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Tight information bounds for spontaneous-emission-lifetime resolution of quantum
sources with varied spectral purity
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We generalize the theory of resolving a mixture of two closely spaced spontaneous emission lifetimes to
include pure dephasing contributions to decoherence, leading to the resurgence of Rayleigh’s curse at small
lifetime separations. Considerable resolution enhancement remains possible when lifetime broadening is more
significant than that due to pure dephasing. In the limit that lifetime broadening dominates, one can achieve super-
resolution either by a tailored one-photon measurement or by Hong-Ou-Mandel interferometry. We describe
conditions for which either choice is superior.
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I. INTRODUCTION

A recent quantum-inspired analysis of the age-old prob-
lem of spatially resolving mutually incoherent optical point
sources revealed conditions under which the precision of
such a measurement can surpass the classical limit [1,2]. The
authors showed that the quantum Fisher information (QFI)
associated with estimation of the separation between two such
point sources remains constant as the separation goes to zero,
even as the classical Fisher information (CFI) associated with
direct imaging vanishes in the same limit (dubbed “Rayleigh’s
curse”). A flurry of subsequent studies has since built on the
theory [3–26] and experimentally demonstrated advantages in
model imaging systems [27–36]. The basic idea has also been
translated from position-momentum to time-frequency reso-
lution [37–40]. In this spirit, we recently reported quantum
limits associated with the estimation, resolution, and discrim-
ination of optical spontaneous emission lifetimes [41].

An important contingent of this body of research has pre-
sented caveats to the theory that effectively temper one’s
ability to surpass Rayleigh’s curse subject to certain experi-
mental realities. Quantitatively, these caveats cause the QFI to
eventually scale to zero as the separation becomes sufficiently
small. Imperfect knowledge of the centroid position of the two
sources is one such caveat that was explicitly noted from the
beginning [1,42]. A mode-sorting measurement that would
otherwise saturate the bound yields equivalent trends under
misalignment or in the presence of crosstalk [43–45]. Various
other nuisance parameters [46–51] or additional sources of
noise [52–55] can lead to similar mitigation. In this paper,
we detail another such caveat that is specifically relevant to
the resolution of optical spontaneous-emission-lifetime mix-
tures. Namely, diminished spectral purity of the collected
photons leads to a lowering of the associated QFI, eventually
recovering the classical bound associated with direct measure-
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ment via time-correlated single-photon counting (TCSPC).
We quantify the relation between spectral purity and QFI for
this system, and show that a significant resolution enhance-
ment remains possible in the case that lifetime broadening is
more significant than broadening due to pure dephasing. In
the limit of high spectral purity we consider the prospect of
attaining super-resolution via Hong-Ou-Mandel (HOM) inter-
ference measurements [56] on subsequently emitted photons
and compare performance to a tailored one-photon measure-
ment scheme.

II. RESULTS AND DISCUSSION

For the sake of completeness, we begin this section by
reintroducing the physical model and summarizing salient
results from Ref. [41]. A two-level system initially prepared
in its excited state and embedded in electromagnetic vacuum
will eventually relax to its ground state, leaving the field in
a one-photon state. For simplicity we suppose only a single
polarization and transverse mode is possibly occupied just
after the collecting aperture. Invoking the Wigner-Weisskopf
approximation [57], the relevant one-photon state is taken as

|ψτ (ω)〉 =
∫ ∞

−∞
dω′ 1/

√
2πτ

(ω′ − ω) + i/(2τ )
a†(ω′)|0〉, (1)

where ω is the photon’s mean frequency, τ is the lifetime
of the emitter, a†(ω′) is the creation operator for the indi-
cated mode, and |0〉 is the electromagnetic vacuum. We can
alternatively express |ψτ 〉 in terms of the Fourier-transformed
creation operator [58] (up to a global phase):

|ψτ (ω)〉 =
∫

dt ψτ (t ; ω)a†(t )|0〉 =
∫

dt ψτ (t ; ω)|t〉, (2)

with a†(t ) the creation operator for the denoted temporal mode
and

ψτ (t ; ω) = H (t )√
τ

e−iωt e−t/2τ , (3)
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where H (t ) is the Heaviside step function defined by H (t �
0) = 1 and H (t < 0) = 0. The definition of time t is shifted
to compensate for the finite distance between emitter and
detector, such that the time window of interest begins at t = 0.

