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Resonant parametric photon generation in waveguide-coupled quantum emitter arrays
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We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum
emitters with temporally modulated resonance frequencies. Such generation can be interpreted as a dynamical
Casimir effect. We demonstrate numerically and analytically how the emission directionality and photon-photon
correlations can be controlled by the phases of the modulation. The emission spectrum is shown to be strongly
dependent on the anharmonicity of the emitter potential. Single- and double-excited state resonances have been
identified in the emission spectrum.

DOI: 10.1103/PhysRevA.108.023715

I. INTRODUCTION

Waveguide quantum electrodynamics, describing photon
interaction with arrays of emitters coupled to the waveguide,
is now rapidly developing [1–3]. This platform allows con-
trollable generation of quantum light [4], and control over
lifetimes [5] and entanglement [6,7] of coupled atom-photon
excitations. Even more possibilities are opened in the struc-
tures with the parameters dynamically modulated in time [8].
This enables Floquet engineering and realization of synthetic
dimensions [9,10] as well as control of quantum photon-
photon correlations [11,12]. Such time modulation has been
recently demonstrated, for example, for the superconducting
transmon emitter platform [13].

One more fundamental physical effect, that becomes possi-
ble in the dynamically modulated structures, is the parametric
generation of photon pairs. Such generation can be also in-
terpreted as a dynamical Casimir effect. This effect has been
first proposed for the cavity with a moving wall [14]. To
the best of our knowledge, it has been never directly ob-
served in this setup so far, because of the extremely low
photon generation rate at realistic parameters (see the review
in Ref. [15]). However, there also exist generalized dynamical
Casimir effects, where other electromagnetic properties of the
medium are changing instead of physical movement of the
mirror in space. For example, parametric photon generation
due to electron-hole plasma generated and moving in a semi-
conductor under laser pulse excitation has been theoretically
considered in Ref. [16]. A seminal observation of an analog of
the dynamical Casimir effect in a superconducting circuit was
made in Ref. [17]. The effective length of the transmission line
has been modulated by changing the inductance of a supercon-
ducting quantum interference device. A detailed theoretical
analysis of such systems has been performed in Refs. [18,19].
Two-photon entanglement in this setup has been experimen-
tally studied in Ref. [20]. However, the consideration has been
limited to the case when the modulated elements were not
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resonant for the generated photons. The dynamical Casimir
effect in the arrays of resonant modulated emitters has not
yet been explored. The resonant structures could potentially
allow one to selectively enhance the photon generation and
control the correlations between them. Recently, a theory of
dynamical Casimir effect in the general dynamically modu-
lated photonic structures has been put forward in Ref. [21].
However, the considered setup did not include two-photon
interactions, essential for the emitter platform.

Here, we consider a parametric photon generation by an
array of emitters with strongly dynamically modulated reso-
nant frequencies, coupled to the waveguide. In such a system
there exist resonances for generated photons and photon pairs
near the single- and double-excited levels of the emitters. Our
goal is to explore the role of the various collective emitter
resonances for the intensity, directionality, and the quantum
correlations between the emitted photons.

The rest of the paper is organized as follows. Our theo-
retical model and calculation approach, based on the master
equation, are presented in Sec. II. We discuss the numerical
and analytical results for a single emitter in Sec. III. The
arrays with N > 1 emitters are considered in Sec. IV and the
main results are summarized in Sec. V. Appendix B presents
an equivalent alternative Green-function-based diagrammatic
approach to calculate the photon emission intensity and
the photon-photon correlation functions. Analytic results ob-
tained by this approach for a particular case of N = 2 emitters
are given in Appendix C.

II. MODEL

The structure under consideration is schematically illus-
trated in Fig. 1. It consists of N periodically spaced emitters
in the one-dimensional waveguide. The resonant frequencies
of the emitters are modulated in time with the modulation
frequency �. The Hermitian part of the system Hamiltonian
can be written as H = H0 + ∑N

j Vj , where (h̄ = 1)

H0 =
N∑

j=1

(
ω0a†

j a j + U

2
a†

j a
†
j a ja j

)
+

N∑
j,k=1

Re(Djk )a†
j ak (1)
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FIG. 1. Scheme of the structure under consideration. The array
of emitters with modulated-in-time resonant frequencies is coupled
to a waveguide.

