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Bound state of distant photons in waveguide quantum electrodynamics
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We study theoretically quantum eigenstates in an array of two-level atoms coupled to the waveguide. We show
that this system features double-excited states where the two excitations are localized at the opposite edges of
the array. Such bound states of distant excitations result from the long-ranged photon-mediated coupling in the
waveguide setup, which mediates repulsion at larger distances. These results could be useful for the rapidly
developing field of waveguide quantum electrodynamics, studying waveguide-coupled arrays of cold atoms or
superconducting qubits.
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I. INTRODUCTION

The quantum-mechanical problem of a particle moving
in one spatial dimension and confined in a box is probably
the most paradigmatic model of quantum mechanics. A wave
function of a single particle of mass m in a box of size N forms
standing waves, ψ (x) ∝ sin Kx, where K = π/N, 2π/N, . . .

and the energy levels are given by h̄2k2/2m. The situation
becomes more interesting in the many-body case, when sev-
eral quantum particles are put in the box and are allowed to
interact with each other. For example, the problem of bosons
with strong repulsive interaction can be solved exactly and
the composite many-body wave function is proportional to a
Slater determinant of wave functions of noninteracting parti-
cles, e.g.,

�(x1, x2) ∝ sgn(x1 − x2)[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)]

for a pair of particles. The strong repulsion of bosons thus
effectively emulates the Pauli exclusion principle, leading to
a so-called fermionization [1]. Another possibility is offered
by bound many-particle states. The two attracting particles
can form a bound pair so that their joint probability will
decay with the characteristic length a. Such bound pair can
propagate as a whole with the center-of-mass wave vector K
and can be quantized in a finite box,

�(x1, x1) ∝ sin

(
K

x1 + x2

2

)
e−|x1−x2|/a.

One of the instructive examples of such states is presented
by a bound electron-hole pair in a semiconductor, an exciton,
that is confined in a quantum well [2]. If the well is wider
than the exciton Bohr radius, the exciton is quantized as a
whole. On the other hand, if the well width is smaller than the
Bohr radius, the exciton is destroyed and electrons and holes
are quantized independently, �(x1, x2) ∝ sin K1x1 sin K2x2,
where K1,2 are the wave vectors of the corresponding particles.
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In this work, we consider yet another quantum state of two
interacting particles in a box, that we term as “distant bound
state,” where the wave function has the form

�(x1, x2) ∝ e−x1/ae−|N−x2|/a + (x1 ↔ x2). (1)

Such a state can be viewed as an entangled Bell state of
particles, pinned by the interaction to the opposite sides of
the box. Its origin of formation is qualitatively illustrated in
Fig. 1. Suppose that in the semi-infinite arrays there exist
single-particle edge states, |L〉 and |R〉, localized at the left
and right edges, respectively. Due to the mirror symmetry,
the eigenstates of the finite array will be the even and odd
combinations |ψ±〉 = (|L〉 ± |R〉)/

√
2. Now we proceed to

the double-excited states. Figures 1(a) and 1(b) illustrate the
product states with both particles either in the state |ψ+〉
or |ψ−〉, namely |�±〉 = |ψ (1)

± 〉|ψ (2)
± 〉. In the case of large

structure, and when the interaction between the two particles
is neglected, the states |�±〉 are degenerate. However, strong
interaction between the particles can mix these product states
leading to the formation of new even and odd combinations
|χ±〉 = (|�+〉 ± |�−〉)/

√
2, shown in Figs. 1(b) and 1(d). The

even combination can also be interpreted as an edge state of
the bound photon pair,

|χ+〉 = 1√
2

(|L1〉|L2〉 + |R1〉|R2〉), (2)

where both particles are simultaneously localized either at the
left or at the right edge of the structure (here, the subscripts 1,
2 denote the particle numbers). In this work, we focus on the
odd combination

|χ−〉 = 1√
2

(|L1〉|R2〉 + |R1〉|L2〉), (3)

which is an entangled Bell state of photons at the left and right
edges of the array [Fig. 1(d)] and is equivalent to the distant
bound state Eq. (1).

