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Multimode cavity quantum electrodynamics describes, for example, the coupling between an atom and a
multimode electromagnetic resonator. The gauge choice is important for practical calculations in truncated
Hilbert spaces, because the exact gauge invariance is recovered only in the whole space. An optimal gauge
can be defined as the one predicting the most accurate observables for the same number of atomic levels and
modes. Different metrics quantifying the gauge performance can be introduced depending on the observable of
interest. In this paper we demonstrate that the optimal choice is generally mode dependent, i.e., a different gauge
is needed for each cavity mode. While the choice of gauge becomes more important for increasing light-matter
interaction, we also show that the optimal gauge does not correspond to the situation where the entanglement
between light and matter is the smallest.
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I. INTRODUCTION

Cavity [1] and circuit quantum electrodynamics [2] (QED)
are branches of quantum physics that have attracted a great
deal of interest for a variety of fundamental quantum phenom-
ena and for applications in quantum information, thanks to
the manipulation of atoms by quantized electromagnetic fields
and vice versa. In many different platforms, it is nowadays
possible to enhance vacuum fields by spatial confinement
and achieve nonperturbative light-matter interactions between
atoms and resonators [3–5]. For practical calculations, one in
general is obliged to truncate the Hilbert space by reducing the
number of atomic levels, the number of modes, or the number
of photons in each mode. Gauge invariance is an important
property that holds in the global Hilbert space, but it is lost
when working in a subspace [6–8]. It is important to note that
some physical observables strongly depend on the gauge: in
the historic example of the 1s-2s two-photon absorption for
the hydrogen atom, the Coulomb gauge gives a zero effect in
a two-level approximation and, by increasing the number of
levels, converges much slower than the dipole gauge to the
exact result [6].

Ultrastrong light-matter interactions exacerbate these
gauge subtleties: several works in the literature have been
devoted to the so-called gauge ambiguities [8–12], especially
in the context of the quantum Rabi model, where the atom is
approximated by a two-level system and the cavity field has
a single mode. For practical calculations, one can introduce
the concept of optimal gauge, as done in a recent circuit
QED work [10]. In general the metric will depend on the
observables of interest, like for example the energy spectrum.
In Ref. [10], it was found that an optimal gauge is in general
a mixed gauge in between the dipole and Coulomb gauge and
was taken to be the same for all modes. Another work [13]
introduced a transformation that produces light-matter decou-
pling for large couplings with the goal to systematically derive
low-energy effective models. Recent multimode circuit QED

works considered for convenience a gauge of one kind (flux
gauge) for a set of low-frequency modes and a second gauge
(charge gauge) for a set of high-frequency modes [14,15]. The
state of the art points to an emergent fundamental interest for
optimal gauges regarding their efficiency, their properties, and
their relation with light-matter entanglement.

The goal of this paper is to investigate in a rigorous way
some key properties of optimal gauges by comparing the
predictions of truncated multimode cavity QED models to
the corresponding exact results. The paper is organized as
follows. In Sec. II, we introduce the theoretical framework,
focusing on the Hamiltonian model describing an atom cou-
pled to a multimode resonator. In Sec. III, we present results
concerning the optimal atomic basis truncation for a given
gauge (Sec. III A) and the optimal gauge for single-mode
(Sec. III B) and multimode cavities (Sec. III C). Moreover, we
study the relation between light-matter entanglement and the
optimal gauges in Sec. III D. Conclusions and perspectives are
drawn in Sec. IV.

II. THEORETICAL FRAMEWORK

In order to be able to compare exact results to truncated
models, we will consider the Hamiltonian model describing
an atom with a single degree of freedom [9,10], as represented
by the Hamiltonian

Ĥ0 = p̂2

2m
+ V (x̂), (1)

where V (x̂) is the potential energy depending on the co-
ordinate x̂ and p̂2

2m is the kinetic-energy operator depending
on the conjugate momentum operator p̂ and mass m. In the
Coulomb gauge, the Hamiltonian of the atom in the presence
of a quantum electromagnetic field described by the vector
potential operator Â reads

ĤC = 1

2m
( p̂ + qÂ)2 + V (x̂) + Ĥp, (2)
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where Â is the component of the vector potential along the
considered atom dimension and q is the charge. The opera-
tor Ĥp = ∑

k h̄ωkb̂†
kb̂k is the bare Hamiltonian of the photon

modes with frequencies ωk and bosonic creation (destruction)
operators b̂†

k (b̂k ). Assuming the spatial size of the atom is
much smaller than that of the electromagnetic modes, the spa-
tial dependence of the vector potential can be ignored. In this
limit, we can rewrite Â = ∑