is the unperturbed Hamiltonian and a j are the bosonic annihi-
lation operators for the emitter excitations, located at the point
x j = d ( j − 1). The first term of Eq. (1) describes the structure
of the emitter energy levels which is shown in the red frame
in Fig. 1 (first three levels) for t = 0. The energy of the first
excited level is ω0 while the second excited level has energy
2ω0 + U assuming the anharmonicity U � ω0. The radiative
coupling and collective decay of the emitters are described by
the photon Green’s function

Djk = −iγ1Deiω0|x j−xk |/c, (2)

where γ1D is the radiative decay rate of a single emitter. The
coupling is long ranged since it is mediated by photons, prop-
agating into the waveguide [1]. The perturbation responsible
for modulating the frequency of each emitter reads

Vj = g j (a
†
j + a j )

2 cos(�t + ϕ j ). (3)

Here, g j and ϕ j are the amplitude and the phase of the
modulation, respectively. The time evolution of the system is
described by the master equation [1,11]

ρ̇ = −i[H, ρ] +
N∑

j,k=1

γ jk (2a jρa†
k − a†

j akρ − ρa†
j ak ), (4)

where γ jk = − Im(Djk ) + δ jkγ and γ is the nonradiative
decay rate. Such a system, with the anharmonicity term
and the parametric driving, can be experimentally realized
in the microwave spectral range by superconducting quan-
tum LC circuits, where the Josephson junctions are used
as nonlinear inductance [22]. Such systems are now widely
used as superconducting qubits (see the review in Ref. [23])
and their parameters satisfy the regime ω0 � U � γ1D � γ

considered here. For example, the parameters of Ref. [5] cor-
respond to ω0 ≈ 7 GHz, U ∼ 0.2 GHz, γ1D ≈ 0.03 GHz, and
γ ∼ 10−3 GHz.

III. SINGLE EMITTER

We start by considering a single emitter coupled to a
waveguide. We are interested in the weak-driving regime

FIG. 2. (a) Emission spectrum S of one emitter as a function
of the modulation frequency � and the emission frequency ω.
Spectrum is calculated using the density matrix method described
in Appendix A 2. The calculation parameters are ω0/γ1D = 200,
g/γ1D = 0.1, U/γ1D = 10, γ = 0. The black line in (b) shows the
emission spectrum obtained as the cross section of the density
plot (a) for � = 2ω0 + U and the red dashed line shows the spec-
trum for the same parameters obtained using the diagrammatic
approach.

when g � γ1D. In this case, to find the observable quantities,
it is sufficient to restrict the consideration to a three-level
emitter. The method of finding the stationary density matrix
[solution of Eq. (4) for γ1Dt � 1] is described in Appendix A.
The total photon emission rate reads 2γ1DI1; i.e., is determined
by the number of emitter excitations,

I1 = Tr(ρ0a†a)

= 4g2(�2 + (U + 2ω0)2 + 4γ 2
� )

[4γ 2
� + (� − U − 2ω0)2][4γ 2

� + (� + U + 2ω0)2]
,

(5)

and their radiative decay rate. Here, ρ0 is the time-
averaged density matrix of the emitter and γ� = γ1D + γ (see
Appendix A 1). The highest intensity is achieved when the
modulation frequency is in resonance with the transition be-
tween the ground level and the second excited level of the
emitter, � = 2ω0 + U .

Another important characteristic is the spectrum of the
photon emission. It can be found using the quantum regres-
sion theorem as described in Appendix A 2. The result of the
calculation according to Eq. (A15) is shown in Fig. 2. As
mentioned above, the maximum integral intensity is reached
at the modulation frequency � = 2ω0 + U . The emission
spectrum consists of two peaks, one at the frequency ω0,
which corresponds to the transition between the ground and
first excited levels of the emitter, and the other peak at the
frequency � − ω0. This reflects the fact that the photons are
born and emitted in pairs with the average energies ω0 and
� − ω0, i.e., with the total energy �. The spectrum for the res-
onant modulation frequency obtained with the density method
is shown by the black line in Fig. 2(b). The diagrammatic
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approach (Appendix B) yields the spectrum

S(ω) = 2g2γ1D[
(� − 2ω0 − U )2 + 4γ 2

1D

]

×
[
(� − 2ω0)2 + 4γ 2

1D

]
[
(ω − ω0)2 + γ 2

1D

][
(ω − � + ω0)2 + γ 2

1D

] , (6)

which is shown by the red dashed line and, as we can see, it
perfectly agrees with the black line.