Measurement of τ is a frequently encountered experimen-
tal objective, as this parameter can depend sensitively on the
emitter’s local environment. The most commonly employed
experimental technique for such measurements is TCSPC,
which entails directly measuring the distribution of delay
times between pairs of excitation pulses and photodetection
events. In Ref. [41] we showed that while TCSPC is optimal
for the task of estimating a single lifetime, its performance
quickly deteriorates when tasked with resolving mixtures of
lifetimes, e.g., due to a multicomponent ensemble of emitters
or a single emitter fluctuating among different distinct states.
We focused our analysis on the simplest such task, the reso-
lution of two lifetimes τ0 and τ1 given a mixed single-photon
state of the form

ρ = 1
2 |ψτ0 (ω)〉〈ψτ0 (ω)| + 1

2 |ψτ1 (ω)〉〈ψτ1 (ω)|. (4)

Upon reparametrizing the problem in terms of the geometric
mean lifetime τ̄ = √

τ0τ1 and square-root ratio of lifetimes
ε = √

τ1/τ0 (assuming, without loss of generality, that τ1 >

τ0), we found that the conventional measurement scheme
based on TCSPC suffers from an analog of Rayleigh’s curse
in that the CFI associated with estimation of ε vanishes in the
limit ε → 1. By contrast, the QFI associated with estimating
ε attains its maximum in the same limit. We showed that this
quantum bound is saturated by a projective measurement onto
the basis of weighted Laguerre (WL) modes defined by

|φn(ω, τ̄ )〉 =
∫

dt φn(t ; ω, τ̄ )|t〉 (5)

with

φn(t ; ω, τ̄ ) = H (t )√
τ̄

e−iωt e−t/2τ̄ Ln(t/τ̄ ), (6)

where Ln(·) denotes the Laguerre polynomial of order n. Note
that the optimality of the WL projective measurement relies
on prior knowledge of τ̄ , gleaned perhaps from an initial
TCSPC measurement (TCSPC does well to preserve informa-
tion on τ̄ at all separations). For convenience, in Appendix A
we reproduce the QFI associated with measuring ε and the
CFIs associated with measuring this parameter via TCSPC,
WL projection with perfect knowledge of τ̄ , and WL pro-
jection with various degrees of imperfect knowledge of τ̄ .
In Ref. [41], we considered possible routes to experimental
realization of WL projection as well as approximating inter-
ferometric schemes that outperform TCSPC.

Though it provides a useful starting point, the model un-
derlying Eq. (4) employs several simplifying suppositions. In
the current paper we will focus on one of these suppositions
in particular: that the constituent single-lifetime states ρτ0 and
ρτ1 are of unit purity, corresponding to photons whose spec-
tral linewidths are lifetime limited. In realistic systems one
must contend with (often dominant) incoherent contributions
to the spectral linewidth due to inhomogeneous broadening
(for emitter ensembles) and/or spectral diffusion (for sin-
gle emitters). One typically has to work hard to produce
lifetime-limited photons, either by freezing out sources of

dephasing [59] or by engineering accelerated emission rates
[60].

Here we amend our model such that the collected single-
photon state is given by

ρ̄ = 1
2 (ρ̄τ0 + ρ̄τ1 ), (7)

where the overbar denotes incoherent averaging over a spec-
tral density function P(ω) such that

ρ̄τ =
∫

dωP(ω)|ψτ (ω)〉〈ψτ (ω)| (8)

for τ ∈ {τ0, τ1}. This simple phenomenological model [61] is
sufficient to capture the effects we highlight below, though
it neglects possible relations between the width of P(ω) and
the lifetime that can arise depending on the physical origins of
the contributions to decoherence [62]. To isolate the resolution
problem, we assume τ̄ is known and set out to calculate Kε,
the QFI associated with ε, for various choices of P(ω). We
take P(ω) to be centered about some known frequency ω0 >

0 such that P(ω) = P0(ω − ω0), where P0(ω) is centered at
ω = 0. The QFI is given by

Kε = Tr
(
L2

ερ̄
)
, (9)

where Lε is the symmetric logarithmic derivative (SLD) oper-
ator defined implicitly via

∂ερ̄ = 1
2 (Lερ̄ + ρ̄Lε ). (10)