Ak (b̂k + b̂†
k ), i.e., not depending

on the operator x̂. Under this approximation, the Coulomb
gauge Hamiltonian reads

ĤC = Ĥ0 + p̂

m

∑
k

qAk (b̂k + b̂†
k )

+ q2

2m

[∑
k

Ak (b̂k + b̂†
k )

]2

+ Ĥp. (3)

Another common choice is the dipole gauge, where the
Hamiltonian is given by

ĤD = Ĥ0 +
∑

k

ωkq2A2
k

h̄
x̂2 − ix̂

∑
k

ωkqAk (b̂†
k − b̂k ) + Ĥp.

(4)
In the dipole gauge the coupling between the atom and
the cavity occurs via the position operator x̂, while in the
Coulomb gauge it is via the momentum operator p̂. As the
two Hamiltonians describe exactly the same physical sys-
tem, the two are related by a unitary transformation, namely,
ĤD = ÛĤCÛ † where Û = exp iqx̂Â/h̄ is the Power-Zienau-
Woolley transformation [16]. Other than the Coulomb and
dipole gauges, there is an infinite number of possible choices.
A subset of possible gauge transformations can be generated
by the unitary operator Ûη = exp iηqx̂Â/h̄ [17] giving the
corresponding Hamiltonian Ĥη = ÛηĤCÛ †

η . The parameter
η interpolates continuously between the Coulomb (η = 0)
and dipole (η = 1) gauges. The resulting Hamiltonian can be
written as Ĥη = Ĥa

η + Ĥint
η + Ĥp

η with

Ĥa
η = p̂2

2m
+ V (x̂) + η2

∑
k

ωkq2A2
k

h̄
x̂2, (5)

Ĥint
η = (1 − η)

p̂

m

∑
k

qAk (b̂k + b̂†
k ) − iηx̂

∑
k

ωkqAk (b̂†
k − b̂k ),

(6)

Ĥp
η = 1

2m

[
(1 − η)

∑
k

qAk (b̂k + b̂†
k )

]2

+
∑

k

h̄ωkb̂†
kb̂k . (7)

While different gauges give rise to the same physics, each
part of the Hamiltonian is not gauge invariant. Indeed, the
atomic part, the photonic part, and the interaction part are
all different in different gauges. The purely photonic part is
quadratic in the creation and annihilation operators and thus
can be diagonalized by a Bogoliubov transformation.

The derivation of effective low-energy models is a cor-
nerstone of modern condensed-matter physics [18]. Formally,
effective models are obtained by projecting the full Hamil-
tonian Ĥ to a lower-dimensional subspace. The reduced
Hamiltonian is obtained via the projection Ĥr = P̂ĤP̂ where
P̂ = ∑

j |� j〉〈� j | with |� j〉 being a (finite or infinite) set

of orthonormal states. In general, the truncation of the
Hilbert space produces a breakdown of the gauge invariance
[6,9,10,17].

Gauge-dependent light-matter separability

Suppose that Ĥ and Ĥ′ correspond to the same system in
two different gauges and that they are linked by a unitary
transformation Û such that Ĥ = Û †Ĥ′Û . Note that P̂Ĥ′P̂
and P̂ĤP̂ are not connected by a unitary transformation and
do not produce the same energy spectrum. This conclusion
merely reflects the fact that P̂ is not gauge invariant. Since
the transformation between the different gauges is done by a
unitary transformation, if one wants to consider an equivalent
reduced model, also the projection operator needs to be ac-
cordingly transformed as P̂ ′ = Û †P̂Û . The reduced models
P̂ ′Ĥ′P̂ ′ and P̂ĤP̂ are physically equivalent and have the
same spectrum. However, if one wants to truncate only the
atomic part of the Hilbert space, as typically done, one has to
consider the projection P̂ = P̂ ⊗ 1p, where P̂ = ∑M

j=1 | j〉〈 j|
is a projector over a finite set of atomic levels, and 1p is
the identity operator for the photonic Hilbert space. It is
important to note that P̂ ′ generally cannot be written in the
factorized form P̂′ ⊗ 1p as it was assumed for P̂ . Namely,
the projection to a set of separable states in a given gauge
in general corresponds to a projection to a set of entangled
states in any other gauge. To avoid this complication, one
can consider only projections that are separable, with respect
to the chosen gauge. However, the reduced models obtained
under this restriction are not gauge invariant, thus implying
the existence of an optimal gauge in terms of accuracy.

