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Distance-dependent emission spectrum from two qubits in a strong-coupling regime
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We study the emission spectrum of two distant qubits strongly coupled to a waveguide by using the numerical
and analytical approaches, which are beyond the Markovian approximation and the rotating-wave approximation.
The numerical approach combines the Dirac-Frenkel time-dependent variational principle with the multiple
Davydov D1 ansatz. A transformed rotating-wave approximation (TRWA) treatment and a standard perturbation
(SP) are used to analytically calculate the emission spectrum. It is found that the variational approach and the
TRWA treatment yield accurate emission spectra of the two distant qubits in certain strong-coupling regimes
while the SP breaks down. The emission spectrum is found to be asymmetric irrespective of the two-qubit
distance and exhibits a single peak, double peaks, and multiple peaks depending on the two-qubit distance as
well as the initial states. In sharp contrast with the single-qubit case, the excited-state populations of the two
qubits can ultraslowly decay due to the subradiance even in the presence of a strong qubit-waveguide coupling,
which in turn yields an ultranarrow emission line. Our results provide insights into the emission spectral features
of the two distant qubits in the strong light-matter coupling regime.
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I. INTRODUCTION

Few distant emitters interacting with electromagnetic fields
have received much attention, which is fundamentally rele-
vant to the building block of quantum networks [1,2] and
gates [3,4] and also provide a test bed to study a variety
of phenomena such as quantum interference [5,6], collec-
tive emission such as superradiance and subradiance [7–20],
photon-mediated interaction [21,21–25], and quantum entan-
glement [26–32]. Particularly, the literature has illustrated that
the non-Markovianity of the two distant emitters arises from
delay-feedback effects due to the field propagating between
the distant emitters [33], which strongly influences the col-
lective dynamics of the emitters as well as the spontaneous
emission.

Recently, the two-atom problem has been renewed in terms
of artificial atoms coupled to a waveguide, which allows
the access to the coupling regimes from weak to ultrastrong
light-matter interaction [34,35]. For instance, Ref. [36] re-
ports the observation of a large collective Lamb shift of two
distant superconducting artificial atoms. With the rotating-
wave approximation (RWA), the investigation has revealed
the delay-induced non-Markovian features of the spontaneous
emission spectrum of two distant qubits weakly coupled to a
one-dimensional waveguide, that is, the linewidth broadening
beyond standard superradiance and narrow Fano-resonance-
like peaks [37]. In the ultrastrong-coupling regime, the
photon-mediated interaction between the two distant qubits
and the qubit frequency renormalization are found to be sig-
nificant and play a crucial role in the collective dynamics of
the two-qubit system [38]. However, the spontaneous emis-
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sion spectrum from two distant emitters has not yet been
explored in the strong light-matter coupling regime. This ac-
quires a non-Markovian and non-RWA approach that properly
takes into account strong-coupling effects.

One way to theoretically calculate the emission spectrum
of two distant qubits is the time-dependent variational ap-
proach equipped with the multiple Davydov ansatz [39]. This
approach has been applied to a variety of models ranging
from the quantum Rabi model [40] to the Holstein model
[41,42] and has been benchmarked with other numerical
methods such as the time-dependent numerical renormal-
ization group [43,44], the quasiadiabatic path integral [45],
and the hierarchical equation of motion [46–48]. It turns out
that the variational approach is capable of describing the
non-Markovian dynamics of open quantum systems such as
the spin-boson model and its variants in the strong system-
reservoir coupling regime. An advantage of the variational
approach over the master equation is that it retains both the
reduced dynamics and the field dynamics. It is, therefore,
feasible to calculate emission spectrum by passing the two-
time correlation function and quantum regression theory [47].
Nevertheless, the performance of the variational approach
should be further explored for the case of two qubits with a
separation.