The SLD can be computed explicitly by first diagonalizing ρ̄

such that

ρ̄ =
∑

k

Dk|k〉〈k| (11)

and then equating

Lε =
∑

k,k′;Dk+Dk′ 	=0

2

Dk + Dk′
〈k|∂ερ̄|k′〉 |k〉〈k′|. (12)

To facilitate convergence we began our calculations by ex-
pressing ρ̄ in the discrete basis of exponentially weighted La-
guerre polynomials |φn(ω0, τ̄ )〉 defined according to Eqs. (5)
and (6). We show in Appendix B that matrix elements in this
basis are given by

〈φn|ρ̄τ |φm〉 = 1

τ τ̄

∫
dω

{
P0(ω)

ω2 + 
2+/4

×
[

−/2 + iω


+/2 + iω

]n[

−/2 − iω


+/2 − iω

]m
}

, (13)

where


± = 1

τ
± 1

τ̄
. (14)

For certain choices of P0(ω) the integral in Eq. (13) might be
analytically calculable via complex contour integration. In any
case, it can be readily calculated numerically upon specifying
P0(ω). For the ensuing calculations we considered Gaussian
broadening with spectral width parameter σ such that

P0(ω) = 1√
2πσ 2

e−ω2/2σ 2
. (15)
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FIG. 1. Purity of the limiting state ρ̄τ̄ as a function of the product
σ τ̄ .

Comparison of σ and 1/τ̄ determines the relative importance
of lifetime broadening vs pure dephasing. Equivalently, the
product (σ τ̄ ) specifies the purity (Fig. 1),

γ (ρ̄τ̄ ) = Tr
(
ρ̄2

τ̄

) = 1√
4π

∫ ∞

−∞
d

e−2/4

1 + (σ τ̄)2
, (16)

of the limiting state:

ρ̄τ̄ = lim
ε→1

ρ̄. (17)

In the limit σ 
 1/τ̄ we expect lifetime broadening to dom-
inate and for the problem to revert to that of resolving τ0

and τ1 given the state in Eq. (4) such that Kε = K(max)
ε . In

the limit σ � 1/τ̄ pure dephasing dominates and we expect
Kε = J (TCSPC)

ε , i.e., the QFI should asymptotically approach
the CFI for TCSPC. This fact can be appreciated by inspection
of the matrix elements of ρ̄τ in the temporal mode basis:

〈t |ρ̄τ |t ′〉 = H (t )H (t ′)
τ

e−(t+t ′ )/2τ e−iω0(t−t ′ )e−(t−t ′ )2σ 2/2. (18)

The effect of fixing τ and taking σ → ∞ in Eq. (18) is to kill
the off-diagonal elements of the matrix, leaving only popula-
tions which coincide with the outcome probability density of
a TCSPC measurement:

〈t |ρ̄τ |t〉 = H (t )

τ
e−t/τ . (19)

Equation (19) implies that the outcome of a TCSPC mea-
surement is independent of σ , though we note that this is a
consequence of our phenomenological model which treats σ

and τ separately. Figure 2 shows computed values of Kε for
σ = 0.01/τ̄ , 0.1/τ̄ , and 1/τ̄ (solid lines). The gray shaded
region is bounded above by K(max)

ε and below by J (TCSPC)
ε .

For σ 
 1/τ̄ we see that indeed Kε ≈ K(max)
ε over most of

the domain, but for ε sufficiently close to 1 the QFI begins
to trend back down toward zero, indicating the resurgence of
Rayleigh’s curse. Figure 3 displays the same data as in Fig. 2
on a semilogarithmic scale. Close inspection reveals that de-
spite the resurgence of Rayleigh’s curse, orders-of-magnitude
resolution enhancement over TCSPC remains possible at ε

close to 1 and σ < 0.1/τ̄ [γ (ρ̄τ̄ ) � 0.98].
The color-coded dashed lines in Figs. 2 and 3 mark the

calculated CFIs, J (WL)
ε , associated with a projective measure-

ment onto weighted Laguerre modes {|φn(ω0, τ̄ )〉〈φn(ω0, τ̄ )|}n

FIG. 2. Fisher information associated with estimation of ε. The
gray region is bounded above by the QFI in the limit P0(ω) → δ(ω)
and below by the CFI associated with TCSPC. Fisher information
which falls within the gray region therefore indicates a potential
advantage over TCSPC. Solid colored lines demarcate the calculated
QFI at varying degrees of spectral purity. Dashed colored lines in-
dicate the CFI associated with projective measurement onto a set
of WL modes as described in the text. The yellow dashed line is
obscured as it overlaps almost completely with the yellow solid line.

