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Complete spectral characterization of biphotons by simultaneously determining their frequency
sum and difference in a single quantum interferometer
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We propose theoretically a quantum interferometer in which the NOON state interferometer is combined
with the Hong-Ou-Mandel interferometer. With this interferometer, the temporal interference patterns associated
with biphoton frequency sum and difference can be shown in different parts of a single interferogram. It is
thus possible to simultaneously obtain the spectral correlation information of biphotons in both frequency
sum and difference by taking the Fourier transform from such an interferogram. This provides a method for
complete spectral characterization of an arbitrary two-photon state with exchange symmetry and might be useful
in quantum Fourier-transform spectroscopy where direct spectral measurement is difficult. Furthermore, as it
can realize the measurement of time intervals on three scales at the same time, we expect that it can provide a
method in quantum metrology. Finally, we discuss another potential application of such an interferometer in the
generation and characterization of high-dimensional and phase-controlled frequency entanglement.
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I. INTRODUCTION

Quantum interferometry [1], the heart of various quantum
technology applications, can be realized by different quantum
interferometer such as the Hong-Ou-Mandel interferometer
(HOMI) [2,3] and the NOON state interferometer (NOONI)
[4]. These interferometers have been used to demonstrate
various nonclassical features of entangled photons such as
the violation of Bell’s inequality [5] and dispersion cancel-
lation [6–8]. The HOMI has many important applications in
quantum information science, e.g., quantum communication
[9], quantum computing [10], quantum imaging [11,12], and
quantum metrology [13–15]. The NOONI has been widely
used in quantum lithography [4,16], quantum high-precision
measurement [17–19], quantum microscopy [20–22], error
correction [23], and so on.

It is well known that using the interferometric spectrometer
technology established by the Wiener–Khinchin theorem in
classical optics, it is possible to extract the spectral informa-
tion of light by making a Fourier transform on its time-domain
interferograms obtained from Mach-Zehnder or Michelson
interferometers. Jin et al. [24–26] extended the Wiener-
Khinchin theorem to a quantum version where the biphoton
spectral information of frequency difference and frequency
sum between signal and idler photons can be extracted by
applying a Fourier transform on the time-domain patterns of
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the HOMI and NOONI, respectively. This can be considered
as a kind of quantum Fourier-transform spectroscopy. How-
ever, the HOMI only depends on the frequency difference,
and the NOONI only depends on the frequency sum, making
these two interferometers access only one-dimensional (1D)
information in frequency difference or frequency sum, which
is mismatched with two-photon states in two dimensions
[24,27]. To solve this problem, Abouraddy et al. [28] theoret-
ically proposed a linear two-photon interferometer containing
two independent delays, but it is relatively hard to realize in
an experiment. Alternatively, a two-dimensional (2D) joint
spectral intensity (JSI) associated with the frequency sum
and difference and its Fourier transform, joint temporal in-
tensity (JTI), associated with the time difference and sum
can be obtained directly in an experiment, but it is rather
challenging and impractical, especially for the broadband
spectrum [29,30]. A comparative study of various different
techniques on spectral characterization of biphotons, as well
as their relative advantages and disadvantages can be found in
Ref. [31].

In this paper, we propose a type of quantum interfer-
ometer in which the NOONI is combined with the HOMI.
This interferometer depends on both frequency sum and fre-
quency difference and combines the advantages of both the
NOONI and the HOMI into a single interferometer. The
temporal interference patterns associated with biphoton fre-
quency sum and difference can be shown in different parts
of a single interferogram. It can thus simultaneously obtain
the spectral correlation information of biphotons both in fre-
quency sum and frequency by taking the Fourier transform
of the time-domain quantum interferograms obtained from
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FIG. 1. Schematic diagram of the proposed quantum interferometer. It can be considered as a combination of the NOON state interferom-
eter (the left part) and the HOM interferometer (the right part). M: Mirror, BS: beam splitter, D: detector, &: coincidence count.

such an interferometer. This may be especially useful for
quantum Fourier-transform spectroscopy where direct spec-
tral measurement is difficult. The specific interferograms of
the interferometer depend on the exchange symmetry of the
biphoton and the ratio between the width of frequency differ-
ence and frequency sum, which correspond to different types
of frequency entangled resources, such as frequency corre-
lated, uncorrelated, or anticorrelated. Therefore, the proposed
interferometer can be used for complete spectral characteriza-
tion of an arbitrary two-photon state with exchange symmetry.
Moreover, as it can realize the measurement of time inter-
vals on three scales at the same time, we expect that it can
provide a method in quantum metrology. Finally, we discuss
another potential application of such an interferometer in
the generation and characterization of high-dimensional and
phase-controlled frequency entanglement.