The key ingredient necessary to the formation of a state
Eq. (1) is the strong interaction between the particles at a
large distance, which is necessary to repel them from each
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FIG. 1. Schematic illustration of two-photon wave functions for
superpositions of even (a) and odd (b) single-particle edge states
and their interaction-induced combinations: edge state of bound
pair (c) and distant bound state (d). The false-color map shows the
two-particle wave-function amplitude �(x1, x2 ) depending on their
coordinates x1 and x2.

other. This requirement may seem challenging because the
two particles, exponentially localized at the opposite edges
of the structure, should hardly interact. Any significant re-
pulsion, pushing them to the opposite edges, does not seem
feasible. This should hinder formation of the distant bound
states in the model with only nearest-neighbor coupling
and short-range interactions. For example, the Bose-Hubbard
models with nearest-neighbor coupling and short-range re-
pulsion between the particles feature the edge bound states
[3,4], similar to Fig. 1(c), but not the distant bound state.
Edge-localized modes are also well known for the XXZ
spin chains with open boundary conditions [5,6], but we
are not aware of the states of type Fig. 1(d). Very recently,
such a state has been theoretically predicted for two in-
teracting polaritons in a one-dimensional waveguide in the
presence of the long-ranged dipole interaction between the
two polaritons [7]. Here, we will show that the distant bound
states can arise even in the presence of only short-range
interactions.

We consider the setup of waveguide quantum electro-
dynamics (WQED), where an array of natural or artificial
two-level atoms (such as superconducting qubits or quantum
defects) is coupled to the waveguide [8–12]. The inter-
actions between the excitations in this setup are induced
by the anharmonicity of the two-level atom potential and
are short ranged. On the other hand, the WQED setup
has built-in long-ranged coupling between the atoms, me-
diated by the photons propagating in the waveguide. Our
goal is to demonstrate that distant bound states Eq. (1)
naturally arise in such a system and that they are ro-
bust against fluctuating short-range interactions between the
atoms.

II. NUMERICAL MODELING

We consider an array of equidistant two-level atoms cou-
pled to a waveguide, schematically illustrated in the top inset
in Fig. 2(b). The system is described by the following effective
Hamiltonian, written in the Markovian approximation [13]:

H = −iγ1D

∑
n,m

σ †
n σmeiϕ|m−n|, (4)

where the energy is counted from the atomic resonance ω0 (we
assume h̄ = 1), σ †

n are the atomic raising operators, and ϕ =
ω0d/c is the phase gained by light traveling the distance d
between two neighboring atoms. The parameter γ1D ≡ 
1D/2
is the radiative decay rate of a single atom into the waveguide.
The key feature of the Hamiltonian Eq. (4) is the long-ranged
waveguide-mediated coupling between the distant atoms. On
the other hand, the interaction, that is quantum nonlinearity,
is local and results from the fact that a given atom cannot
be doubly excited, σ 2

m = 0. We diagonalize the Hamiltonian
Eq. (4) numerically in the domain of double-excited states∑N

n,m=1 �nmσ †
n σ †

m|0〉 for finite N-atom arrays by solving the
Schrödinger equation H |�〉 = 2ε|�〉; see Ref. [10] for the
derivation details. Figure 2 presents our results obtained nu-
merically for a finite array with N = 200 atoms. The complex
two-excitation energy spectrum is shown in Fig. 2(a). The
imaginary part of the eigenenergy ε describes the radiative
losses into the waveguide. The points are colored according
to the average photon-photon distance