IV. EMITTER ARRAYS

We now proceed to the discussion of the parametric gener-
ation from emitter arrays.

A. N = 2 Emitters

We start with the case of just a pair of emitters. We assume
that the coupling constants are equal, g1 = g2 = g, and that
the phases are ϕ1 = 0, ϕ2 = ϕ. Unlike the case of a single
emitter, this system can emit directionally because of the
interference between photons from the first and the second
emitter.

The photons traveling in the left (right) direction are cou-
pled to the combination of the emitters’ lowering operators
p∓ = a1 + a2e±iqd , where qd ≡ ω0d/c is the phase gained
by the photon as it travels between the two emitters. The
photon emission intensity to the left is determined by I− =
Tr(ρ0 p†

− p−) [1] and can be obtained by using the stationary
density matrix (Appendix A).

Figure 3 presents the calculation of I− for the three values
of the parameter U/γ1D. Figures 3(a)–3(c) correspond to the
case of symmetric modulation, when both emitters are excited
in phase (ϕ = 0). In this case, we can see that the sharp
intensity minima appear in the vicinity of red dotted lines
which correspond to dark single-excited states. The highest
intensity is achieved when the modulation frequency is close
to the real parts of the energies of the certain double-excited
eigenstates (gray lines). The latter are found by diagonaliz-
ing the non-Hermitian two-photon Hamiltonian H ⊗ 1 + 1 ⊗
H + U , where H and U are defined in Appendix B. For in-
phase modulation the intensity is enhanced near symmetric
states in terms of emitter permutation, whose energies are

ε1,2 = 2ω0 − 2iγ1D + U

2
± 1

2

√
U 2 − 16γ 2

1De2iqd . (7)

If U/γ1D < 4 [Fig. 3(a)], the energies of the three eigen-
states are close and intersect when ω0d/c is varied. As
U/γ1D is increased, at a certain threshold [Fig. 3(b), U/γ1D =
4] the symmetric states are rearranged into two isolated
bands, which get separated by the gap of U for large U/γ1D

[Fig. 3(c)]. The upper state ≈ (a†
1a†

1 + a†
2a†

2)|0〉 has the energy
Re ε1 ≈ 2ω0 + U which is almost independent of the distance
d , but the lower band (with the energy Re ε2 ≈ 2ω0) is mainly
formed by the states that comprise the pair of excitations
in different emitters, a†

1a†
2|0〉. Such states cannot be excited

by the perturbation operator in Eq. (3), which includes the
products of two operators a†

j with the same j only. There-
fore, the emission intensity near the lower band is quenched

FIG. 3. The photon emission intensity to the left, I− = 〈p†
− p−〉,

for two emitters as a function of a distance between the emitters d
and the modulation frequency �. Calculations have been performed
in the case of symmetric modulation (ϕ = 0) for (a) U/γ1D = 1,
(b) U/γ1D = 4, (c) U/γ1D = 10, and (d) antisymmetric modulation
(ϕ = π ) for U/γ1D = 10. Other calculation parameters are ω0/γ1D =
200, g/γ1D = 0.1, and γ /γ1D = 0.1. Gray lines represent the double-
excited eigenstates. Red dotted lines show the intensity minima.

(see also Appendix C for the complete analytical expression).
The case of out-of-phase modulation (ϕ = π ) is shown in
Fig. 3(d). Here, we see no minima at the frequency of dark
single-excited states and the overall dependence on distance
d is rather weak, because the energy of the antisymmetric
state (a†

1a†
1 − a†

2a†
2)|0〉 does not depend on the distance and

is equal to 2ω0 + U . The maximum intensity is observed near
this frequency.

The dependence of the emission on the modulation phase
is shown in more detail in Fig. 4, which presents the calcu-
lation of I− for the modulation frequency � = 2ω0 + U that
corresponds to the resonance for a single emitter. In the case of
U/γ1D = 1 [Fig. 4(a)] the maximum is observed at ω0d/c ≈
π which corresponds to the resonance with a double-excited
eigenstate [cf. Fig. 3(a)]. As the ratio U/γ1D increases, the
structure of I− becomes more smooth along the d axis, due to
the decreasing dependence of the eigenstates on the distance
d . In contrast, the dependence of I− on ϕ becomes more
pronounced [see Figs. 4(b)–4(d)]. Note that the photon emis-
sion intensity to the right, I+, can be obtained by flipping the
sign of ϕ. The obtained maps, especially Fig. 4(b), are highly
asymmetric with respect to this operation, which indicates the
high directivity of the emission. In the case U/γ1D � 1, which
is shown in Fig. 4(d), the answer can be obtained analytically.
At � = 2ω0 + U , we can neglect the state when different
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FIG. 4. The photon emission intensity to the left, I−, for a pair
of emitters as a function of the distance d and the modulation phase
ϕ for the modulation frequency � = 2ω0 + U and different U indi-
cated in the figure. Calculation has been performed for g/γ1D = 0.1,
ω0/γ1D = 200, and γ /γ1D = 0.05.