The rest of the paper is organized as follows: In Sec. II,
we describe the setup of the proposed interferometer and
discuss several interferometric results based on its coinci-
dence count rates derived theoretically from the frequency
domain. In Sec. III, we give some typical interferograms
of the interferometer for different types of frequency-
entangled resources and make a characteristic analysis of the

interferometer. In Sec. IV, we compare our results with that
of the NOONI and HOMI and discuss potential applica-
tions of such an interferometer in quantum Fourier-transform
spectroscopy, quantum metrology, generation, and character-
ization of high-dimensional and phase-controlled frequency
entanglement. Section V summarizes the results and con-
cludes the paper.

II. THEORY OF THE COMBINATION INTERFEROMETER

In this part, we propose a quantum interferometer with the
setup shown in Fig. 1. To understand better such an interfer-
ometer, it can be considered as a combination of the NOONI
(the left part) and the HOMI (the right part). The biphotons
are generated by the spontaneous parametric down-conversion
(SPDC) or spontaneous four-wave-mixing process. As de-
rived in Appendix A, the coincidence count rates between two
detectors (D5 and D6) as functions of time delay τ1 and τ2 for
the combination interferometer can be expressed as

R(τ1, τ2) = 1

64

∫ ∞

0

∫ ∞

0
dωsdωir(ωs, ωi, τ ), (1)

where r is the coincidence probability density, which reads

r(ωs, ωi, τ1, τ2) = | f (ωs, ωi )(e
−iωs (τ1+τ2 ) + e−iωsτ1 + e−iωsτ2 − 1)(e−iωi (τ1+τ2 ) − e−iωiτ1 − e−iωiτ2 − 1)

+ f (ωi, ωs)(e−iωi (τ1+τ2 ) + e−iωiτ2 − e−iωiτ1 + 1)(e−iωs (τ1+τ2 ) − e−iωsτ2 + e−iωsτ1 + 1)|2, (2)

where f (ωs, ωi ) is the joint spectral amplitude (JSA) of the signal and idler photons. The specific expression of r depends on the
symmetry of the JSA. For simplicity, we assume that the JSA is symmetric, i.e., f (ωs, ωi ) = f (ωi, ωs) in our discussions below.
Assuming that ωs = ωp/2 + �s and ωi = ωp/2 + �i, where �s,i is the frequency detuning between the signal (idler) photon
and half of the pump center frequency ωp/2, then Eq. (2) can be expressed as the form of frequency sum �+ = �s + �i and
frequency difference �− = �s − �i,

r(�+,�−, τ1, τ2) = 32| f (�+,�−)|2{1 − 1
2 cos[(ωp + �+)τ1] cos(�−τ2) − 1

2 cos[(ωp + �+)τ2] − 1
2 cos(�−τ2)

+ 1
4 cos[(ωp + �+)(τ2 + τ1)] + 1

4 cos[(ωp + �+)(τ2 − τ1)]
}
. (3)

In general, the JSA cannot be factorized as a product of f (ωs)
and f (ωi ). However, f (�+,�−) can be factorized as a prod-
uct of f+(�+) and f−(�−) in terms of collective coordinate
�+ and �−, i.e., f (�+,�−) = f+(�+) f−(�−) [30]. Equa-
tion (3) can then be integrated independently with respect to
�+ and �−. If we define F (�±) = | f±(�±)|2, its Fourier

transform would be

G±(τ ) = 1√
2π

∫ ∞

−∞
F (�±)ei�±τ d�±. (4)

Integrating Eq. (3) over the entire frequency range, it is found
that R(τ1, τ2) can be expressed as functions of G(τ ). We can
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thus obtain the normalized coincidence count rates,

RN (τ1, τ2) = 1 − 1
2 g+(τ1)g−(τ2) − 1

2 g+(τ2) − 1
2 g−(τ2)

+ 1
4 g+(τ2 + τ1) + 1

4 g+(τ2 − τ1), (5)

where g±(τ ) = Re[G±(τ )/G±(0)]. Equation (5) is the central
equation of the present paper. It can be seen from Eqs. (3)
and (5) that the result of the combination interferometer is
determined by both frequency sum and frequency difference,
which is quite different from the NOON state interference
determined only by the frequency sum and the standard HOM
interference determined only by the frequency difference for
the symmetric JSA [24,27] (see also Appendix C). In other
words, Eq. (5) contains complete spectral information of
biphotons associated with both frequency sum and difference,
which can be obtained by making a Fourier transform of a
single time-domain quantum interferogram obtained from the
combination interferometer. Additionally, it can be found that
if τ1 = 0, Eq. (5) will reduce to that of a standard HOM
interference [24]. This is because the two beam splitters (BS1
and BS2) play a role of unit transformation matrix, leading to
the same output states (3 and 4) as the input (s and i). On the
other hand, if τ2 = 0, the coincidence count rates will always
be equal to zero. It means that, whatever τ1, the two outputs
3 and 4 are indistinguishable. In this case, the output states (3
and 4) are the same as the input states (s and i) except for a
global phase introduced by the delay time τ1, and the global
phase does not affect the final result. Thus, the output states
3 and 4 are indistinguishable, resulting in a zero coincidence
count at τ2 = 0 because of destructive interference.