truncated at nmax = 100. Actually only the single mode corre-
sponding to n = 1 is required to recover >87% and >99% of
the available information near ε = 1.05 for σ = 0.01/τ̄ and
0.1/τ̄ , respectively. For σ = 1/τ̄ a projective measurement
onto the first 100 WL modes is evidently far from optimal, as
the dark blue dashed line falls well below the gray region. For
σ � 1/τ̄ TCSPC does well to recover the available informa-
tion; in this case, the most obvious measurement is the correct
one. Figure 4 depicts similar data for the borderline case of
σ = 0.25/τ̄ [γ (ρ̄τ̄ ) ≈ 0.905]. Here we scale the Fisher infor-
mation curves by J (TCSPC)

ε . A modest information gain just

FIG. 3. The same data as in Fig. 2 presented on a semilogarith-
mic scale.
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FIG. 4. QFI (solid), CFI for WL projection (dashed), and CFI
for optimal measurement near ε = 1 (dotted) associated with the
borderline case σ = 0.25/τ̄ . Values are scaled by CFI of TCSPC.

under 2× is available in this case, but it is not recovered by
a measurement in the WL basis. For estimation of the sin-
gle parameter ε, an optimal measurement can be constructed
by projection onto the eigenstates of Lε. We calculate the
performance of such a measurement for one choice of ε by
numerically diagonalizing Lε after expressing ρ̄ in the WL
basis up to nmax = 100 (dotted line in Fig. 4).

The preceding analysis puts a finer point on exactly what
quantum feature is needed to significantly surpass the res-
olution performance of TCSPC, namely, that coherences in
the temporal mode basis must be preserved. Maximal in-
formation gain is possible in the idealized case that σ 

1/τ̄ , for which subsequently collected photons are other-
wise indistinguishable in the limit ε → 1. It is therefore
apparent that in the limit σ → 0 one has a choice between
performing a tailored one-photon measurement and perform-
ing a multiphoton interferometry measurement that exploits
their near indistinguishability. Having recognized this, we
next analyze the lifetime-resolving power of a two-photon
Hong-Ou-Mandel-type measurement, which has been shown
previously to provide certain advantages in the context of the
spatial resolution problem [63]. HOM interferometry has been
employed previously to quantify photon indistinguishability
and discriminate mechanisms of decoherence in the emission
of quantum sources [62,64–66]. Here we flip this problem
around to show that if one knows somehow that the dominant
source of indistinguishability is a mixture of lifetimes, then
the HOM measurement can super-resolve these parameters.

We consider a hypothetical experiment using the apparatus
depicted in Fig. 5. Subsequent excitation pulses are sepa-
rated in time by an interval �t significantly longer than τ̄

such that emission in the window between the two pulses
and emission in the window after the second pulse are un-
correlated. We begin with a two-photon state of the form
ρ (2) = ρ ⊗ ρ, where ρ is the one-photon state defined in
Eq. (4). The QFI associated with ε for this product state is
simply twice that of ρ, i.e., K(2)

ε = 2K(max)
ε . The first collected

FIG. 5. Proposed setup for resolving lifetimes via two-photon in-
terferometry, including polarizing beam splitter (PBS), electro-optic
modulator (EOM), half-wave plate (HWP), nonpolarizing 50:50
beam splitter, and coincidence detectors (D). The portion depicted
here modulates the component of the emission that is s polarized
with respect to the first PBS. An analogous setup can be built on the
other side to measure the p-polarized component.

photon is sent along one path and the second is sent along
another by implementation of a switch synced with the second
excitation pulse. This could be achieved, for example, by
digitally switching an electro-optic modulator just before a
polarizing beam splitter [67]. The path of the first collected
photon contains a delay stage to compensate the interpulse
duration �t . The path of the second collected photon contains
a half-wave plate to rotate the polarization to match that of
the first photon. Then the two photons are brought together
at either input port of a 50:50 beam splitter. There are four
equally probable possibilities for the pair of lifetimes, which
we denote (τ0, τ0), (τ0, τ1), (τ1, τ0), and (τ1, τ1). If we have
(τ0, τ0) or (τ1, τ1) then the two photons are indistinguishable,
and they will either both exit via port 1 or both exit via
port 2. If instead we draw (τ0, τ1) or (τ1, τ0), there arises a
small ε-dependent probability that the two photons emerge
from opposite exit ports. By repeating the experiment and
counting coincidences one can generate an estimate of ε. Our
analysis detailed in Appendix C shows that this measure-
ment scheme recovers half of the available information, i.e.,
J (&)

