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Exceptional-point-enhanced coupled microcavities for ultrasensitive particle sensing
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This paper proposes and analyzes a theoretical concept of a parity-time (PT ) symmetry structure of two
coupled microresonators. We propose a particle sensing scheme based on exceptional points (EPs), degeneracy
points of non-Hermitian systems, where both eigenvalues and eigenvectors coalesce and where a transition from
the exact PT phase to the broken PT phase occurs. The abrupt nature of this phase transition is used here
for enhanced frequency splitting, based on the spectral response characteristics of the resonator electromagnetic
field coupled to a single emitter. The method proposes the usage of a strong coupling of an external emitter to a
PT -symmetric resonator structure at and near an EP.
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I. INTRODUCTION

Over the past decades the detection and monitoring of
different gases has been on demand, due to growing concerns
of the environment and higher healthy standards of living. In
particular, gases (including carbon dioxide, carbon monoxide,
ammonia, etc.) have been treated as one of the major factors
that affect and deteriorate indoor air quality, which could have
a subsequent impact on personal health.

Gas sensing is one of the areas of sensing where micro-
cavities can be used [1]. Indeed, a microcavity-based sensor
has many advantages, including small size, easy integration
and detection of light, real-time sensing capabilities, etc. To
realize this kind of sensor a microcavity device can be coated
with a chemoresponsive layer specific for the gas of interest.
The basic principle of the device is based on an interaction of
the target gas molecules with the layer that leads to a change
in the refractive index of the layer. Subsequently, the change
can be detected by a microcavity. Conventional methods for
particle sensing in microcavities include, e.g., detection of a
mode frequency shift [2], splitting of a pair of degenerate
modes of a whispering-gallery-mode (WGM) resonator [3],
and detection of a mode linewidth broadening [4].

The alternative path, which we employ in the present paper,
is the usage of optical cavities operating at non-Hermitian
spectral degeneracies known as exceptional points (EPs) [5].
The behavior of the physical systems at these critical points,
where the eigenvalues and the eigenstates coalesce [6], is of
a fundamentally different nature compared to the neighbor-
ing points. EPs open pathways for new functionalities and
performance, including enhanced sensing possibilities due to
a strong system response to perturbations around an EP [7].
The interest in EPs has recently sparked the investigation
of a particular family of non-Hermitian systems, a so-called
PT -symmetric system. It has been shown that PT -symmetric
Hamiltonians, despite being non-Hermitian, can have entirely

*khanbekyan@gmail.com

real eigenvalues [8]. More interestingly, changing parameters
of the system of the PT -symmetric Hamiltonian can undergo
a phase transition to a spontaneously broken symmetry regime
accompanied by a real to complex eigenvalue transition, and
the phase transition point exhibits EP singularity.

The usage of EPs for sensing is based on the strong re-
sponse of an EP degeneracy to a small external perturbation
[9]. Conventional degeneracies—so-called diabolic points
(DPs)—when subjected to an external perturbation, split in
frequency, where the splitting is proportional to the perturba-
tion strength. In contrast, frequency splitting in the case of an
EP of order n is proportional to the nth root of the perturbation
strength, which is larger than the splitting in the case of a
DP for small perturbations. In the domain of PT -symmetric
systems, an EP-based sensing enhancement has been explored
for systems based on coupled cavities. In particular, a PT -
symmetric microcavity system has been used for the sensing
of mechanical motion [10], and an enhanced sensitivity of
single-particle detection by a system of coupled nanobeam
cavities has been shown [11]. However, in many cases the
realization of EP-based sensing may be accompanied by noise
enhancement, leading to a decrease of the signal-to-noise
ratio of the sensor [12,13]. In particular, it is argued that
although the presence of an EP leads to an enhancement of
the spectral response, it may also amplify the noise by the
same or larger factor. Moreover, for the sensitivity of fre-
quency splitting around EPs at quantum scales, the intrinsic
quantum noise may dominate, prohibiting amplification of
the measured optical signal [14,15]. Nonetheless, very recent
experimental results on an electromechanical accelerometer
show a particular EP-based PT -symmetric system, where the
noise can be surpassed by an enhanced signal response, thus
revealing the merit of using EPs for sensing [16].