emitters are excited simultaneously. Then, we find

I− = I1

[
2 + sin ϕ sin(2ω0d/c)

3 − cos(2ω0d/c)

]
(8)

in the absence of the nonradiative decay rate γ = 0 (see also
Appendix C). The second term on the right-hand side of
Eq. (8) describes the interference between the photon pairs
generated by the two emitters. Importantly, the interference
term is odd in ϕ; thus its contribution is opposite for I−
and I+ which results in a directional emission. The maximal
degree of directivity, (I− − I+)/(I− + I+) = √

2/8 ≈ 0.18, is
achieved for ϕ = π/2 and ω0d/c = arctan(2

√
2)/2 ≈ π/5.

The intensity reduction in the corners of the panels in Fig. 4 is
out of the scope of Eq. (8) and explained by the finite nonra-
diative decay that was taken into account in the calculation.

We also present in Fig. 5 the (unnormalized) photon-
photon correlation function G(2)

−− = 〈p†
− p†

− p− p−〉 for sym-
metric [Fig. 5(a)] and antisymmetric [Fig. 5(b)] modulation
of the emitters. The calculation demonstrates that the largest
values of G(2)

−− are achieved at the two-photon resonance � =
2ω0 + U . In order to explain the calculated dependence of the
correlation function on the distance between the emitters d ,
we have obtained an analytical expression similar to Eq. (8)
and valid for U/γ1D � 1:

G(2)
−− = I1[1 + cos(2ω0d/c − ϕ)] (9)

(see also Appendix C). The simple form of Eq. (9) describes
the interference of the two independent coherent sources

FIG. 5. The second-order correlation function for a pair of emit-
ters in the case of (a) symmetric (ϕ = 0) and (b) antisymmetric
(ϕ = π ) modulation. Calculation has been performed for the follow-
ing set of parameters: U/γ1D = 10, ω0/γ1D = 200, g/γ1D = 0.1, and
γ /γ1D = 0.1.

separated by distance d and emitting with the phase differ-
ence ϕ. The fact that the two-photon emission and detection
is considered is accounted by the factor of 2 in the phase
2ω0d/c that the photon pair gains when traveling the dis-
tance d . If the emitters are modulated in phase (ϕ = 0), the
maxima of Eq. (9) are realized for the periods when ω0d/c =
0, π, 2π, . . .. The out-of-phase modulation occurs when ϕ =
π corresponds to the maxima at ω0d/c = π/2, 3π/2, . . ..
This agrees with the numerical calculations in Fig. 5. For
symmetric modulation there exists also an additional mini-
mum in Fig. 5(a), corresponding to a strong antibunching.
According to our analytical expression in Eq. (C2), this min-
imum corresponds to the frequency � = 2ω0 − 2γ1D tan qd .
The corresponding expression is shown by a red dotted line in
Fig. 5(a) and well describes the numerical results.

B. N = 4 Emitters

We have also calculated the two-photon correlation func-
tion for a larger array with N = 4 emitters. This is the
minimum emitter number required to have double-excited
subradiant states [5,24,25]. Such states have long radiative
lifetime because of the destructive interference in the sponta-
neous photon emission processes. They exist for ω0d/c � 1
(or |ω0d/c − π | � 1), and their lifetime is enhanced by the
factors on the order of 1/(ω0d/c)2 (1/|ω0d/c − π |2). Hence,
we can expect the appearance of additional sharp spectral
features in G(2)

−− for N = 4 due to the double-excited sub-
radiant states. The corresponding color plots of calculated
G(2)

−− are shown in Fig. 6. The correlation function G(2)
−− has

maxima around � = 2ω0 + U , similarly to the case of N = 2
emitters. As expected, there also appear minima at � ≈ 2ω0

when the distance between the emitters is either small or close
to cπ/ω0. The map of G(2)