ε = K(2)
ε /2, when ε → 1. Rayleigh’s curse is successfully

circumvented by this HOM measurement in the limiting case
where σ → 0. From the preceding analysis we can also con-
clude that given the choice between an optimal one-photon
measurement and the described two-photon coincidence mea-
surement, the former is superior in terms of information per
photon detected. If, however, one has a choice between the
two-photon coincidence measurement and a suboptimal one-
photon measurement scheme that only recovers a fraction
ξ < 1 of the available information per photon detected (i.e.,
J (ξ )

ε→1 = ξK(max)
ε→1 , as in the cases of the single-photon interfer-

ometers presented in Ref. [41]), then which scheme is superior
depends on whether ξ is greater or less than 1/2.

To this point in the analysis we have assumed that one
photon is certainly collected and detected within the interval
immediately following each excitation pulse. Under realistic
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FIG. 6. Comparison of the CFIs for ε estimation conveyed by a
one-photon measurement that obtains a fraction ξ of the QFI vs the
HOM measurement depicted in Fig. 5, as a function of ξ and photon
collection probability pC . The cyan dashed line marks the contour
along which the two are equal, corresponding to ξ = pC/2.

conditions, losses of various origins must be carefully con-
sidered. Setting aside measurement-dependent losses for now,
a nonunit measurement-independent probability of collection,
pC , persists due to the probability of absorption, the quantum
yield of the emitter, and the limited numerical aperture of the
objective. In practice it is likely that pC 
 1. The relevant
state of the field immediately following an excitation pulse
is then

ρ ′ = (1 − pC )|vac〉〈vac| + pCρ. (20)

The collective state of two such intervals, ρ ′ ⊗ ρ ′, contains
two photons only with probability p2

C , meaning that it is less
likely that a pair of excitation pulses will produce a successful
HOM measurement event than they will produce at least one
successful one-photon measurement event. In this case a sub-
optimal one-photon measurement with efficiency ξ is superior
to the two-photon coincidence scheme if ξ > pC/2. Figure 6
depicts the ratio J (ξ )

ε→1/J
(&)
ε→1 for various choices of ξ and pC .

Of course, additional measurement-dependent losses de-
termined by the particular arrangement of optical elements
placed between the objective lens and the detector will also
affect this comparison. Imbalance due to, e.g., beam split-
ter asymmetry or imperfect polarization rotation will further
penalize interferometric measurement. We reserve a more
thorough quantification of these effects for future work. The
HOM scheme does offer a distinct potential advantage over
super-resolving one-photon measurements in that the former
does not require prior knowledge of the mean lifetime τ̄ to
achieve super-resolution. This fact can be partly appreciated
by inspection of Eq. (C10), in which common factors of τ̄

have canceled one another. Choices of when to pulse the
electro-optic modulator and how long to make the delay line
in Fig. 5 depend only on the time between excitation pulses,
�t , and so are independent of the precise value of τ̄ so long
as it is safe to assume �t � τ̄ . By contrast, the correct choice
of WL basis for an optimal one-photon measurement depends
explicitly on τ̄ , as estimated, e.g., from a preliminary TCSPC

FIG. 7. Fisher information for ε estimation given the state de-
fined by Eq. (4), as originally reported in Ref. [41]. The top, black
line traces the QFI, which coincides with the CFI of a projective
measurement onto a set of WL modes {φn(t ; τ̄ )}n assuming prior
knowledge of τ̄ . The bottom, red line indicates the CFI associated
with TCSPC. The lines in between correspond to projective mea-
surements onto sets of shifted WL modes {φn(t ; τ̌ )}n with various
mismatched mean lifetimes τ̌ 	= τ̄ . Similar to the performance of
centroid-mismatched SPADE vis-à-vis spatial resolution [1], the ef-
fect of mismatch is a diminished (and eventually vanishing) CFI at
sufficiently small ε.

measurement. Projective measurement in a WL basis with
mismatched τ̌ 	= τ̄ leads to reduced resolving performance
(Fig. 7).