As an example, we take the symmetric JSA as the
products of two Gaussian functions, i.e., f (�+,�−) =
exp(−�2

+/4σ 2
+) exp(−�2

−/4σ 2
−), where σ± denote the

linewidth of two functions determined by the linewidth of
pump pulse and the phase-matching condition, respectively.
Equation (5) now becomes

RN (τ1, τ2) = 1 − 1
2 cos(ωpτ1)e−σ 2

+τ 2
1 /2e−σ 2

−τ 2
2 /2

− 1
2 cos(ωpτ2)e−σ 2

+τ 2
2 /2 − 1

2 e−σ 2
−τ 2

2 /2

+ 1
4 cos[ωp(τ2 + τ1)]e−σ 2

+(τ2+τ1 )2/2

+ 1
4 cos[ωp(τ2 − τ1)]e−σ 2

+(τ2−τ1 )2/2. (6)

Equation (6) involves the four timescales, i.e., τ1, τ2 and the
inverse linewidths 1/σ+, 1/σ−. If we set τ1 to be a fixed value,
then Eq. (6) becomes only a function of τ2. In this case, the
last two terms in Eq. (6) correspond to two identical interfer-
ograms involving a cosine oscillation with a period of 2π/ωp

centered at ±τ1. If τ1 < 1/σ+, these two interferograms will
gradually overlap and become fully indistinguishable as τ1

decreases to be zero. Thus, if one would like to distinguish
these two interferograms, τ1 must be much larger than the
inverse linewidth 1/σ+. If so, the second term in Eq. (6) will
tend to be zero. Equation (6) can then be simplified as

RN (τ1, τ2) = 1 − 1
2 cos(ωpτ2)e−σ 2

+τ 2
2 /2 − 1

2 e−σ 2
−τ 2

2 /2

+ 1
4 cos[ωp(τ2 + τ1)]e−σ 2

+(τ2+τ1 )2/2

+ 1
4 cos[ωp(τ2 − τ1)]e−σ 2

+(τ2−τ1 )2/2. (7)

For a fixed value of τ1, the second term in Eq. (7) represents
a cosine oscillation centered at τ2 = 0 with a temporal width
of the envelope that is inversely proportional to the linewidth
σ+ and with an interference visibility of 1/2. The period of
the oscillation is determined by the pump center frequency
ωp. The third term in Eq. (7) corresponds to a standard HOM
dip centered at τ2 = 0 with a temporal width that is inversely
proportional to the linewidth σ− and with an interference vis-
ibility of 1/2. The last two terms in Eq. (7) correspond to two
identical oscillations around ±τ1 both with a temporal width
of the envelope that is inversely proportional to the linewidth
σ+ and with an interference visibility of 1/4.

If τ2 is a nonzero constant and τ2 � 1/σ+, Eq. (7) can be
further simplified to

RN (τ1, τ2) = 1 + 1
4 cos[ωp(τ1 + τ2)]e−σ 2

+(τ2+τ1 )2/2

+ 1
4 cos[ωp(τ1 − τ2)]e−σ 2

+(τ2−τ1 )2/2. (8)

In this case, the coincidence count rate is only the function of
τ1, and the interferogram will only contain two-side oscilla-
tions around ±τ2 with a temporal width of the envelope that
is inversely proportional to the linewidth σ+.

III. CHARACTERISTIC ANALYSIS OF THE
COMBINATION INTERFEROMETER

To understand better the characteristic of the combina-
tion interferometer, we give some typical interferograms for
different types of frequency correlation based on Eq. (7).
Figures 2(a)–2(c) show the typical interferograms for the
combination interferometer as a function of σ+τ2 at σ+τ1 =
5 for frequency anticorrelated, correlated, and uncorrelated
resources, respectively. We can see that the temporal inter-
ference patterns associated with biphoton frequency sum and
difference can be shown in different parts of an interfero-
gram for all type of frequency entangled resources. It can
thus obtain simultaneously the spectral correlation informa-
tion of biphotons both in frequency sum and frequency by
taking the Fourier transform of the upper (green) or lower
(orange) envelopes of the interferograms in Fig. 2. Addition-
ally, the interferograms in Fig. 2 contain the information of
three timescales, i.e., the temporal width of the envelope of
two-side interferograms determined by the inverse linewidth
1/σ+, the temporal width of the middle dip determined by
the inverse linewidth 1/σ−, and the time interval between
two-side interferograms determined by ±τ1. It can thus re-
alize the measurement of time intervals on three scales at
the same time in a single experiment, which might be useful
in quantum metrology. For frequency anticorrelated resource
[Fig. 2(a)], the width of frequency difference is much larger
than the width of frequency sum, as a result, there is a
narrow dip around σ+τ2 = 0 and a wider envelope of two-
side interferograms around σ+τ1 = ±5 due to their inverse
dependence with respect to the linewidth of frequency differ-
ence and sum, respectively. However, for frequency correlated
resource [Fig. 2(b)], the width of frequency sum is much
larger than the width of frequency difference, resulting in a
wider dip around σ+τ2 = 0 and a narrow envelope of two-side
interferograms around σ+τ1 = ±5. For frequency uncorre-
lated resource [Fig. 2(c)], the width of frequency sum is
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FIG. 2. Typical interferograms of the combination interferometer as a function of σ+τ2 at σ+τ1 = 5 for (a) frequency anticorrelated
(σ+/σ− = 0.1), (b) frequency correlated (σ+/σ− = 10), and (c) frequency uncorrelated (σ+/σ− = 1) resources. The temporal interference
patterns associated with biphoton frequency sum and difference can be shown in different parts of an interferogram for all type of frequency
entangled resources. The green and orange curves denote the upper and lower envelopes of the interferograms, respectively. The time delays
are in units of the inverse of σ+. The insets are the corresponding JSIs with the same amplitude of horizontal and vertical coordinates.