−− in the region of small ω0d/c
is shown in Fig. 6(b) in detail. One can see that on top of
the smooth minimum two sharp maxima appear [see two
lower dotted lines in Fig. 6(b)]. Their position matches the
energies of the two subradiant states 2ω0 − 2γ1Dω0d/c and
2ω0 − (14/3)γ1Dω0d/c [24].
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FIG. 6. (a) The second-order correlation function for an array
of four emitters in the case of frequency modulation of the first
emitter only. (b) The area highlighted with a green square in panel
(a). Red dotted curves represent the real parts of the energies of
double-excited states. Calculation has been performed for the fol-
lowing set of parameters: ω0/γ1D = 200, U/γ1D = 10, g/γ1D = 0.1,
and γ /γ1D = 0.

V. SUMMARY

To summarize, we have developed a general theory of
parametric photon generation from arrays of emitters coupled
to the waveguide that are modulated in time. Using the two
independent approaches, the master equation for the density
matrix and the diagrammatic Green’s function technique, we
have studied the dependence of the photon emission spectrum
and photon-photon correlation functions on the anharmonicity
of the emitter potential U , the distance between the neighbor-
ing emitters, and the relative modulation phase ϕ.

The calculated emission spectrum is very sensitive to the
emitter anharmonicity parameter. The anharmonicity controls
the relative weight of the spectral features around the single-
and double-excited emitter resonances. The latter become
more prominent with the increase of the anharmonicity. When
the number of emitters is N = 4 or larger, additional sharp
spectral features, corresponding to the double-excited subradi-
ant states, appear in the spectrum. We have also shown that the
interference between photons emitted from different emitters
can be controlled by relative phases of their frequency modu-
lation. Our calculation demonstrates how this can be used to
obtain directional photon pair emission, similarly as it hap-
pens for nonparametric quantum photon sources [13,26,27].

We hope that our results will be useful for engineering the
parametric quantum emission from the waveguide-coupled
emitter arrays. A potentially interesting future research direc-
tion could be the system for which the spatial position of the
light emitters, rather than their resonance frequency, oscillates
in time. This would mean generalization of our concept of
an optomechanical Kerker effect [28], that is, motion-induced
directional emission, to the quantum optics regime.
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APPENDIX A: MASTER EQUATION APPROACH

In order to find a stationary solution for the density matrix,
we represent ρ as a vector ρ according to the rule ρn(i−1)+ j =
ρi j for an n × n matrix ρ. Then Eq. (4) can be written as

ρ̇ = Lρ + 1
2 (Vei�t − V∗e−i�t )ρ, (A1)

where the operators L and V read

L = −i(H0 ⊗ 1 − 1 ⊗ H0)

+
N∑

j,k=1

γ jk (2a j ⊗ ak − a†
j ak ⊗ 1 − 1 ⊗ a†

ka j ),

V = −i
N∑

j=1

g je
iϕ j ((a†

j + a j )
2 ⊗ 1 − 1 ⊗ (a†

j + a j )
2), (A2)

and the symbol ⊗ denotes the Kronecker product. We solve
Eq. (A1) for γ1Dt � 1, assuming that at t = 0 the modulation
is turned on. Representing the density matrix in the form of
a Fourier series ρ(t ) = ∑

n e−in�tρn, leaving only the har-
monics with n = −1, 0, 1, and substituting it into Eq. (A1)
we obtain the harmonics with n = ±1 and a system of equa-
tions for the zero harmonic of the density matrix:

ρ−1 = − 1
2 (L − i�)−1Vρ(0), (A3)

ρ1 = 1
2 (L + i�)−1V∗ρ(0), (A4)

Lρ0 = − 1
4 (V (L + i�)−1V∗ + V∗(L − i�)−1V )ρ(0). (A5)

Here, a vector ρ(0) = (1 0 · · · 0) corresponds to the initial
vacuum state.