In practice, EPs and related effects are easily accessible
with the usage of resonators, which have been investigated
as a sample system to study the effects related to wanted and
unwanted losses [17]. With respect to the study of light-matter
interaction in cavities, it has been shown that the spontaneous
emission of dipole emitters in the weak-coupling regime can
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FIG. 1. Schematic graph of the model sensing apparatus. The
coupled resonators a and b are illustrated as WGM resonators, where
the coupling rate is determined by the distance between them. At
the same time, the coupling layer acts as a channel to load analytes,
which couple to the resonator a due to the functionalized surface of
the resonator.

be modified at an EP, leading to a strong enhancement of
the emission rate [18]. The spontaneous emission rate en-
hancement of an emitter coupled to the resonator at an EP
is related to the linear response of a resonant system, which
at an EP exhibits a square Lorentzian line shape in contrast
to a Lorentzian function in the single-mode case. However,
as we have shown recently [19], Rabi splitting of the strong-
coupling rate of a single emitter coupled to an EP mode
approximately equals the one in the case of a single-mode
case, which is smaller than the Rabi splitting in the case
of a two-mode cavity. Moreover, the interaction of a single
emitter with a WGM resonator at an EP provides a strong
spectroscopic tool for the sensitive enantioselection of chiral
molecules [20].

In the ensuing paper, we present a gas sensing structure,
where we propose to use coupling of an external emitter with
a microcavity system at and near the EP regime. In contrast
to our previous works [19,20], here, the platform is based
on a system of coupled resonators, that obeys PT symmetry
and that possesses an EP (see Fig. 1). Provided the system
is prepared in the EP state and that target molecules couple
to the surface of one of the resonators, a perturbation to the
system is imposed, which leads the system away from the EP.
This way, the emission of an emitter coupled to the resonator
provides the spectral signature of the perturbation, since as
the perturbation increases, the Rabi splitting of strong emitter-
field coupling increases in comparison to the EP case.

II. COUPLED CAVITIES IN A PT -SYMMETRIC
CONFIGURATION

We study the simplest system, composed of two coupled
resonators, by means of coupled-mode theory [21]. For the
realization of an EP the required key feature is that the modes
of the non-Hermitian system possess the same frequency but
different loss rates. The frequencies and the loss rates of
modes are defined by means of the real and imaginary parts
of the mode eigenfrequencies, correspondingly. In a particu-
lar case of a coupled system with balanced loss and gain, a
PT -symmetric EP can be achieved.
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FIG. 2. Real (red, solid) and imaginary (blue, dashed) parts of
�ω with respect to the coupling strength.

Starting with the coupled-mode theory for two coupled mi-
crocavities, the time evolution of the system can be described
by a Schrödinger-type equation in a two-mode approximation
on the basis of two cavity modes [22],

i
d

dt
ψ = Hψ, (1)

with the effective Hamiltonian (see Ref. [6])

H =
(

ωa − iγa/2 g
g ωb − iγb/2

)
, (2)

where (real) g is the coupling rate between the modes of
the resonators, and ωa,b are the mode frequencies. In the
following, we consider a quasi-PT -symmetric case, where
both γa and γb describe (nonequal, γa �= γb) loss rates of the a
and b resonators, correspondingly. If ωa = ωb ≡ ω0, the two
eigenvalues associated with this Hamiltonian read as follows:

λ± = ω0 − i(γa + γb)/4 ±
√

g2 − (γa − γb)2/16. (3)

From Eq. (3) it can be seen that in the case of large cou-
pling strengths, g > |γa − γb|/4, the square-root term on the
right-hand side of Eq. (2) is real, and the system resides in
the regime for which the coherent energy exchange between
two resonators compensates for the decay difference, and both
modes have the same decay rate (γa + γb)/4, correspond-
ing to the PT -symmetric phase. If the coupling is small,
g < |γa − γb|/4, the square-root term is imaginary, and the
system possesses two modes with different decay rates, which
corresponds to the PT -symmetry broken phase.

The EP point emerges at g = gEP ≡ |γa − γb|/4, that man-
ifests itself as a critical point between the two phases [23]
(see Fig. 2). In this case, the eigenfrequencies coalesce at
λEP = ω0 − i(γa + γb)/4, and the remaining (right) eigenstate
reads

ψR
EP = 1

4

(
i(γb − γa)
|γb − γa|

)
, (4)
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which, together with the left eigenvector (ψL
EP)T = (1/4)

(|γa − γb| i(γa − γb)), satisfies the self-orthogonality condi-
tion (ψL

EP)T · ψR
EP = 0, where the superscript T denotes the

transpose [6]. Note that the losses of the passive system under
consideration are always present both in the PT -symmetric
phase and in the EP case, where g = |γa − γb|/4 can still be
positive for different loss rates γa and γb.