ρ =
N∑

n,m=1

|n − m||�nm|2 (5)

and we also show the histogram of the photon-photon dis-
tances’ distribution in Fig. 2(c). This distribution has a
broad peak at ρ ≈ 70 ≈ N/3, corresponding to a pair of
quasi-independent delocalized excitations. The tails of the
distribution correspond to the bound photon pairs (small ρ)
and distant bound states we focus on (large ρ). In order to
provide more insight into the two-photon spectrum, we plot in
Fig. 2(b) the wave functions of four characteristic two-photon
states of different types. For example, the state No. 1 is close
to a direct product of two symmetric combinations of left-
and right-edge states, as shown in Fig. 1(a). The state No. 3
corresponds to both photons localized either close to the left
or to the right edge of the array at the same time and can be
qualitatively understood as an edge state of bound photon pair
[Fig. 1(b)]. Our key observation in Fig. 2(a) is the existence
of a large number of states, where the photon-photon distance
ρ is comparable with the system size (yellow-colored points).
The two-photon wave function for the most distant state No.
2, with the largest value of ρ, is shown in Fig. 2(b). This
state looks very similar to the Bell state of left- and right-edge
photons, schematically illustrated in Fig. 1(d). Another kind
of distant bound state with a slightly different wave function
is the state No. 4.

We now analyze the two-photon spectrum in more detail.
Our goal is to understand the origin of single-particle edge
states, then to examine how their interaction leads to the for-
mation of two-particle bound states, and finally demonstrate
the robustness of the distant bound state against the disorder.
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FIG. 2. Complex two-polariton energy spectrum of the array of N = 200 atoms. The color indicates the mean photon-photon distance ρ

calculated according to Eq. (5). Cyan stars show a single-polariton energy spectrum. (b). Color maps show probability distribution |ψnm|2
for four characteristic two-polariton states with the energies (ε − ω0)/γ1D ≈ 3.5–45.6i, −7.0–26.1i, 11.1–19.9i, −1.6–0.1i, respectively,
indicated with the corresponding numbers in (a). Top inset shows schematics of the array of atoms coupled to the waveguide with two
interacting excitations. (c) Histogram showing the distribution of the photon-photon distances ρ. Calculation has been performed for N = 200
and ϕ ≡ ω0d/c = 1.

We start with the singular value decomposition of the distant
bound state No. 2 from Fig. 2(b),

�mn =
N∑

ν=1

λνψ
ν
n ψν

m, (6)

where due to the bosonic symmetry �nm = �mn left and right
singular vectors coincide and can be chosen to satisfy the un-
conjugated orthogonality condition

∑m
n=1 ψν

n ψμ
n = δμν . The

distribution of the 20 largest eigenvalues λν is presented in
Fig. 3(a). Due to the mirror symmetry, the singular vectors
ψμ

n are either odd or even and we denote the corresponding
singular values by blue and red color, respectively. Figure 3(b)
shows the approximation to the wave function, calculated
leaving only the four largest singular values corresponding
to two odd and two even singular vectors in the expansion
Eq. (6). Such two-term expansion well approximates the exact
wave function No. 2 from Fig. 2(b). The localization of the
distant bound state at the edges of the array can be explained
by the fact that the single-particle eigenstates are also local-
ized; compare two corresponding wave functions, shown in
Fig. 3(c). These findings fully confirm our interpretation of the
formation mechanism of the distant bound state illustrated in
Fig. 1: it is formed due to the interaction-induced interference
of the even and odd single-particle states localized at the
opposite edges of the array.

It is also instructive to analyze the single-particle en-
ergy spectrum, obtained by solving the Schrödinger equa-
tion H |ψ〉 = ε|ψ〉 with the ansatz |ψ〉 = ∑N

n=1 ψnσ
†|0〉 and

shown in Fig. 2(a) by cyan stars. Eigenmodes of the finite

array can be presented as a superposition of two polaritonic
Bloch waves [14]:

ψn ∝ r eiKn + e−iKn, (7)

where K is the polariton wave vector determined from the dis-
persion equation cos K = cos ϕ − γ1D sin ϕ/ε and r = −(1 −
ei(ϕ−K ) )/(1 − ei(ϕ+K ) ) is the internal reflection coefficient of
polaritons from the edge of the array. Due to the radiative
losses, the polariton eigenfrequencies ε in the finite array and
the corresponding wave vector K are complex. The states
with the largest radiative decay rate have the real part of
the wave vector Re K (ε) close to ±ϕ, which can be under-
stood as a kind of phase synchronism condition facilitating
photon emission [15]. The phase synchronism is also ev-
ident from the Fourier transform of the two-photon wave
function ψkx,ky = ∑N

m,n=1 e−ikxm−ikyn�mn, shown in Fig. 3(d),
that is concentrated near the points where kx, ky = ±ϕ. The
eigenfrequencies of even eigenmodes satisfy the analytical
Fabry-Pérot-like equation [15,16] ρ(ε)eiK (ε)(N+1) = 1. Look-
ing for the solution to this equation with K ≈ ϕ + i Im K , we
obtain the following approximate analytical equation for the
decay rate of the brightest state:

− Im ε

γ1D
≈ N

W (2N sin ϕ)
, (8)

where W (x) is the Lambert W function defined by the equa-
tion W eW = x. For large N we use the approximation for the
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FIG. 3. Origin of distant bound states. (a) Largest singular values
λ entering the SVD expansion Eq. (6) of the distant bound state
No. 2 from Fig. 2. Red and blue dots correspond to even and odd
singular vectors, respectively. (b) Approximated wave function of
the distant bound state No. 2 calculated including only four largest
singular values in Eq. (6), indicated by the yellow rectangle in panel
(a). (c) Distribution of the wave function corresponding to the largest
odd SVD term and the single-particle wave function of the brightest
state. (d) Color map of the two-dimensional Fourier transform of the
wave function of the distant bound state No. 2.

Lambert function, which yields

− Im ε

γ1D
≈ N

ln(2N sin ϕ) − ln ln(2N sin ϕ)
. (9)

The dependence of the radiative decay on the array length,
calculated numerically and analytically following Eqs. (8) and
(9), is shown in Fig. 4(a). The decay rate increases with the
number of atoms almost linearly due to the weak logarith-
mic growth of the Lambert function and the corresponding
eigenstate can be considered as a superradiant one. Due to the
radiative decay, the superradiant states have a large imaginary
part of the polariton wave vector Im K (ε) > 0 and, according
to Eq. (7), this leads to the decay of the wave function from
the edges towards the structure center, which is caused solely
by the radiative losses. The wave function of the brightest
state calculated for arrays of different lengths is shown in
Fig. 4(b) and indeed falls exponentially from the edges to
the center. An important observation from Fig. 4(b) is that
the slope of the dependence ln |ψn| on n becomes smaller
with the increase of the array length N . The probability of
finding the polariton in the center is ∼N times smaller than
at the edge, |ψcenter/ψedge|2 ≡ |ψN/2/ψ1|2 ∝ 1/N . In order to
check this numerically we have fitted the exponential decay of
the wave function from the edge to the center for each value
of N and extrapolated it to the center of the structure. The
corresponding fits are shown by black dotted lines in Fig. 4(b).
Such extrapolation allows us to determine the value of |ψN/2|2
in a way that is robust to the oscillations of the wave function.
Next, we have plotted in Fig. 4(c) the ratio |ψcenter/ψedge|2
depending on N in a double logarithmic scale that clearly
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FIG. 4. Scaling of single-particle eigenstates. (a) Dependence
of the radiative decay rate of the brightest state on the number of
atoms N calculated numerically and analytically following Eqs. (8)
and (9). (b) Wave function of the brightest state depending on the
length of the array, shown on the graph. Black dotted lines show
the exponential decay extrapolated from the edge of the structure to
its center. (c) Center-to-edge ratio of the probabilities depending on
the number of atoms N . Dotted blue and dashed red lines show the
asymptotic laws 1/N and 1/N2. Other calculation parameters are the
same as in Fig. 2.