1. Emission of a single emitter

In the weak modulation regime g � γ1D, we can restrict
the consideration to only the first three levels of the emitter
and take the annihilation operator in the form

a =
⎛
⎝0 1 0

0 0
√

2
0 0 0

⎞
⎠. (A6)

We get linear-in-g harmonic with n = −1 from Eq. (A3) with
nonzero elements

(ρ−1)13 = g√
2[(� − 2ω0 − U ) − 2iγ�]

,

(ρ−1)31 = − g√
2[(� + 2ω0 + U ) − 2iγ�]

, (A7)

and from Eq. (A4) we get ρ1 = ρ
†
−1. The solution of Eq. (A5)

yields nonzero elements of the quadratic-in-g zero harmonic,

(ρ0)13 = − g2

√
2(�2 + (2γ� − i(U + 2ω0))2)

,

(ρ0)22 = 2g2

× (4γ 2
�+�2+(U+2ω0))

[4γ 2
�+(� − 2ω0 − U )2][4γ 2

�+(�+2ω0+U )2]
,

(ρ0)31 = (ρ0)∗13, (ρ0)33 = 1
2 (ρ0)22. (A8)
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The stationary density matrix enables us to calculate the emis-
sion intensity. Note that the harmonics with n = ±1 do not
contribute to the intensity

I1 =〈a†a〉 = 〈Tr(ρ(t )a†a)〉t

= Tr(ρ0a†a) = (ρ0)22 + 2(ρ0)33. (A9)

This yields Eq. (5) in the main text.

2. Emission spectrum of a single emitter

We define the emission spectrum as

S(ω) = 2
�

2π
Re

∫ 2π/�

0
dt ′

∫ ∞

0
dτ e−iωτ 〈a†(t ′ + τ )a(t ′)〉.

(A10)

The integration over t ′ is performed over the period 2π/�

since the perturbation is periodic. According to the quantum
regression theorem [29]

S(ω) = 2
�

2π
Re

∫ 2π/�

0
dt ′

∫ ∞

0
dτ e−iωτ Tr(a†ρa(t ′ + τ )),

(A11)

where ρa(t ) satisfies Eq. (A1) with the initial condition ρa(t =
t ′) = aρ(t ′) which can be represented in integral form as

ρa(t ′ + τ ) = eLτρa(t ′)

+
∫ τ

0
dτ ′eL(τ−τ ′ )F (t ′ + τ ′)ρa(t ′ + τ ′), (A12)

where the perturbation F (t ) = 1
2 (Vei�t − V∗e−i�t ) and initial

ρa(t ′) = aρ0 + aρ−1ei�t ′ + aρ1e−i�t ′
. Then, up to second or-

der in g, it reads

ρa(t ′ + τ ) = eLτρa(t ′) +
∫ τ

0
dτ ′eL(τ−τ ′ )F (t ′ + τ ′)eLτ ′

× (
ρa

−1ei�t ′ + ρa
1e−i�t ′)

. (A13)

Performing averaging over t ′ and considering that V∗ = −V
for a single emitter, we get

〈ρa(t ′ + τ )〉t ′ = eLτρa
0 + 1

2

∫ τ

0
dτ ′eL(τ−τ ′ )VeLτ ′

× (
ρa

−1e−i�τ ′ + ρa
1ei�τ ′)

. (A14)

This enables us to get the emission spectrum

S(ω) = 2 Re
∫ ∞

0
dτ e−iωτ Tr(a†〈ρa(t ′ + τ )〉t ′ ). (A15)

The result of the calculation according to Eq. (A15) is shown
in Fig. 2.

APPENDIX B: DIAGRAMMATIC APPROACH

In the case of weak modulation, only the states with a small
number of excitations are populated. They can be described
in the framework of the perturbative diagrammatic approach.
The consideration generalizes the results of Refs. [24,30,31]
and also Ref. [32] for the structures, modulated in time. A
somewhat similar consideration for time-modulated structures

FIG. 7. (a) Diagrams representing the amplitude of two-photon
generation by modulated emitters. The dashed line represents the
modulation, solid lines are the Green’s functions of emitter excita-
tions, and wavy lines are the outgoing photons. (b) The diagrammatic
equation for the dressed vertex (solid circle) that describes the inter-
action of two emitter excitations. The open circle represents the bare
vertex corresponding to the interaction amplitude U .

is also available in Ref. [11], but that work does not consider
parametric photon generation.