III. CONCLUSION

In conclusion, we have effectively tightened the quan-
tum bounds associated with resolution of optical spontaneous
emission lifetimes by incorporating pure dephasing contri-
butions to the spectral linewidth. When lifetime broadening
dominates, a significant information gain can be uncovered
by an appropriately tailored one- or two-photon measurement.
When pure dephasing dominates, the conventional TCSPC
measurement cannot be beat. It appears that any finite degree
of pure dephasing causes the resolution QFI to scale back
to zero for ε sufficiently close to 1, indicating the eventual
resurgence of the lifetime analog of Rayleigh’s curse.
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APPENDIX A: SOME RELEVANT RESULTS
FROM REF. [41]

In Fig. 7 we reproduce select results from Ref. [41].
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APPENDIX B: DERIVATION OF EQ. (13)

Here we derive an integral expression for the matrix ele-
ments of density operator ρ̄τ in the basis of weighted Laguerre
modes |φn(ω0, τ̄ )〉 given by

|φn(ω0, τ̄ )〉 =
∫

dt φn(t ; ω0, τ̄ )|t〉 (B1)

with

φn(t ; ω0, τ̄ ) = H (t )√
τ̄

e−iω0t e−t/2τ̄ Ln(t/τ̄ ). (B2)

We take

ρ̄τ =
∫

dω P0(ω − ω0)ρτ (ω) (B3)

with the pure state ρτ (ω) given in the temporal mode basis by

ρτ (ω) =
∫

dt
∫

dt ′ H (t )H (t ′)
τ

e−iω(t−t ′ )e−(t+t ′ )/2τ |t〉〈t ′|.
(B4)

Plugging Eq. (B4) into Eq. (B3) and reordering integrals gives

ρ̄τ =
∫

dt
∫

dt ′
{

H (t )H (t ′)
τ

e−(t+t ′ )/2τ

×
[∫

dω e−iω(t−t ′ )P0(ω − ω0)

]
|t〉〈t ′|

}
. (B5)

Defining

P̂0(t ) = 1√
2π

∫
dω e−iωt P0(ω) (B6)

and making use of the shifting property of the Fourier trans-
form gives

ρ̄τ =
√

2π

∫
dt

∫
dt ′

{
H (t )H (t ′)

τ
e−(t+t ′ )/2τ

× e−iω0(t−t ′ )P̂0(t − t ′)|t〉〈t ′|
}
. (B7)

Combining Eqs. (B1), (B2), and (B7) then yields an expres-
sion for the (n, m) matrix element of ρ̄τ :

〈φn|ρ̄τ |φm〉 =
√

2π

∫
dt

∫
dt ′

{
H (t )H (t ′)

τ τ̄
e−
+(t−t ′ )/2

× Ln(t/τ̄ )Lm(t/τ̄ )P̂0(t − t ′)
}

(B8)

where


± = 1

τ
± 1

τ̄
. (B9)

We define a set of functions

fn(t ) = H (t )e−
+t/2Ln(t/τ̄ ) (B10)

and rearrange integrals to obtain

〈φn|ρ̄τ |φm〉 =
√

2π

τ τ̄

∫
dt fn(t )

(∫
dt ′ fm(t ′)P̂0(t − t ′)

)
.

(B11)

The integral over t ′ amounts to a convolution and so we can
write

〈φn|ρ̄τ |φm〉 =
√

2π

τ τ̄

∫
dt fn(t )[ fm ∗ P̂0](t ). (B12)

The t integral is converted to an ω integral by application of
Parseval’s theorem:

〈φn|ρ̄τ |φm〉 =
√

2π

τ τ̄

∫
dω f̂ ∗

n (ω)F { fm ∗ P̂0}(ω), (B13)

where F {·} denotes the Fourier transform of the convolved
function. Implementation of the convolution theorem plus
some additional manipulation yields

〈φn|ρ̄τ |φm〉 = 2π

τ τ̄

∫
dω f̂ ∗

n (−ω) f̂m(−ω)P0(ω). (B14)

The Fourier transform of fn can be easily computed by recog-
nizing the relation

f̂n(ω) = 1√
2π

L {Ln(t/τ̄ )}(s = 
+/2 + iω), (B15)

where L {·}(s) denotes the Laplace transform evaluated at
complex frequency s. Laplace transforms of Laguerre polyno-
mials have particularly simple forms [68], ultimately allowing
us to conclude

f̂n(ω) = 1√
2π (
+/2 + iω)

(

−/2 + iω


+/2 + iω

)n

. (B16)

Equation (13) follows directly from Eqs. (B16) and (B14).