agrees with the 1/N decay law, shown by the dotted blue line.
This 1/N suppression is in stark contrast to the conventional
edge state where the ratio |ψN/2/ψ1|2 decays exponentially
with N as |ψN/2/ψ1|2 = exp(−N/lloc), where the localization
length lloc is independent of N . In the considered case lloc is
not constant but increases with N , which is a direct manifes-
tation of the non-Hermitian nature of the problem. For larger
N the radiative decay due to the photon escape through the
edges becomes relatively less important and the localization
is suppressed. The result that |ψcenter/ψedge|2 ∝ 1/N can also
be viewed as a signature of a substantial admixture of the
scattering states, which are delocalized in space, to the edge
states in Fig. 4. It is this admixture that helps the two photons
to repel each other and form a bound distant state, with two
photons localized on the opposite edges. The discussed scal-
ing of the localization is reflected in the eigenfrequency of the
superradiant state found from Eq. (8) that approximately sat-
isfies the equation e−(N−1) Im K (ε) ≈ 1/(N sin ϕ), which means
linear, rather than exponential, suppression of the probability
in the center of the structure.

III. ROBUSTNESS AGAINST THE DISORDER

In order to investigate the stability of the distant bound
states against the short-range disorder we add the following
interaction term to the Hamiltonian Eq. (4):

V = γ1D

N−1∑
n=1

χn(σ †
n σn)(σ †

n+1σn+1). (10)

Physically, such short-range interactions occur, e.g., due to
van der Waals couplings between the atoms and they can
also be implemented for superconducting qubits [17]. Here,
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FIG. 5. Effect of disorder. [(a),(d)] Wave functions of four characteristic two-photon states. (b) Dependence of the photon-photon distances
on the disorder strength χ . Each horizontal line in the calculated 2D map corresponds to a single disorder realization. All the N (N − 1)/2
eigenstates have been sorted according to the average photon-photon distance p defined by Eq. (5). (c) Distribution of the disorder amplitudes
χn for the largest disorder strength χ = 5. Calculation has been performed for N = 20 and ω0d/c = 1.

the coefficients χn, characterizing the disorder strength, are
independent random variables with zero mean value and the
dispersion 〈χ2

n 〉 ≡ χ2; see Fig. 5(c) for a particular realization.
The calculated dependence of the average photon-photon dis-
tance on the disorder strength is shown in Fig. 5. For vanishing
disorder, one can clearly distinguish the bound two-photon
states with the small distance p [state No. 3 in Fig. 5(a)]
and the distant bound states [state No. 4 in Fig. 5(b)]; see
also the histogram Fig. 2(c). For bound states, two photons
propagate together and their center-of-mass wave function
forms a standing wave in the structure. These bound photon
pairs are rather sensitive to the short-range disorder Eq. (10).
The increase of the disorder strength leads to the localiza-
tion of the bound pairs; see the state No. 1 in Fig. 5(a). On
the other hand, the distant bound states that we focus on
are significantly less sensitive to the short-range interactions
due to the increased photon-photon distance. This is evident
from the persistence of the red-colored states with the large
distance in the right edge of the diagram in Fig. 5(b). The
most distant state is weakly affected by the disorder, as can
be seen by comparing the wave functions No. 2 and No. 4 in
Fig. 5(b). Such robustness against the disorder has a certain
similarity to the Majorana fermions in Kitaev’s model [18],
which were predicted to arise at the edges of a nanowire
put upon a superconductor in a magnetic field [19]. A pair
of such Majorana states localized on the opposite edges of
the wire forms a single ordinary fermionic excitation with
zero energy. The latter appears to be partially immune to
dephasing because its two Majorana components cannot be
mixed by a short-range perturbation, such as, e.g., Coulomb
interaction [18,20]. However, even despite certain robustness

to the disorder the considered states have very short radiative
lifetime, since they originate from atom-photon interactions.