The diagram representing the (not normalized) wave func-
tion of the generated photon pair is shown in Fig. 7(a). The
dashed line represents the modulation that creates a pair of
emitter excitations (solid lines). Then, the excitations prop-
agate in the structure, which is described by the Green’s
functions (solid lines). The excitations can either get con-
verted to the photons directly (first diagram) or interact and
get converted to photons after that (second diagram). For the
case when both photons are emitted in the left direction this
yields

ψ−−(ω1, ω2) = γ1D

∑
i j

s+
i (ω1)s+

i (ω2)[1 + (M�)i j]g j

× 2πδ(ω1 + ω2 − �). (B1)

Here, the Green’s function of single excitation reads

G(ω) = (ω − H )−1, Hi j = ω0δi j + Di j, (B2)

the outer lines of the diagrams correspond to

s+
i (ω) =

∑
j

Gi j (ω)eiqz j = eiqz1

iγ1D

(
ω0 − H

ω − H

)
1i

, (B3)

and the propagation of a pair of excitations is described by

�i j (�) = i
∫

Gi j (ω)Gi j (� − ω)
dω

2π
. (B4)

The dressed interaction vertex M can be determined from
the Dyson-like equation shown diagrammatically in Fig. 7(b),
which yields

M(�) = [U −1 − �(�)]−1. (B5)

Substituting this into Eq. (B1) we finally obtain

ψ−−(ω1, ω2) = γ1D

U

∑
i j

s+
i (ω1)s+

i (ω2)Mi jg j

× 2πδ(ω1 + ω2 − �). (B6)
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The integration in Eq. (B4) can be performed explicitly,
which yields a compact expression for the M matrix:

Mi j (�) =
[

� − H ⊗ 1 − 1 ⊗ H

� − H ⊗ 1 − 1 ⊗ H − U U
]

ii, j j

, (B7)

where (A ⊗ B)i j,kl ≡ AikB jl , A
B ≡ AB−1, and we introduced

the diagonal N2 × N2 matrix Ui j,kl = δi jδklδikU .

1. Correlation function

The second-order correlation function of the emitted pho-
ton pair is calculated as

G(2)
−−(τ ) = 1

γ 2
1D

∣∣∣∣
∫

ψ−−(ω1, ω2)e−iω1t−iω2(t+τ ) dω1dω2

(2π )2

∣∣∣∣
2

.

(B8)

At zero delay we use the representation in Eq. (B7) to obtain

G(2)
−−(0) = 1

γ 4
1D

∣∣∣∣∣
∑

i

[
(ω0 − H ) ⊗ (ω0 − H )

� − H ⊗ 1 − 1 ⊗ H − U

]
11,ii

gi

∣∣∣∣∣
2

.

(B9)

In the limit U � γ1D and for |� − 2ω0 − U | � γ1D, we
keep in the denominator of Eq. (B9) only the diagonal terms
and find

G(2)
−−(0) =

∣∣∑
i gi e2iqzi

∣∣2

(� − 2ω0 − U )2 + 4γ 2
1D

, (B10)

where we used (ω0 − H )1i = iγ1Deiq(zi−z1 ).
For |� − 2ω0| ∼ γ1D, the result is

G(2)
−−(0) = 1

U 2

∣∣∣∣∣
∑

i j

�+
i (�)[�−1(�)]i jg j

∣∣∣∣∣
2

, (B11)

where

�i j (�) =
[

1

� − H ⊗ 1 − 1 ⊗ H

]
ii, j j

, (B12)

�+
i (�) = 1

γ 2
1D

[
(ω0 − H ) ⊗ (ω0 − H )

� − H ⊗ 1 − 1 ⊗ H

]
11,ii

. (B13)

2. Emission intensity

We define the intensity of emission to the left as

I− =
∫

[|ψ−−(ω1, ω2)|2 + |ψ−+(ω1, ω2)|2]
dω1dω2

γ1DT (2π )2
,

(B14)

where T is the normalization time and ψ−+ is the wave func-
tion of a pair of photons emitted in the opposite directions.
The latter is obtained from Eq. (B1) by replacing the factor
s+

j (ω2) with s−
j (ω2) = ∑

i Gi j (ω)e−iqzi .

Using the representation in Eq. (B7), we get∫
|ψ−−(ω1, ω2)|2 dω1dω2

T (2π )2 = 1

iγ 2
1D

∑
i j

gig
∗
j

×
[

(ω0 − H1)(ω0 − H2)(ω0 − H∗
3 )(ω0 − H∗

4 )

(� − H1 − H∗
4 )

×
(

� − H∗
3 − H∗

4

H1 − H∗
3

− � − H1 − H2

H∗
4 − H2

)

× 1

(� − H1 − H2 − U12)(� − H∗
3 − H∗

4 − U34)

]
1111,ii j j

(B15)

and the corresponding integral of |ψ−+|2 is obtained in the
same way by taking the element [· · · ]1N1N,ii j j . Here H1 =
H ⊗ 1 ⊗ 1 ⊗ 1, H2 = 1 ⊗ H ⊗ 1 ⊗ 1, etc.