A few recent works [11,12,19] have claimed that re-
duced models can be made gauge invariant by introducing
a projected gauge-fixing transformation. The essence of this
approach is to transform the Hamiltonian using P̂Û P̂ [12]
or Û (P̂ x̂P̂ ) [19]. The latter transformation is unitary, and
is restricted to the projected subspace. While the projected
Hamiltonian is invariant under this transformation, it still
depends on the initial choice of gauge, where the truncation
operation has taken place.

III. RESULTS AND DISCUSSION

A. Optimal atomic basis for a given gauge

Before we investigate the optimal gauge, we start with
the problem of how to perform the truncation of the atomic
Hilbert space. As shown in the previous section, the interac-
tion with the cavity leads to a renormalization of the atomic
potential, which is given by

V (eff)
η (x̂) = V (x̂) + η2

∑
k

ωkq2A2
k

h̄
x̂2. (8)

The additional gauge-dependent term (i.e., depending on η)
in the renormalized potential V (eff)

η (x̂) for strong interactions
or many modes can distort significantly the bare potential
V (x̂). Since the eigenstates of Ĥa

η are different from those

of the bare atomic Hamiltonian Ĥ0 without the cavity, one
can introduce a gauge-dependent projection [17] operator P̂η

that truncates the Hilbert space to the lowest-energy levels
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of Ĥa
η. As the truncated atomic levels now depend on the

gauge choice, one might naively expect to obtain a more
accurate model by considering the eigenstates of the atomic
Hamiltonian with the renormalized potential. Here we show
that, surprisingly, this is not the case. To demonstrate that,
we consider the celebrated quantum Rabi model, which in
recent works has been extensively investigated in the context
of gauge invariance [8–10,12,17]. The quantum Rabi model
is obtained by truncating the atomic Hilbert space to the two
lowest-energy levels. To address a concrete example, let us
study the case of a double-well potential given by

V (x̂) = Cx̂4 − Bx̂2, (9)

with B,C > 0. A simple scaling analysis shows that the spec-
tral anharmonicity of the bare Hamiltonian Ĥ0 depends on
a single dimensionless parameter γ = mB3

h̄2C2 . Increasing the
value of γ , the anharmonicity of the spectrum is enhanced. In
particular, the two lowest-energy levels can be well separated
from higher excited levels by increasing γ enough.

We denote by |ε (η)
0 〉 and |ε (η)

1 〉 the eigenstates of the renor-
malized atomic Hamiltonian Ĥa

η corresponding to the two

lowest-energy eigenvalues ε
(η)
0 and ε

(η)
1 . The projection opera-

tor to the corresponding two-dimensional subspace is given by
P̂η = P̂η ⊗ 1p with P̂η = |ε (η)

0 〉〈ε (η)
0 | + |ε (η)

1 〉〈ε (η)
1 |. The corre-

sponding quantum Rabi model reads

P̂ηĤηP̂η = − �(η)

2
σ̂z + (1 − η)

∑
k

gη,k
C σ̂y(b̂k + b̂†

k )

− iη
∑

k

gη,k
D σ̂x(b̂†

k − b̂k ) + Ĥp
η, (10)

where �(η) = ε
(η)
1 − ε

(η)
0 , gη,k

C = iqAk〈ε (η)
0 | p̂|ε (η)

1 〉/m, and
gη,k

D = ωkqAk〈ε (η)
0 |x̂|ε (η)

1 〉.
Alternatively, we can use the projector P̂0 = P̂0 ⊗ 1p, with

P̂0 = |ε0〉〈ε0| + |ε1〉〈ε1|, where |ε0〉 and |ε1〉 are the lowest-
energy levels of the bare atomic Hamiltonian Ĥ0, namely,
ε0 = ε

(η=0)
0 and ε1 = ε

(η=0)
1 . In this case we obtain

P̂0ĤηP̂0 = −
(

�

2
+

∑
k

η2δk

)
σ̂z

+
∑

k

(1 − η)gk
C σ̂y(b̂k + b̂†

k )

− i
∑

k

ηgk
Dσ̂x(b̂†

k − b̂k ) + Ĥp
η. (11)

Here � = ε1 − ε0, gk
C = iqAk〈ε0| p̂|ε1〉/m and gk

D =
ωkqAk〈ε0|x̂|ε1〉. Note that the additional correction

δk = ωkq2A2
k

h̄
(〈ε1|x̂2|ε1〉 − 〈ε0|x̂2|ε0〉)/2 (12)

results from the projection of the renormalization term pro-
portional to x̂2.