identical to the width of frequency difference, resulting in the
same width of the middle and the two-side interferograms.
Therefore, one can distinguish different types of frequency
correlation by only observing a single time-domain quantum
interferogram obtained from the combination interferome-
ter. Conversely, one can also characterize different types of
frequency correlation by using only a single time-domain
quantum interferogram.

To explore the effect of different degree of frequency
correlation (the degree of frequency entanglement) on the
interferogram, we plot the envelopes of the interferograms
as a function of σ+τ2 at σ+τ1 = 5 for frequency anticorre-
lated and frequency correlated resources at different ratios
σ+/σ−, as shown in Fig. 3. For frequency anticorrelated re-
source [Fig. 3(a)], the width of the two-side envelopes and

the central envelope of RN above 1/2 decreases with the
increase of ratios σ+/σ− (equivalent increase of σ+), because
their widths are only determined by biphoton frequency sum.
The central envelope of RN below 1/2 remains unchanged
due to the same width of biphoton frequency difference.
The widths tends to be identical as the ratios increase to
be one. For frequency correlated resource [Fig. 3(b)], the
width of the two-side envelopes remains unchanged due to
the fixed value of σ−. The central envelope of RN above
1/2 increases with the increase of ratios σ+/σ− (equivalent
decrease of σ−), because their widths are only determined by
biphoton frequency sum. Therefore, one can also determine
the degree of frequency entanglement of biphoton source by
estimating the ratio σ+/σ− obtained from the combination
interferometer.

FIG. 3. The envelopes of the interferograms of the combination interferometer as a function of σ+τ2 at σ+τ1 = 5 for (a) frequency
anticorrelated and (b) frequency correlated resources at different ratios σ+/σ−. The black lines correspond to the results of the frequency
uncorrelated resources, as a contrast.
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IV. DISCUSSION

Based on the combination interferometer, we can build a
bridge between a two-dimensional (2D) spectral correlation
information of biphotons containing frequency sum and dif-
ference and one-dimensional (1D) time-domain interference
patterns in a single quantum interferometer. By directly tak-
ing Fourier transform of the envelope of an interferogram
obtained from the combination interferometer, one can obtain
the complete spectral information of biphotons both in fre-
quency sum and difference, i.e., the distributions of | f+(�+)|2
and | f−(�−)|2. Finally, the JSI can be reconstructed by their
product. A direct application of such an interferometer can be
found in the field of quantum Fourier-transform spectroscopy
[26,32,33], especially for those spectra whose spectral range
is not easy to obtain by the conventional spectrograph.

It should be noted that it can be seen from Eqs. (4) and (5)
that the results of the time-domain interference of the com-
bination interferometer are only determined by the intensity
(not the amplitude) of the biphoton field. This holds for the
HOMI and the NOONI, too. It means that these interferome-
ters are not sensitive to the phase of the biphoton field, making
it more convenient to measure in an experiment. However,
the JSA is sensitive to the phase and is difficult to measure
experimentally. If one would like to completely characterize
the two-photon state, it is necessary to measure not only the
amplitude but also the phase of the biphoton state, as shown
in Refs. [34,35].

