILITY

Thin-film materials like lithium niobate [100–102], alu-
minum nitride [89,90], or silicon nitride [103] can be used to
create microring resonators with large χ (2) nonlinearity due
to their advancements in experimental fabrication. Since the
ultrahigh quality of lithium niobate microring resonators have
been experimentally increased from 107 [104] to above 108

[105], they are better appropriate for our investigation. An
ultrabright photon pair has been observed in an experiment
exploiting the large second-order nonlinearity in a lithium nio-
bate microring resonator [91]. When Q 	 6.7 × 107, the decay
rate of a resonator with a given wavelength of λ 	 1550 nm
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FIG. 8. (a) The equal-time second-order correlation function
g(2)

1 (0) versus β is plotted for the JC model and the Rabi model.
(b) Evolution of g(2)

1 (t ) versus time t at the corresponding optimal
UPB condition when detuning � = 1 × 103γ . The other parameters
are the same as those in Fig. 4.

is κa,b 	 2π × 3 MHz. The strength of photon evanescent
hopping g depends on the size of the gap between the mi-
croring resonators. The gap size of the tapered fibers and
resonators can also be used to modify their evanescent cou-
pling J [106–108]. Broadband squeezed-vacuum fields have
been reported in experiments via optical parametric amplifi-
cation [109] and spontaneous four-wave mixing [110]. Strong
chiral coupling of a polarized TLS with a microring res-
onator has been observed in experiments with a decay rate of
γ 	 κa,b [16,93,94].

The counter-rotating terms in Eq. (2) are neglected after
considering the rotating-wave approximation in Bogoliubov
transformations. To demonstrate the approximation validity,
in Fig. 8(a), we compare the photon correlation results under
the entire Hamiltonian without neglecting counter-rotating
terms with the Hamiltonian neglecting counter-rotating terms,
i.e., the results from the time-dependent Rabi model and the
time-dependent JC model. It is shown that the two results
agree well with each other except for the regions around op-
timal UPB. This is because the optimal UPB strictly depends
on the interference of different photon transition paths, and the
photon fluctuation (from counter-rotating terms) would influ-
ence the photon correlations. To suppress this influence, one
can select a larger parameter to better satisfy the rotating-wave
approximation. In Fig. 8(b), choosing � = 1 × 103γ and
keeping parameters �a = �b = �t = γ and g, J unchanged,
the evolutions of g(2)

1 (t ) versus time t for the Rabi model and
the JC model are respectively plotted at the corresponding
optimal UPB condition (β 	 0.058), where the two results
ultimately are in good agreement compared with those in
Fig. 8(a).

The above results are discussed under the zero-temperature
approximation and the effect of thermal bath is not con-
sidered. Next, we discuss the effect of the thermal bath on
resonators and TLSs. Considering the thermal bath effect, the
Lindblad operator γ L[ôζ ]ρ in Eq. (4) should be rewritten
as (n̄ + 1)γ L[ôζ ]ρ + n̄γ L[ô†

ζ ]ρ, where the thermal excita-
tion numbers n̄ = n̄a, n̄b, n̄t , respectively, correspond to ô =
â, b̂, σ̂−. Figures 9(a)–9(c) show the influences of thermal
excitations in resonator A (n̄a), resonator B (n̄b), and TLSs (n̄t )
on the second-order correlation functions, respectively. It is
shown that g(2)

1 (g(2)
2 ) increases (decreases) with the increase in

thermal excitation numbers. The thermal baths for resonators
A and B almost have the same effect on the nonreciprocal
photon correlations, while the thermal baths for the TLSs have
a smaller influence on the photon correlations. Because the

FIG. 9. Equal-time second-order correlation functions g(2)
ζ (0) are

displayed versus the thermal excitation numbers in (a) resonator A,
(b) resonator B, and (c) TLSs at the optimal UPB condition. The
other parameters are the same as those in Fig. 4.

photon correlations in our studies result from the interference
among different photon transition paths, the photon fluctua-
tions from the thermal bath would obviously influence the
photon transitions. Comparing with other bosons like phonons
and magnons, the thermal photon number for optical systems
is usually negligible. Thus, the thermal bath might not have a
significant impact on the results.

VI. SUMMARY

Nonreciprocal photon correlations are studied in microring
resonators coupled with polarized TLSs by introducing direc-
tional parametric amplification. Both the mechanical degree
of freedom and Sagnac-Fizeau shifts by rotating microring
resonators are not required. Degenerate resonator modes split-
ting, chiral photon-TLS coupling, and chiral photon hopping
are tunable by adjusting the directional parametric amplifi-
cation. According to analytical and numerical results, under
the optimal conditions, interferences among various pho-
ton transition-dissipative routes result in nonreciprocal UPB.
Additionally, the external pump field is used to adjust the
photon correlations and further extend the parameter win-
dows for nonreciprocal photon correlations. As a result, the
nonreciprocal photon correlations are robust to parameter
fluctuations and are feasible across a wide range of pa-
rameters. Our research provides a promising nonreciprocal
single-quantum device for manipulating correlated photons
and can be exploited to investigate other quantum phenom-
ena like nonreciprocal coherent polariton dynamics [111] or
nonreciprocal time crystalline phases [112].
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APPENDIX: CALCULATIONS OF EQUAL-TIME
SECOND-ORDER CORRELATION FUNCTIONS