Now, let us compare the spectra of P̂ηĤηP̂η and P̂0ĤηP̂0,
which are the quantum Rabi models obtained by using the
two lowest-energy eigenstates of, respectively, the renormal-
ized and bare atomic Hamiltonian. In the following, we will
assume for simplicity Ak = A1 and consider only up to three

modes in order to have exact results for the full cavity QED
model. Note that depending on the spatial position of the
atom with respect to the spatial mode profiles, it is possible
in cavity systems to tailor the relative weight of the mode
vacuum fields. With this assumption for the mode vacuum
field amplitudes, we can use a single parameter

g = qA1|〈ε0|p|ε1〉|
m

(13)

to characterize the interaction strength in single or multimode
cavities. Of course, our theory can be applied to any arbitrary
set of vacuum field amplitudes Ak .

1. Exact calculations

To benchmark the behavior of the different gauges and
truncations, we have calculated the numerically exact energy
eigenvalues with the full Hamiltonian by discretizing the val-
ues of the spatial coordinate x and by introducing a cutoff for
the number of photons in each mode. The convergence in the
continuum limit has been carefully verified by decreasing the
spatial grid step and by increasing the photon number cutoff.
We have also carefully verified that we get the same energy
spectrum for every value of η, that is, for every gauge, as it
must be.

2. Bare versus renormalized atomic basis truncation

In Fig. 1 we compare the lowest-energy eigenvalues of
P̂ηĤηP̂η and P̂0ĤηP̂0 against the exact eigenvalues for the
full Hamiltonian. Here we fix η = 1, which corresponds to the
dipole gauge, where the renormalization term for the atomic
potential is the largest. Note that instead, for η = 0 (Coulomb
gauge), V (eff)

η=0 (x) = V (x). For η = 1, we first consider a single-
mode cavity (top panel), where the mode is resonant with the
atomic transition. In this case both reduced models fit well the
exact spectrum, and the difference between the two can barely
be resolved, even for strong light-matter interaction energy g
(compared to the atomic transition energy �). However, when
we add a second mode of high frequency (bottom panel) we
clearly see that P̂0ĤηP̂0 provides a much better agreement
compared to P̂ηĤηP̂η. Namely, projecting to the bare atomic
level basis |εi〉 provides a much better agreement with the
exact continuum model, while the basis |ε (η)

i 〉 provides a trun-
cation basis that is very inaccurate.

3. Shortcomings of the renormalized atomic basis

The fact that the truncation in the renormalized atomic
basis introduces a significant error is not so surprising once
we inspect Eq. (8) and see that all modes can contribute to the
renormalization of the atomic potential, even when the photon
energy h̄ωk is much larger than the light-matter interaction en-
ergy g and the atomic transition energy �. Another additional
argument explaining the significant error associated to the
truncation on the renormalized atom basis (P̂ηĤηP̂η) can be
attributed to the “arbitrariness” of the renormalized potential
in Eq. (8), as we explain below. Suppose the atomic “trap-
ping” potential is shifted by a constant distance d , such that
V (x̂) → V (x̂ − d ). The bare atomic spectrum is not changed
by this translation, while the new eigenstates are related to
the old ones by a simple translation. The same applies to the
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FIG. 1. Comparison of the light-matter energy eigenvalues (mea-
sured with respect to the ground-state energy) in the dipole gauge
(η = 1) for the full Hamiltonian (exact results, black lines), for the
model with the truncation in the bare atomic basis (P̂0ĤηP̂0, green
dashed lines) and for that truncated in the renormalized atomic basis
(P̂ηĤηP̂η, red dotted lines). (a) Single-mode cavity with h̄ω1 = � =
ε1 − ε0 (cavity mode resonant to the energy transition between the
bare atomic ground state and first excited level). (b) Two-mode
cavity with h̄ω1 = � and h̄ω2 = 20�. The bare atomic potential
is given by Eq. (9) with anharmonicity parameter γ = 64, giving
(ε2 − ε0 )/(ε1 − ε0 ) � 26, where ε0, ε1, and ε2 are the three lowest-
energy eigenvalues of the bare atomic Hamiltonian.