The spectral response of the system is characterized by
the Green tensor which, near the EP, can be found using the
Jordan chain relation as [19,20]

GEP(ω) = 1

4

1

(ω − λEP)2

(
i(γb − γa) |γa − γb|
|γb − γa| i(γa − γb)

)

+ 1

ω − λEP

(
1 0
0 1

)
, (5)

which yields the expansion of the Green tensor into the a and
b resonator mode functions as

GEP(r, r′, ω) = 1

4

1

(ω − λEP)2

{i(γb − γa)[Ea(r)Ea(r′) − Eb(r)Eb(r′)]

+ |γb − γa|[Ea(r)Eb(r′) + Eb(r)Ea(r′)]}

+ 1

ω − λEP
[Ea(r)Ea(r′) + Eb(r)Eb(r′)].

(6)

A remarkable feature of this Green tensor is the presence of
the second-order pole that appears at the EP. Note that, in the
case γa = γb, and therefore gEP = 0, the system governed by
the Hamiltonian Eq. (2) features a conventional degeneracy
(a diabolic point) at which the second-order pole of the Green
tensor [the first term in Eq. (6)] vanishes.

Our approach is based on the peculiar spectral response
of the electromagnetic field at the EP [19]. Thus, we study
radiative emission of a single emitter (position rA) interacting
with the electromagnetic field in the dipole approximation
[24],

Ĥint = −d̂ · Ê(rA), (7)

which contains the electric dipole-moment operator of the
emitter, that can be represented by means of the flip operators
as

d̂ =
∑
mn

dmnŜmn, (8)

with dmn = 〈m|d̂|n〉, and Ŝmn being the flip operators,

Ŝmn = |m〉〈n|. (9)

Let us assume that only a single transition (|1〉 ↔ |2〉, fre-
quency ω21, dipole moment d21) is quasiresonantly coupled
to a narrowband cavity-assisted electromagnetic field, and
that the emitter is initially (at time t = 0) prepared in the
excited state |2〉, and the field of the resonators is in its ground
state |{0}〉. Then, restricting the system to single excitations,
the Schrödinger equation reduces to the following integrod-
ifferential equation for the excited-state amplitude C2(t ) (for
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FIG. 3. (a) Excited-state amplitude |C2(t )|2, and (b) spectral
mode function of the outgoing field at EP for γp = −γa/2,
ω21 = ω0 = 105γa at an emitter-field coupling rate of r = 10γa.

details, see Ref. [25]):

Ċ2(t ) =
∫ t

0
dt ′ K (t − t ′)C2(t ′). (10)

In the above, the kernel function K (t ) reads

K (t ) = − 1

π h̄ε0

∫ ∞

0
dω

ω2

c2
e−i(ω−ω21 )t

× d21 · Im G(rA, rA, ω) · d∗
21. (11)

In the following, we focus on a situation when the emit-
ter couples only to the a mode, with d21 · Eb(r) = 0. Then,
using the expression for the Green tensor of the coupled
microresonator system at the EP, Eq. (6), we can solve the
integrodifferential equation, Eq. (10), together with Eq. (11).
The solution for the excited-state probability |C2(t )|2 shows
Rabi oscillations [see Fig. 3(a)] that reflect the strong-
coupling regime between the emitter and the field (for details,
see Ref. [26]). In addition, as Fig. 3(b) reveals, the strong-
coupling regime is characterized by the Rabi splitting R of the
spectral mode function of the outgoing field.

To illustrate how the proposed system can be used for
sensing applications, let us now suppose that we introduce
a small perturbation to the system, which disturbs the EP.
Namely, we assume that the coupling rate between the two
resonators slightly changes g = gEP + v, where v is the small
perturbation. In this case, the eigenvalues of the system read

λ± = ω0 − i(γa + γb)/4 ± √
v, (12)

which reveals that when v < 0, which corresponds to reduc-
tion of the coupling rate in comparison to the EP rate, g < gEP,
the perturbation introduces a small change to the decay rates
of the resonators. In contrast, when v > 0, i.e., g > gEP, the
perturbation changes the real parts of the eigenvalues. There-
fore, in this case the system transforms from the regime of
the EP to the regime of the two-mode case, where increasing
the perturbation v increases the detuning of the resonant fre-
quency (details of the calculation of a single-emitter coupling
to two modes can be found in Ref. [26]). Then, the Rabi
splitting R, which now corresponds to the strong coupling
of the emitter to the two modes (resonators), increases in
comparison to the Rabi splitting of the single EP-mode case
REP (see Fig. 4).