In the analysis above, we only consider the case of sym-
metric JSA, but we can see from Eq. (2) that the results
of the combination interferometer are different for various
symmetry of the JSA. In the HOMI, if the JSA is symmetric,
i.e., f (ωs, ωi ) = f (ωi, ωs), it will result in the bunching effect,
a feature associated with bosonic statistics [2]. If the JSA
is antisymmetric, i.e., f (ωs, ωi ) = − f (ωi, ωs), however, this
will lead to the antibunching effect, a feature associated with
fermionic statistics [36,37]. These effects have been demon-
strated in spatial degree of freedom (DOF) [38], frequency
DOF [39], and both DOFs of polarization and orbital angular
momentum [40]. Also, the influence of the exchange sym-
metry of the biphoton on the coincidence measurement of
both the HOMI and the NOONI has been studied recently in
Ref. [41]. For the HOMI, coincidence counts always depend
on frequency difference of biphotons, whether the JSA is
symmetric, antisymmetric, or anyonic, and a continuous de-
formation of coincidence counts happens from a dip obtained
with a symmetric JSA to a peak obtained with an antisymmet-
ric JSA. However, this is not the case for the NOONI where it
depends on biphoton frequency sum for the symmetric JSA
but on the frequency difference for the antisymmetric JSA
[41]. In our case, the combination interferometer will always
depend on both frequency difference and sum whatever the
JSA is symmetric or antisymmetric. If the JSA is antisymmet-
ric, the sign of all terms in Eq. (5) except the first constant
term will be flipped. Analogously, it can be predicted that the
change of the exchange symmetry of the JSA from symmetric
to antisymmetric will flip the interferograms in Fig. 2 along
y > 0 axis at the baseline of RN = 1. Therefore, it is definite
that the combination interferometer can be used to com-
pletely characterize the spectral features of biphotons for both

symmetric and antisymmetric JSA. But for the JSA with any-
onic symmetry, the situation will become more complicated.
For example, as discussed in Ref. [27], the asymmetry of
JSA leads to the degradation of interference visibility in both
the HOMI and the NOONI, and the Fourier transform of the
interferograms is definitely not corresponding to the spec-
trum of biphoton frequency sum and difference. A possible
way to solve this issue is that we can create a superposition
state F (ωs, ωi ) = f (ωs, ωi ) + f (ωi, ωs), which satisfies the
exchange symmetry condition. Experimentally, this can be
realized by placing a nonlinear crystal inside an interferom-
eter, as reported in Ref. [42]. Then, the spectral information
with f might be extracted from the one with F . However, for
the JSA with anyonic symmetry, the precise relation between
the interferogram of the combination interferometer and its
Fourier transform may be beyond the scope of the present pa-
per because of the more complex Fourier transform involved,
which still needs to be researched further in the future.

Now let us consider another potential application of
such an interferometer in generation and characterization of
high-dimensional frequency entanglement with the help of
the spectrally resolved technology [43,44]. In the spectrally
resolved HOM interference, the JSI can be modulated along
the axis of frequency difference for a perfectly frequency
anticorrelated entangled resource (σ+ � σ−), and such mod-
ulation can discretize continuous frequency entanglement into
discrete frequency modes and result in the spectrum with
a comb structure in frequency difference direction, which
has been proved to be very useful for generating high-
dimensional entanglement in frequency-bin qudits [45–47].
On the other hand, in spectrally resolved NOON state in-
terference, it has been demonstrated that the JSI can be
modulated along the axis of frequency sum by adjusting the
time delay [48,49]. Therefore, it is also possible to gener-
ate high-dimensional frequency entanglement using the left
part (NOONI) of the combination interferometer in Fig. 1
with the help of spectrally resolved technology. This can be
realized by modulating the JSI along the axis of the fre-
quency sum for a perfectly frequency correlated entangled
resource (σ+ � σ−) via adjusting the time delay τ1. Since
the NOONI depends on biphoton frequency sum, which is
phase-dependent, the generated high-dimensional frequency
entanglement from this way is phase-dependent, too. In prin-
ciple, a higher-dimensional discrete frequency entanglement
can be prepared by increasing the time delay τ1 and the
dimensionality of frequency entanglement (the number of
discrete frequency modes) increases with the increase of the
time delay τ1. The dimensionality can be characterized by
the change of the Schmidt number. It means that the larger the
Schmidt number, the higher the dimensionality. Alternatively,
the dimensionality can also be quantified fast by Shannon di-
mensionality measured through HOM interference, as shown
recently in an experiment [50]. Meanwhile, one can use
the right part (HOMI) of the combination interferometer in
Fig. 1 to directly characterize the generated high-dimensional
frequency entanglement according to the time interval 2τ1

between two-side temporal interferograms. It means that the
larger the time interval 2τ1, the higher the dimensionality of
frequency entanglement.
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V. CONCLUSIONS

We have proposed a combination interferometer that al-
ways depends on both biphoton frequency sum and difference
whatever the exchange symmetry of biphotons. This inter-
ferometer combined the advantages of both the NOONI that
depends only on biphoton frequency sum and the HOMI
that depends only on biphoton frequency difference into a
single interferometer. It can thus simultaneously obtain the
spectral correlation information of biphotons in both fre-
quency sum and difference by taking the Fourier transform
from a single time-domain quantum interferogram, which
provides a method for complete spectral characterization of
an arbitrary two-photon state with exchange symmetry. A
direct application of such an interferometer can be found in
quantum Fourier-transform spectroscopy, where direct spec-
tral measurement is difficult. The typical interferograms for
different types of frequency correlation have been presented
to show the characteristic of the combination interferome-
ter. Furthermore, as it can realize the measurement of time
intervals on three scales at the same time, we expect that
it can provide a method in quantum metrology. Finally,
as a potential application, we have shown that it is also
possible to generate high-dimensional and phase-controlled
frequency entanglement in such an interferometer with spec-
trally resolved technology by adjusting the time delay and
characterize it directly with the two-side oscillations that ap-
pear in a temporal interferogram.
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APPENDIX A: THE COINCIDENCE COUNT RATES
FOR THE COMBINATION INTERFEROMETER
DERIVED FROM THE FREQUENCY DOMAIN