full Hamiltonian in the presence of the cavity field, assuming
the cavity mode amplitude remains the same in the shifted
position. It would be natural to require that the projected
Hamiltonian would also satisfy this trivial symmetry. How-
ever, if we project the Hamiltonian using the |ε (η)

i 〉 basis,
the results would depend on the constant d . This is because
the second term in the effective potential remains unchanged,
so that V (eff )

η (x̂) �→ V (eff )
η (x̂ − d ). Hence the projected model

P̂ηĤηP̂η would depend on the arbitrary constant d , unlike
P̂0ĤηP̂0. Furthermore, the effective potential can be also
modified by a unitary transformation that acts only on the
photonic part. For instance, the transformation U = eis(b̂1+b̂†

1 )

would add the term ηsω1qA1x̂ to V (eff )
η (x̂), and thus change the

levels |ε (η)
i 〉 and the spectrum of the projected model P̂ηĤηP̂η.

To conclude, although V (eff )
η (x̂) does not involve photonic op-

erators, it should not be interpreted as a pure atomic potential
and the truncation in its basis of energy eigenstates can lead
to strongly inaccurate results.

Note that previous works in the literature have focused
on a single-mode cavity and on the resonant case h̄ω1 = �

with a highly anharmonic double-well potential for the atom
[9,12]: in this configuration the truncation in the renormalized
atom basis turns out to be a good approximation even for very
strong interaction strengths. For the double-well potential, the
effective renormalization of the potential is negligible when∑

k ωkq2A2
k/h̄ 	 B. For the anharmonicity of γ = 64 con-

sidered in the figures discussed above, the two sides of this
inequality are equal when g/� ≈ 8. Therefore, in Fig. 1(a)
we have P̂η ≈ P̂0. Indeed, the difference between the two
projected models can be barely resolved.

B. Optimal gauge for a single-mode cavity

Having clarified that the reduced model is gauge dependent
and how to choose the basis for truncation (the bare one),
we now address the problem of finding the optimal gauge.
Namely, we search for the gauge where P̂0ĤηP̂0 best repre-
sents the low-energy physics of Ĥη. It should be noted that
the comparison of different gauges depends on the observable
of interest, and therefore different metrics can be used. The
difference between the low-energy spectrum of the full and the
reduced models can be quantified for example by the standard

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
η

10−3

10−1

101

σ
/Δ

h̄ω/Δ =

0.1
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10.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
η
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10−3

10−1

1
−
F

FIG. 2. Optimal gauge for a single-mode cavity. Top panel: The
energy spectrum deviation σ , defined in Eq. (14), between the exact
spectrum and that predicted by the truncated model, as a function
of the gauge parameter η. Bottom panel: The ground-state infidelity
1 − F between the truncated and exact models, as a function of η.
The different curves correspond to different cavity mode frequencies,
as indicated in the legend. The interaction strength is g = 0.8�

in all plots (see definition in the text). Other parameter: M = 7
(we consider the first seven excitation energies of the cavity QED
Hamiltonian).
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FIG. 3. Optimal gauge for two-mode cavity systems. The energy spectrum deviation σ is plotted as a function of the gauge parameters η1

and η2 corresponding to the two modes. Panels (a)–(d) are for a two-mode cavity with frequencies h̄ωk/� = (1, 0.5) (a), (1, 10) (b), (1, 30)
(c), and (1, 200) (d). The interaction strength is g = 0.6� in all panels. The dashed lines indicate the uniform gauge condition where η1 = η2.
The standard Coulomb (C) and dipole (D) gauges are indicated in the figure. The optimal gauge is indicated by a red cross marker.

deviation

σ =
√√√√ M∑

i=1

(
Ei − E (η)

i

)2
/M, (14)

which involves the first M excitation energies Ei (E (η)
i ) with

respect to the ground state of the light-matter system for the
full (truncated) cavity QED model [20]. In order to quantify
the accuracy of the ground-state wave function, we have also
considered the ground-state fidelity:

F = ∣∣〈ψ (η)
0

∣∣� (η)
0

〉∣∣2
, (15)

where |ψ (η)
0 〉 and |� (η)

0 〉 are the ground states of the truncated
model and the full Hamiltonian both in the same η gauge.