To illustrate the advantages of the EP-based sensing in
comparison to the conventional DP-based sensing, in the inset
of Fig. 4 we present a comparison of the Rabi splitting for
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FIG. 4. Dependence of the Rabi splitting R on the perturbation
of the coupling rate v. Inset: Comparison of the Rabi splitting for the
EP case and DP case in a log-log plot. Parameter values are the same
as in the Fig. 3.

the two cases. A diabolic point can be obtained when we put
g = 0 and γa = γb in Eq. (2). The inset of Fig. 4 confirms the
enhanced frequency splitting of the EP case in comparison to
the DP case.

III. SENSING MECHANISM FOR PARTICLE DETECTION

The sensor is based on a quasi-PT -symmetric coupled
resonator system, where the coupling layer represents a chan-
nel for the load of the gas sample. The surface of the cavity
a binds specific target gas molecules. When a particle is
bonded to the surface of the resonator a, the perturbation of
strength ε is introduced, which increases the absorption of the
first cavity. As Fig. 5 reveals, increasing absorption (ε > 0)
brings the system from the EP to the unbroken PT -symmetry
state, where the real parts of eigenfrequencies split, but the
imaginary parts remain equal. In this way, the system of
coupled resonators undergoes a transition from the single EP-
mode state to the two-mode state. Stronger absorption leads
to an increase in the splitting of the real parts of the mode
eigenvalues.
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FIG. 5. (a) Real and (b) imaginary parts of eigenvalues with
respect to the perturbation strength ε for g/γb = 0.125, and
γa/γb = 0.5.

FIG. 6. Dependence of the Rabi splitting R on the perturbation ε.
In the inset we present a comparison of Rabi splitting in the strong-
coupling regime with eigenvalue splitting of the passive system in a
log-log scale. Parameter values are the same as in Fig. 3.

In order to see how the presence of a scatterer modifies the
spectral response of the resonator system, we study the radia-
tive emission of a single emitter coupled to the first cavity.
From Fig. 6 we can see that the Rabi splitting of the strong
emitter-field coupling R increases as the resonator system
switches from the EP regime to the double-mode regime. In
the inset of Fig. 6 we compare the splitting of a conventional
passive PT -symmetric sensing, where the splitting of eigen-
frequencies is detected. As the figure reveals, although the
eigenfrequency splitting is slightly larger than the Rabi split-
ting, both splittings are of the same order of magnitude and
show a square-root dependence on the perturbation strength.

IV. CONCLUSIONS

In summary, we have presented a method for biosensing
based on the interaction of a single emitter with a sys-
tem of coupled resonators in a PT -symmetric configuration.
The method utilizes the spectral response of coupled cav-
ities operating at an EP and the spontaneous emission of
the emitter in the strong-coupling regime. In particular, by
introducing a perturbation, which represents the presence of
the target molecules, the system leaves the EP state into
the PT -symmetric state, providing a spectral modification
of emission. In this way, the method provides enhanced
frequency splitting even for small perturbations, which cor-
responds to a low concentration of particles to be detected.
It should be emphasized that the passive system of coupled
resonators has no gain, and PT symmetry is realized by
introducing different loss rates of the resonators. Therefore, a
dynamical noise-induced parametric instability of the system
characteristic for conventional PT -symmetric gain-loss sys-
tems is avoided [27]. At the same time, the present method
suggests the usage of spontaneous emission of an external
emitter in the strong-coupling regime, which allows us to
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avoid a well-known limitation of conventional EP-based lossy
sensors—reduction of the resolvability of the frequency split-
ting due to linewidth broadening. Thus, our study offers an
EP-based enhanced frequency splitting, where strong cou-
pling with an external emitter is used. The scheme may offer a
feasible sensing method for particle detection with a high sen-
sibility provided an enhanced signal-to-noise ratio is achieved.
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