In this section, we deduce the equations for the combina-
tion interferometer in Fig. 1 from the frequency domain. The
two-photon state from a SPDC process can be described as

|�〉 =
∫∫

dωsdωi f (ωs, ωi )â
†
s (ωs)â†

i (ωi )|0〉, (A1)

where ω is the angular frequency, and â†
s,i is the creation

operator and the subscripts s and i denote the signal and idler
photons from SPDC, respectively. |0〉 stands for a vacuum
state. f (ωs, ωi ) is the JSA of the signal and idler photons.

The detection field operators of detector 5 (D5) and detec-
tor 6 (D6) are

Ê (+)
5 (t5) = 1√

2π

∫ ∞

0
dω5â5(ω5)e−iω5t5 , (A2)

Ê (+)
6 (t6) = 1√

2π

∫ ∞

0
dω6â6(ω6)e−iω6t6 , (A3)

where the subscripts 5 and 6 denote the photons detected by
D5 and D6, respectively. The transformation rule of the 50/50
beam splitter (BS3) is

â5(ω5) = [â3(ω5)e−iω5τ2 + â4(ω5)]/
√

2, (A4)

â6(ω6) = [â3(ω6)e−iω6τ2 − â4(ω6)]/
√

2. (A5)

The transformation rule of the 50/50 BS2 is

â3(ω5) = [â1(ω5)e−iω5τ1 + â2(ω5)]/
√

2, (A6)

â4(ω6) = [â1(ω6)e−iω6τ1 − â2(ω6)]/
√

2. (A7)

The transformation rule of the 50/50 BS1 is

â1(ω5) = [âs(ω5) + âi(ω5)]/
√

2,

â2(ω5) = [âs(ω5) − âi(ω5)]/
√

2, (A8)

â1(ω6) = [âs(ω6) + âi(ω6)]/
√

2,

â2(ω6) = [âs(ω6) − âi(ω6)]/
√

2. (A9)

So, we have

â3(ω5) = [(âs(ω5) + âi(ω5))e−iω5τ1 + (âs(ω5) − âi(ω5))]/2,

(A10)

â4(ω5) = [(âs(ω5) + âi(ω5))e−iω5τ1 − (âs(ω5) − âi(ω5))]/2,

(A11)

â3(ω6) = [(âs(ω6) + âi(ω6))e−iω6τ1 + (âs(ω6) − âi(ω6))]/2,

(A12)

â4(ω6) = [(âs(ω6) + âi(ω6))e−iω6τ1 − (âs(ω6) − âi(ω6))]/2.

(A13)

Substituting Eqs. (A10)–(A13) into Eqs. (A4) and (A5), we
have

â5(ω5) = [âs(ω5)(e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)

+ âi(ω5)(e−iω5(τ1+τ2 ) + e−iω5τ1 − e−iω5τ2 + 1)]/

2
√

2, (A14)

â6(ω6) = [âs(ω6)(e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)

+ âi(ω6)(e−iω6(τ1+τ2 ) − e−iω6τ2 − e−iω6τ1 − 1)]/

2
√

2, (A15)

The coincidence count rates between two detectors as func-
tions of delay time τ1, τ2 can be expressed as

R(τ1, τ2) =
∫∫

dt5dt6〈�|Ê (−)
5 Ê (−)

6 Ê (+)
6 Ê (+)

5 |�〉

=
∫∫

dt5dt6|〈0|Ê (+)
6 Ê (+)

5 |�〉|2. (A16)
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Consider Ê (+)
6 Ê (+)

5 |�〉; only two out of four terms exist. The first term is

1

16π

∫∫
dω5dω6âs(ω5)âi(ω6)e−iω5t5 e−iω6t6 (e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)

× (e−iω6(τ1+τ2 ) − e−iω6τ2 − e−iω6τ1 − 1)
∫∫

dωsdωi f (ωs, ωi )â
†
s (ωs)â†

i (ωi )|0〉

= 1

16π

∫∫
dω5dω6e−iω5t5 e−iω6t6 f (ω5, ω6)(e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)

× (e−iω6(τ1+τ2 ) − e−iω6τ2 − e−iω6τ1 − 1)|0〉. (A17)