In the limit U � γ1D and for |� − 2ω0 − U | � γ1D, the
result can be simplified:∫

|ψ−−(ω1, ω2)|2 dω1dω2
T (2π )2

= 2i

γ 2
1D

[
(� − 2ω0 − U )2 + 4γ 2

1D

]
×

∑
i j

gig
∗
j (ω0 − H )1i(ω0 − H∗)1 jQ11,i j , (B16)

∫
|ψ−+(ω1, ω2)|2 dω1dω2

T (2π )2

= i

γ 2
1D[(� − 2ω0 − U )2 + 4γ 2

1D]

×
∑

i j

gig
∗
j{(ω0 − H )1i(ω0 − H∗)1 jQNN,i j

+ (ω0 − H )Ni(ω0 − H∗)N jQ11,i j} , (B17)

where

Q = (ω0 − H ) ⊗ (ω0 − H∗)

(ω0 − H ) ⊗ 1 − 1 ⊗ (ω0 − H∗)
. (B18)

3. Optical theorem

We assume that the modulation of the emitters is performed
by an external signal. The back-action of the emitter system on
that signal can be accounted for by introducing the scattering
parameter s. Up to the second order in g, it reads

s = 1 − i
∑

i j

g∗
i �̃i jg j, (B19)

�̃i j =
[

1

� − H ⊗ 1 − 1 ⊗ H − U

]
ii, j j

. (B20)

In the absence of nonradiative losses, the optical theorem
imposes 2|s|2 + I+ + I− = 2. Therefore, we get

I+ + I−= − 4

γ1D
Im

∑
i j

g∗
i g j

[
1

� − H ⊗ 1 − 1 ⊗ H − U

]
ii, j j

.

(B21)
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In the limit U � γ1D, |� − 2ω0 − U | � γ1D, the result is
trivial:

I+ + I− = 8

(� − 2ω0 − U )2 + 4γ 2
1D

∑
i

|gi|2 . (B22)

4. Emission spectrum of a single emitter

The emission spectrum can be calculated as

S(ω) =
∫ |ψ−−|2 + |ψ−+|2

2πT γ1D
dω′. (B23)

In the case of a single emitter the wave function ψ−− = ψ−+
and it can be found from Eq. (B6):

ψ−−(ω,ω′) = gγ1D(� − 2ω0 + 2iγ1D)

(� − 2ω0 − U + 2iγ1D)

× 2πδ(� − ω − ω′)
(ω − ω0 + iγ1D)(ω′ − ω0 + iγ1D)

. (B24)

The integration in Eq. (B23) yields Eq. (6) in the main text.

APPENDIX C: TWO EMITTERS

Here we apply the results of Appendix B for the system of two emitters. The general explicit expressions are quite bulky so
we consider two special cases.

1. U � γ1D and |� − 2ω0 − U | � γ1D

In this limit, we get

G(2)
−−(0) = |g1 + g2e2iqd |2

(� − 2ω0 − U )2 + 4γ 2
1D

(C1)

and

I− = 1

(� − 2ω0 − U )2 + 4γ 2
1D

(7 − 3 cos 2qd )|g1|2 + (5 − cos 2qd )|g2|2 + 2 sin 2qd Im g1g∗
2

3 − cos 2qd
.

This yields Eqs. (8) and (9) in the main text.

2. Symmetric modulation, g1 = g2 = g

In this case, the two-photon emission is

G(2)
−−(0) = 4|g|2

∣∣∣∣ (� − 2ω0) cos qd + 2γ1D sin qd

(� − 2ω0 + 2iγ1D)(� − 2ω0 − U + 2iγ1D) + 4γ 2
1De2iqd

∣∣∣∣
2

. (C2)

Note that G(2)
−−(0) vanishes at � = 2ω0 − 2γ1D tan qd .

The single-photon emission intensity is found easily from the optical theorem

I+ = I− = 8|g|2 (� − 2ω0 + γ1D sin 2qd )2 + 2γ 2
1D(3 − cos 2qd ) sin2 qd∣∣(� − 2ω0 + 2iγ1D)(� − 2ω0 − U + 2iγ1D) + 4γ 2

1De2iqd
∣∣2 . (C3)

We note that I± has a minimum at � ≈ 2ω0 − γ1D sin 2qd . In particular, for qd = 0, we have I±(� = 2ω0) = 0.
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