APPENDIX C: ANALYSIS OF HOM MEASUREMENT

Here we derive the Fisher information with respect to es-
timation of ε for the two-photon interference measurement
illustrated in Fig. 5. We consider the limiting case in which
σ → 0 and single-photon states reduce to

ρ = 1
2

∣∣ψτ0

〉〈
ψτ0

∣∣ + 1
2

∣∣ψτ1

〉〈
ψτ1

∣∣. (C1)

Just before the final 50 : 50 beam splitter depicted in Fig. 5,
the relevant two-photon state can be written

ρ (2) =
∑

i, j∈{0,1}

1

4

∣∣ψτiψτ j

〉〈
ψτiψτ j

∣∣, (C2)

with∣∣ψτiψτ j

〉 =
∫

dt
∫

dt ′ ψτi (t )ψτ j (t
′)a†

1(t )a†
2(t ′)|0〉, (C3)

where a†
1 and a†

2 are the creation operators for the input modes
of the beam splitter and |0〉 denotes the vacuum state. Thus
ρ (2) corresponds to an equal-probability mixture of four pure
input states. We calculate the outcome probabilities for each
|�(in)

i j 〉 = |ψτiψτ j 〉 separately before resumming. The beam
splitter imparts the transformation:

a†
1(t ) → 1√

2
[a†

3(t ) + ia†
4(t )], (C4a)

a†
2(t ) → 1√

2
[ia†

3(t ) + a†
4(t )], (C4b)
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where a†
3 and a†

4 are the creation operators for the output
modes. The state |�(in)

i j 〉 is transformed to |�(out)
i j 〉 given by

∣∣�(out)
i j

〉 =
∫

dt
∫

dt ′ ψτi (t )ψτ j (t
′)

2
[a†

3(t ) + ia†
4(t )]

× [ia†
3(t ′) + a†

4(t ′)]|0〉. (C5)

We consider the positive operator-valued measure {P̂(&), 1̂ −
P̂(&)} where 1̂ is the identity operator and P̂(&) is the coinci-
dence projector defined by

P̂(&) =
∫

dt ′′
∫

dt ′′′ a†
3(t ′′)a†

4(t ′′′)|0〉〈0|a4(t ′′′)a3(t ′′). (C6)

Given output state |�(out)
i j 〉, the probability of recording a

coincidence is given by

p(&)
i j = 〈

�
(out)
i j

∣∣P̂(&)
∣∣�(out)

i j

〉
, (C7)

yielding

p(&)
i j = 1

2

(
1 − ∣∣ 〈ψτi

∣∣ψτ j 〉
∣∣2)

. (C8)

Clearly p(&)
00 = p(&)

11 = 0. For i 	= j,

p(&)
10 = p(&)

01 = 1

2

(
1 − 4τ0τ1

(τ0 + τ1)2

)
. (C9)

Given τ0 = τ̄ /ε and τ1 = τ̄ ε this reduces to

p(&)
10 = p(&)

01 = 1

2

(
ε2 − 1

ε2 + 1

)2

. (C10)

Now, considering the mixed state defined in Eq. (C2), the
overall probability of recording a coincidence is

p(&) =
∑

i, j∈{0,1}

p(&)
i j

4
= 1

4

(
ε2 − 1

ε2 + 1

)2

. (C11)

The measurement outcome (coincidence vs noncoincidence)
is a Bernoulli random variable with success rate p(&). The

FIG. 8. QFI for lifetime resolution given the composite state
ρ (2) compared to the CFI of a HOM measurement with coincidence
counting.

Fisher information with respect to ε is given by

J (&)
ε = 1

p(&)(1 − p(&))

(
d p(&)

dε

)2

(C12)

which simplifies to

J (&)
ε = 64ε2

(ε2 + 1)2(3ε + 1)(ε + 3)
. (C13)

Figure 8 plots both J (&)
ε and the QFI associated with

estimating ε from the two-photon product state, K(2)
ε . In par-

ticular, for ε → 1 we find J (&)
ε = K(2)

ε /2.
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