In this calculation, the relationships â5(ω5)â†
s (ωs) = δ(ω5 − ωs), âi(ω6)â†

i (ωi ) = δ(ω6 − ωi ) are used. The second term is

1

16π

∫∫
dω6dω5âs(ω6)âi(ω5)e−iω6t6 e−iω5t5 (e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)

× (e−iω5(τ1+τ2 ) − e−iω5τ2 + e−iω5τ1 + 1)
∫∫

dωsdωi f (ωs, ωi )â
†
s (ωs)â†

i (ωi )|0〉

= 1

16π

∫∫
dω6dω5e−iω6t6 e−iω5t5 f (ω6, ω5)(e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)

× (e−iω5(τ1+τ2 ) − e−iω5τ2 + e−iω5τ1 + 1)|0〉. (A18)

Combine these two terms:

Ê (+)
6 Ê (+)

5 |�〉 = 1

16π

∫∫
dω1dω2e−iω5t5 e−iω6t6 [ f (ω5, ω6)(e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)

× (e−iω6(τ1+τ2 ) − e−iω6τ1 − e−iω6τ2 − 1) + f (ω6, ω5)(e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)

× (e−iω5(τ1+τ2 ) − e−iω5τ2 + e−iω5τ1 + 1)]|0〉. (A19)

Then,

〈�|Ê (−)
5 Ê (−)

6 Ê (+)
6 Ê (+)

5 |�〉 =
(

1

16π

)2 ∫∫
dω′

5dω′
6e−iω′

5t5 e−iω′
6t6 [ f ∗(ω′

6, ω
′
5)(eiω′

6(τ1+τ2 ) + eiω′
6τ2 − eiω′

6τ1 + 1)

× (eiω′
5(τ1+τ2 ) − eiω′

5τ2 + eiω′
5τ1 + 1) + f ∗(ω′

5, ω
′
6)(eiω′

5(τ1+τ2 ) + eiω′
5τ1 + eiω′

5τ2 − 1)

× (eiω′
6(τ1+τ2 ) − eiω′

6τ1 − eiω′
6τ2 − 1)]

(
1

16π

)2 ∫∫
dω5dω6e−iω5t5 e−iω6t6

× [ f (ω6, ω5)(e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)(e−iω5(τ1+τ2 ) − e−iω5τ2 + e−iω5τ1 + 1)

+ f (ω5, ω6)(e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)(e−iω6(τ1+τ2 ) − e−iω6τ1 − e−iω6τ2 − 1)]. (A20)

Finally,

R(τ1, τ2) =
∫∫

dt5dt6〈�|Ê (−)
5 Ê (−)

6 Ê (+)
6 Ê (+)

5 |�〉 =
(

1

16π

)2 ∫∫
dω5dω6dω′

5dω′
6δ(ω5 − ω′

5)δ(ω6 − ω′
6)

× [ f ∗(ω′
6, ω

′
5)(eiω′

6(τ1+τ2 ) + eiω′
6τ2 − eiω′

6τ1 + 1)(eiω′
5(τ1+τ2 ) − eiω′

5τ2 + eiω′
5τ1 + 1)

+ f ∗(ω′
5, ω

′
6)(eiω′

5(τ1+τ2 ) + eiω′
5τ1 + eiω′

5τ2 − 1)(eiω′
6(τ1+τ2 ) − eiω′

6τ1 − eiω′
6τ2 − 1)]

× [ f (ω6, ω5)(e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)(e−iω5(τ1+τ2 ) − e−iω5τ2 + e−iω5τ1 + 1)

+ f (ω5, ω6)(e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)(e−iω6(τ1+τ2 ) − e−iω6τ2 − e−iω6τ1 − 1)]

= 1

64

∫∫
dω5dω6| f (ω6, ω5)(e−iω6(τ1+τ2 ) + e−iω6τ2 − e−iω6τ1 + 1)(e−iω5(τ1+τ2 ) − e−iω5τ2 + e−iω5τ1 + 1)

+ f (ω5, ω6)(e−iω5(τ1+τ2 ) + e−iω5τ1 + e−iω5τ2 − 1)(e−iω6(τ1+τ2 ) − e−iω6τ1 − e−iω6τ2 − 1)|2. (A21)
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In above calculation, the relationship of δ(ω − ω′ ) = 1
2π

∫ ∞
−∞ ei(ω−ω′ )t dt is used. f ∗ is the complex conjugate of f . To introduce

fewer variables, Eq. (A21) can be rewritten as

R(τ1, τ2) = 1

64

∫ ∞

0

∫ ∞

0
dωsdωir(ωs, ωi, τ1, τ2). (A22)

This is Eq. (1) in the main text.