In the main text, it is shown that equal-time second-order
correlation functions g(2)

ζ (0) can be calculated analytically by

substituting C(ζ )
2,0,− and C(ζ )

1,0,− into Eq. (10). Next, we mainly

focus on the detailed calculations for solving g(2)
1 (0) when

driving field is input from port 1, and similar calculations
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can be used to determine the solutions for g(2)
2 (0). To obtain

the system steady solutions, one needs to solve ∂|ψ〉1/∂t = 0
by substituting the wave function |ψ〉1 in Eq. (6) and the
system Hamiltonian in Eq. (5) into the Schrödinger equation
i∂|ψ〉1/∂t = Ĥ1|ψ〉1. Then we have the functions

0 = �̄aC
(1)
1,0,− + g1C

(1)
0,1,− + ε,

0 = �̄bsC
(1)
0,1,− + g1C

(1)
1,0,− + J1C

(1)
0,0,+,

0 = �̄tC
(1)
0,0,+ + J1C

(1)
0,1,−,

0 = �̄aC
(1)
1,1,− + εC(1)

0,1,− + �̄bsC
(1)
1,1,− + J1C

(1)
1,0,+

+
√

2g1
(
C(1)

0,2,− + C(1)
2,0,−

)
,

0 = �̄aC
(1)
1,0,+ + εC(1)

0,0,+ + �̄tC
(1)
1,0,+

+ g1C
(1)
0,1,+ + J1C

(1)
1,1,−,

0 = �̄bsC
(1)
0,1,+ + g1C

(1)
1,0,+ +

√
2J1C

(1)
0,2,− + �̄tC

(1)
0,1,+,

0 =
√

2�̄aC
(1)
2,0,− + εC(1)

1,0,− + g1C
(1)
1,1,−,

0 =
√

2�̄bsC
(1)
0,2,− + g1C

(1)
1,1,− + J1C

(1)
0,1,+, (A1)

where C(1)
0,0,− is assumed to be → 1 due to the weak driving

limit, and �̄a = �a − iκa/2, �̄bs = �bs − iκb/2, �̄t = �t −
iγ /2. The single excitation solutions are obtained as

C(1)
0,0,+ = εJ1g1

�
,

C(1)
0,1,− = −ε�̄t g1

�
,

C(1)
1,0,− = ε

(
�̄bs�̄t − J2

1

)

�
, (A2)

after solving the first three functions in Eq. (A1), where � =
�̄t (g2

1 − �̄a�̄bs) + �̄aJ2
1 . Two-excitation solutions can then

be solved by substituting these single excitation solutions into
the last five functions of Eq. (A1). Since the two-excitation so-
lutions are complex, we only give the expression of coefficient
C(1)

2,0,− as

C(1)
2,0,− = − ε2�√

2��
, (A3)

where

� = �̄2
bs�̄tχ − J2

1

[
�̄2

aν + �̄2
bs

(
2�̄bs�̄t + 3�̄2

t − 2g2
1

)

+ μν − 2�̄bs�̄ag2
1

] + J4
1

(
�̄2

a + �̄2
bs + 3�̄bs�̄t

+ μ + g2
1

) − J6
1 ,

� = (
�̄a�̄bs − g2

1

)
χ − J2

1

[
�̄a

(
�̄2

a + μ + ν
)

+ (�̄a − �̄t )g
2
1

] + �̄aJ4
1 ,

χ = (�̄a + �̄bs)
[
(�̄a + �̄t )(�̄bs + �̄t ) − g2

1

]
,

ν = �̄bs(�̄bs + 2�̄t ),

μ = �̄a(�̄bs + �̄t ).

With the solved coefficients C(1)
2,0,− and C(1)

1,0,−, the equal-time
second-order correlation function for photons output from
port 2 can be analytically obtained by Eq. (9) as

g(2)
1 (0) = |�|2|�|2

|�|2∣∣�̄bs�̄t − J2
1

∣∣4 . (A4)

Additionally, by setting β to zero, the g(2)
2 (0) for photons

produced from port 1 can be analytically solved using the
same procedures.
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electro-optic frequency comb generation in a lithium niobate
microring resonator, Nature (London) 568, 373 (2019).

[101] M. Wang, N. Yao, R. Wu, Z. Fang, S. Lv, J. Zhang, J.
Lin, W. Fang, and Y. Cheng, Strong nonlinear optics in

on-chip coupled lithium niobate microdisk photonic
molecules, New J. Phys. 22, 073030 (2020).

[102] J.-Y. Chen, Z. Li, Z. Ma, C. Tang, H. Fan, Y. M. Sua, and
Y.-P. Huang, Photon Conversion and Interaction in a Quasi-
Phase-Matched Microresonator, Phys. Rev. Appl. 16, 064004
(2021).

[103] E. Nitiss, J. Hu, A. Stroganov, and C.-S. Brès, Optically
reconfigurable quasi-phase-matching in silicon nitride mi-
croresonators, Nat. Photon. 16, 134 (2022).

[104] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and
Y. Cheng, Lithium niobate micro-disk resonators of quality
factors above 107, Opt. Lett. 43, 4116 (2018).

[105] R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin,
J. Guan, L. Deng, M. Wang et al., Broadband highly efficient
nonlinear optical processes in on-chip integrated lithium nio-
bate microdisk resonators of q-factor above 108, New J. Phys.
23, 123027 (2021).

[106] M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S.
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