In Fig. 2, we plot the spectral deviation σ and the ground-
state fidelity F for a single-mode cavity for different mode
frequencies as a function of the gauge parameter η. When
comparing the energy spectrum (Fig. 2, top panel), we find
that the dipole gauge (η = 1) always produces the best results,
in accordance with previous studies [9].

The behavior of the ground-state fidelity, plotted in the
bottom panel of Fig. 2, is starkly different from the spectral
deviation σ . Indeed, even with only one mode, the optimal
gauge best approximating the ground state is not the dipole
gauge. In particular, by increasing the cavity mode frequency
the optimal η decreases and the overall accuracy decreases.

C. Mode-dependent optimal gauge

For a single-mode cavity, we have seen earlier that the
reduced model in the dipole gauge provides the most ac-
curate spectrum, in agreement with previous studies [9].
However, when we have more than one mode this is no longer
the case. A two-mode quantum Rabi model was studied in
Ref. [10], where it was shown that the optimal gauge is nei-
ther the Coulomb gauge nor the dipole one, but rather some
intermediate gauge such that 0 < η < 1. However, in
Ref. [10] the same gauge was assumed for each mode. The
case of a Josephson atom coupled to a manifold of modes in a
transmission line resonator was recently explored in Ref. [14],
where one gauge was used for a set of low-frequency modes
and one another gauge was taken for a set of high-frequency
modes. Yet, given the complexity of the system, it was not
investigated which gauge was optimal.

Here, we address this problem in the considered frame-
work by replacing η by the set {ηi}, thus allowing a different

gauge for every cavity mode. Let us now introduce the mode-
dependent transformation:

Û{η} =
∏

k

exp iηkqx̂Ak (b̂k + b̂†
k )/h̄. (16)

The transformed Hamiltonian Ĥ{η} = Û{η}ĤCÛ †
{η} can be writ-

ten as Ĥ{η} = Ĥa
{η} + Ĥint

{η} + Ĥp
{η} with

Ĥa
{η} = p̂2

2m
+ V (x̂) +

∑
k

η2
k

ωkq2A2
k

h̄
x̂2, (17)

Ĥint
{η} = p̂

m

∑
k

(1 − ηk )qAk (b̂k + b̂†
k ) − ix̂

∑
k

ηkωkqAk (b̂†
k − b̂k),

(18)

Ĥp
{η} = 1

2m

[∑
k

(1 − ηk )qAk (b̂k + b̂†
k )

]2

+
∑

k

h̄ωkb̂†
kb̂k .

(19)

Once again, our goal is to compare exact results to the
prediction of gauge-dependent truncated models. For the
mode-dependent gauge, P̂0Ĥ{η}P̂0 is given by Eq. (11) with
η → ηk and Ĥp

η → Ĥp
{η}. Similarly, we define the spectrum

deviation σ as in Eq. (14), where here E (η)
i → E {η}

i .
In Fig. 3 we plot the spectrum deviation σ as a function of

the gauge parameters {ηi} for the case of a two-mode cavity.
In all panels we keep one mode frequency resonant with the
first atomic transition. As shown in Fig. 3(a), when the second
mode has a low frequency with the respect to the atomic
transition, the dipole gauge for both modes (η1 = η2 = 1)
produces the most accurate model, as in the single-mode case.
However, as reported in Figs. 3(b)–3(d), when the second
mode frequency is high with respect to the atomic transition
frequency �, this is no longer the case. While η1 = 1 is still
optimal for the resonant mode, the optimal η2 can vary signif-
icantly when ω2 is large with respect to the atomic transition.
In Fig. 4 we consider a three-mode cavity (here we fix η3 = 1
for the third mode). Again, we find that generally the optimal
gauge is neither the dipole nor the Coulomb gauge and, most
importantly, is mode dependent.

D. Optimal gauge versus light-matter entanglement

The light-matter entanglement is not gauge invariant. This
can be easily understood by noting that the transformation
Û{η} �= Ûa ⊗ Ûp, i.e., it does not act separably on the atomic
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FIG. 4. Optimal gauge for three-mode cavity systems. The en-
ergy spectrum deviation σ is plotted as a function of the gauge
parameters η1 and η2 corresponding to the first two modes. Panels
(a) and (b) are for a cavity with frequencies h̄ωk/� = (10, 30, 1)
(a) and (50, 150, 1) (b). The interaction strength is g = 0.6� in both
panels.

and photonic sectors. For the purpose of obtaining a reduced
model, a fundamental question is whether the optimal gauge
is somewhat related to the degree of entanglement. In this
respect, it is certainly interesting to explore how the entan-
glement is modified when we project the full Hamiltonian to
a truncated subspace. In the recent Ref. [13], it was discussed
that low light-matter entanglement is desirable for an effective
theory, since light-matter interaction can be handled more
efficiently. To address this problem, here we investigate the
gauge-dependent behavior of the ground-state entanglement
in truncated models, together with the spectral deviation σ

and ground-state fidelity F that we have already encountered
in the previous sections.