APPENDIX B: THE COINCIDENCE COUNT RATES FOR THE COMBINATION INTERFEROMETER
DERIVED FROM THE TIME DOMAIN

To obtain the temporal expression of coincidence count rates, we need to take the Fourier transform of Eq. (A21) back into
the time representation, yielding to the JTI

|�(ts, ti )|2 = |A1(ts, ti ) − A2(ts + τ1, ti + τ1) + A3(ts, ti + τ2) − A4(ts + τ2, ti ) + A5(ts + τ1, ti + [τ1 + τ2])
(B1)

− A6(ts + [τ1 + τ2], ti + τ1) + A7(ts + [τ1 + τ2], ti + [τ1 + τ2]) − A8(ts + τ2, ti + τ2)|2,
where � is called as effective two-photon wave function. A denotes the quantum-mechanical probability amplitude for the
coincidence detection event and can be obtained from the Fourier transform of the JSA at the coordinates marked in Eq. (B1).
After taking the module squared of Eq. (B1), the JTI has 64 terms,

|�(ts, ti )|2 = |A1|2 + |A2|2 + |A3|2 + |A4|2 + |A5|2 + |A6|2 + |A7|2 + |A8|2
+ A∗

1A3 + A1A∗
3 + A∗

1A5 + A1A∗
5 + A∗

1A7 + A1A∗
7 + A∗

2A4 + A2A∗
4 + A∗

2A6 + A2A∗
6 + A∗

2A8 + A2A∗
8

+ A∗
3A5 + A3A∗

5 + A∗
3A7 + A3A∗

7 + A∗
4A6 + A4A∗

6 + A∗
4A8 + A4A∗

8 + A∗
5A7 + A5A∗

7 + A∗
6A8 + A6A∗

8

− A∗
1A2 − A1A∗

2 − A∗
1A4 − A1A∗

4 − A∗
1A6 − A1A∗

6 − A∗
1A8 − A1A∗

8 − A∗
2A3 − A2A∗

3 − A∗
2A5 − A2A∗

5

− A∗
2A7 − A2A∗

7 − A∗
3A4 − A3A∗

4 − A∗
3A6 − A3A∗

6 − A∗
3A8 − A3A∗

8 − A∗
4A5 − A4A∗

5 − A∗
4A7 − A4A∗

7

− A∗
5A6 − A5A∗

6 − A∗
5A8 − A5A∗

8 − A∗
6A7 − A6A∗

7 − A∗
7A8 − A7A∗

8. (B2)

Then, the coincidence count rates between two detectors as functions of delay time τ1, τ2 can be rewritten as

R(τ1, τ2) =
∫ ∞

−∞

∫ ∞

−∞
dtsdti|�(ts, ti )|2. (B3)

As an example, we take the JSA as the product of two Gaussian functions,

f (ωs, ωi ) = exp

(
− (ωs + ωi − ωp)2

4σ 2+

)
exp

(
− (ωs − ωi )2

4σ 2−

)
. (B4)

Taking the Fourier transform of Eq. (B4) at the coordinates marked in Eq. (B1) and integrating the first eight terms in Eq. (B2)
over the entire time range, we can obtain a normalized factor 8πσ+σ−. Similarly, integrating −A∗

3A6 − A3A∗
6 − A∗

4A5 − A4A∗
5,

−A∗
1A8 − A1A∗

8 − A∗
2A7 − A2A∗

7, −A∗
3A4 − A3A∗

4 − A∗
5A6 − A5A∗

6, and A∗
1A7 + A1A∗

7 + A∗
2A8 + A2A∗

8 in Eq. (B2), we can obtain
the normalized results, which correspond to the second, the third, the fourth and the last two terms in Eq. (5), respectively. The
remaining terms in Eq. (B2) have no contributions to the integral of Eq. (B3). We therefore obtain the same result from the time
domain as Eq. (5) derived from the frequency domain.

APPENDIX C: THE COINCIDENCE COUNT RATES FOR THE HOMI AND THE NOONI

To compare the results of the HOMI and the NOONI with the combination interferometer, we give the coincidence count
rates of these two interferometers as follows (see details in Ref. [24]):

R±(τ ) ∼
∫ ∞

0

∫ ∞

0
dωsdωir±(ωs, ωi, τ ), (C1)

where

r+(ωs, ωi, τ ) = | f (ωi, ωs)(e−iωiτ + 1)(e−iωsτ + 1) + f (ωs, ωi )(e
−iωsτ − 1)(e−iωiτ − 1)|2, (C2)

r−(ωs, ωi, τ ) = | f (ωi, ωs)e−iωsτ − f (ωs, ωi )e
−iωiτ |2. (C3)

The subscripts “+” and “−” correspond to a NOON state and a standard HOM interferometer, respectively. If the JSA is
symmetric, i.e., f (ωs, ωi ) = f (ωi, ωs), we can further rewrite the above equation as

r±(ωs, ωi, τ ) = | f (ωs, ωi )|2[1 ± cos (ωs ± ωi )τ ]. (C4)
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If the JSA is antisymmetric, i.e., f (ωs, ωi ) = − f (ωi, ωs), we have

r+(ωs, ωi, τ ) = r−(ωs, ωi, τ ) = | f (ωs, ωi )|2[1 + cos (ωs − ωi )τ ]. (C5)
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