IV. SUMMARY AND OUTLOOK

In this section, we try to present a bird’s-eye view of
the two-photon quantum states in the finite array of atoms
coupled to a waveguide. Schematic spatial false-color maps
of two-photon joint probabilities |�(x1, x2)|2 are presented in
the schematic diagram in Fig. 6. They are grouped depending
on the relative distance between the two photons (a larger
distance corresponds to the upper panels) and depending on
whether the photons are located mostly at the structure edges
(right panels) or in the bulk (left panels). The bulk states are
most simple to understand. They are limited to the scattering
states, where two photons are delocalized in space and are
quasi-independent from each other [Fig. 6(b)], fermionized
states with increased radiative lifetime [Fig. 6(a)] [21], where
the average photon-photon distance is increased, and bound
photon pairs [Fig. 6(c)] [22–24]. To the best of our knowledge,
neither fermionized states nor bound states have been directly
observed in experiments yet. However, the bound states are
well known in other setups. They have been observed for cold
atoms in optical lattices [25], correlated two-photon quantum
walks have recently been experimentally studied for super-
conducting quantum processors [26], and even three- photon
bound states were seen for light interacting with Rydberg
atomic states [27,28]. Moreover, tunable photon bunching and
antibunching, recently realized in the WQED setup with cold
atoms coupled to the nanofiber [29], is in fact mediated by the
two-photon bound states [30–36]. Thus direct experimental
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FIG. 6. Types of two-photon states. The diagrams schematically
illustrate two-photon wave function |�(x1, x2)|2 in a finite array of
atoms depending on the first and second photon coordinates. The
states are grouped depending on whether the two photons are corre-
lated or anticorrelated in space and located in the bulk of the structure
or at its edges. The distant bound state, considered in this work,
corresponds to panel (f).

observation of the two-photon bound states does not seem
to be in the realm of impossible for state-of-the-art setups.
The most advantageous platform should probably be based
on superconducting qubits, since it allows access (excitation
and probing) of individual qubits [37]. As demonstrated by
the calculation in Fig. 5, the array of 20 qubits should already
be sufficient to observe the bound states as well as other
quantum states discussed below. Figures 6(d) and 6(e) present
unusual types of two-photon quantum states, predicted in our
previous works [38–40]. They manifest interaction-induced
localization when one of the two indistinguishable photons
forms a standing wave that induces a trapping potential for the
other photon. This second photon can be localized either in the
center [Fig. 6(d)] or at the edge [Fig. 6(e)] of the array. Since
the standing wave is delocalized, such states can be considered
as lying in between bulk and edge states; for example, for the

state in Fig. 6(e), one of the photons is always in the bulk while
another one is always at the edge. The two photons can be both
correlated and anticorrelated in space depending on whether
the trapping is in the antinode or in the node of the standing
wave. Thus, while being quite interesting from the fundamen-
tal side, the states in Figs. 6(d) and 6(e) do not seem optimal
to enhance or suppress the photon-photon spatial correlations.
Finally, we proceed to the states in Figs. 6(f), 6(g), and 6(h),
where both photons are at the edges of the array. Depending
on the specifics of two-photon interactions, the photon pair
can be quasi-independent [Fig. 6(g)], correlated [Fig. 6(h)], or
anticorrelated [Fig. 6(f)]. As discussed above, the latter state,
put forward in this work, is the most robust against short-range
interactions between the photons.

To summarize, waveguide quantum electrodynamics,
which has become a separate research field only relatively re-
cently, is a very promising platform to control two-photon cor-
relations [29]. Even the simplest two-body problem in WQED
manifests a number of quite unusual two-photon states. It is
not clear whether our classification in Fig. 6 is complete and
how it can be extended for a larger number of particles [41]
or even in the many-body regime [42], but we can expect
beautiful fundamental phenomena that will also be hopefully
soon complemented by experimental demonstrations and even
practical applications for the emerging quantum industry. It
also remains an important standing question how to probe
complicated correlated states in an experiment, especially if
their radiative lifetime is very long, as in the case of subradiant
states, or if it is very short, as in the considered case. One of
the potential directions to apply considered states could be the
quantum state transfer. For example, Ref. [43] has recently
experimentally demonstrated quantum state transfer between
edge-localized topological states in a structured waveguide. If
the qubits storing quantum information are coupled to the con-
sidered edge-localized states, the edge-localized states could
then mediate the transfer.
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