The entanglement can be quantified by the entropy

S (ρp) = −Tr[ρp ln ρp] (20)

where ρp is the photonic reduced density matrix obtained by
tracing out the atomic degrees of freedom. In the top panels
of Fig. 5, we report the entanglement entropy of the ground
state for a single-mode [Figs. 5(a) and 5(b)] or two-mode
[Fig. 5(c)] cavity. In particular, we plot the exact results
for the full Hamiltonian (black-dotted) and for the truncated
model (green dashed) as a function of the gauge parameter η.

In the bottom panels [Figs. 5(d)–5(f)], we display the corre-
sponding values of the ground-state infidelity 1 − F (solid)
and spectral deviation σ (dot-dashed). Figures 5(a) and 5(d)
are for the case of a cavity mode resonant to the atomic
transition frequency �. In this situation, the dipole gauge is
optimal (with respect to σ , and approximately for 1 − F).
However, the entanglement is minimal for a gauge parameter
in between the Coulomb and dipole gauges. Figures 5(b) and
5(e) are for the same configuration, but with a normalized
coupling g/� three times larger than in Figs. 5(a) and 5(d).
In this case the difference between the entanglement of the
full and the truncated models is increased, and the minimal
entanglement is obtained for a different η. Interestingly, for
a single-mode cavity, there is a value of η where the ground
state is not entangled in the truncated model. This point is
identified with the vanishing of the nonrotating-wave terms
so that the system is described [17] by the Jaynes-Cummings
Hamiltonian. However, we note that for the full Hamiltonian
the entanglement entropy minimum is not zero. Moreover,
the optimal gauge for the spectral deviation and ground-state
fidelity occurs for different values of η.

Figures 5(c) and 5(f) are for a two-mode cavity. In this case,
we fix η1 = 1. The optimal η2 for the spectral deviation and
ground-state fidelity is in between the Coulomb and dipole
gauges. Again, these optimal gauges do not correspond at all
to a minimum of the ground-state entanglement. Finally, we
note that the optimal gauge is not when the entanglement is
high or low, but rather when the entropy difference between
the full and reduced models is minimal.

IV. CONCLUSIONS

In conclusion, we have shown that the optimal gauge for
a truncated multimode cavity QED model is in general mode
dependent. Moreover, the optimal gauge can strongly depend
on the observables of interest. In this paper, we have fo-
cused on the spectral deviation (quantifying how the truncated
model predicts the energy spectrum) and the ground-state fi-
delity (quantifying how the truncated model can approximate
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FIG. 5. The ground-state entanglement entropy S of the full (black dotted) and of the truncated model (green dashed) is plotted in the top
panels (a), (b), and (c) as a function of the gauge parameter η. The spectral deviation σ (dot-dashed) and the ground-state fidelity F (solid) are
plotted as a function of η in the bottom panels (d), (e), and (f). Panels (a) and (d) are for a single-mode cavity with h̄ω = � and g/� = 0.4,
while for panels (b) and (e) the coupling is g/� = 1.2. Panels (c) and (f) are for a two-mode cavity with h̄ωk = (1, 20)� and g/� = 0.6. The
gauge of the first mode is fixed (η1 = 1).
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the ground-state wave function). While the gauge dependence
of a truncated cavity QED model is enhanced by strong
light-matter interaction, we have shown that the degree of
light-matter entanglement is not correlated to the optimal
gauge. Indeed, the optimal gauge does not correspond at all to
the minimum of light-matter entanglement. In our paper, we
have considered relatively simple cavity QED systems where
it has been possible to compare the results of the full model
to the truncated model, thus allowing us to rigorously deter-
mine the optimal gauges. An open problem that represents a
fascinating perspective for the future is the search for some
criteria that allow one to systematically determine the optimal
gauges for arbitrary models. This is an interesting issue that is

certainly crucial to tackle more complex cavity QED systems
with a larger number of atomic degrees of freedom and cavity
modes.
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