In this paper, we employ the time-dependent variational
approach and analytical methods to study the emission spectra
of two distant qubits strongly coupled to a one-dimensional
waveguide beyond the weak-coupling regime and without
using the RWA and the Markovian approximation. The vari-
ational method combines the Dirac-Frenkel time-dependent
variational principle [49] with the multiple Davydov D1

(multi-D1) ansatz [44], which is found to be able to pro-
vide accurate results in certain strong-coupling regimes. We
also attempt to calculate emission spectra with two analytical
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methods. One is based on the resolvent-operator formalism
[50] and a transformed RWA (TRWA) Hamiltonian con-
structed from a unitary transformation that resembles the
polaron transformation [28,51]. The other is the standard
perturbation (SP) based on the resolvent-operator formalism
and the original Hamiltonian. Comparisons between the vari-
ational results and the analytical results confirm the validity
of the TRWA treatment while the SP treatment completely
breaks down. By using the variational approach and the
TRWA method, we illustrate that the emission spectrum is
generally asymmetric and has a variety of line shapes, which
can be single-peaked, vacuum-Rabi-splitting-like doublet, and
complicated multipeaked depending on the distance and initial
states. Under certain conditions, ultranarrow emission lines
can be observed in the spectrum, indicating the subradiance.
The present study reveals the emission spectral features of the
two distant qubits in a strong light-matter coupling regime.

The rest of the paper is organized as follows. In Sec. II, we
introduce the Hamiltonian and present both the numerical and
analytical treatments for the emission spectrum. In Sec. III,
we present the numerical results of the emission spectra and
discuss the spectral features. In Sec. IV, the conclusions are
drawn. Some technique details are presented in the Appen-
dices.

II. MODEL AND METHODOLOGIES

We consider that two distant qubits are strongly coupled to
a one-dimensional waveguide (reservoir), which is described
by the Hamiltonian (h̄ = 1)

H = ω0

2

2∑
j=1

σ z
j +

∑
k

ωkb†
kbk

+
2∑

j=1

σ x
j

2

∑
k

λk (bke−ikx j + b†
keikx j ), (1)

where ω0 is the transition frequency of the qubit, σ
μ
j (μ =

x, y, z) denotes the Pauli matrix for the jth qubit, x j is the
coordinate of the jth qubit, bk (b†

k) is the annihilation (cre-
ation) operator of the kth bosonic mode with frequency ωk

of the reservoir, and λk is the coupling strength between the
kth mode and the qubit. In this work, we assume λk = λ−k

and a linear dispersion relation ωk = vg|k|, where vg is the
propagating velocity of the photon in the waveguide. The
wave numbers k < 0 and k > 0 are referred to as the left- and
right-propagating field modes in the waveguide, respectively.

The dissipation of the waveguide is assumed to be char-
acterized by the Ohmic spectral density function [38,52,53]:

J (ω) =
∑

k

λ2
kδ(ωk − ω) = 2αω�(ωc − ω), (2)

where α is a dimensionless coupling constant, �(·) is the
Heaviside function, and ωc is the cutoff frequency. In the
following, we use numerical and analytical methods to study
the spontaneous emission of the two-qubit system.

A. Dirac-Frenkel time-dependent variational
principle and multi-D1 ansatz

In this section, we use the numerical approach that com-
bines the Dirac-Frenkel time-dependent variational principle
with the multi-D1 ansatz to study the spontaneous emis-
sion. This approach is feasible to solve the time-dependent
Schrödinger equation i d

dt |ψ̃ (t )〉 = H̃ (t )|ψ̃ (t )〉 in the inter-
action picture governed by the bath Hamiltonian HR =∑

k ωkb†
kbk , where

H̃ (t ) = ω0

2

2∑
j=1

σ z
j +

2∑
j=1

σ x
j

2

∑
k

λk
(
bke−ikx j−iωkt + H.c.

)
.

(3)
The Dirac-Frenkel time-dependent variational principle states
that the optimal solution to the time-dependent Schrödinger
equation can be found via [49]

〈δψ̃ (t )|i∂t − H̃ (t )|ψ̃ (t )〉 = 0, (4)

where |ψ̃ (t )〉 denotes a trial state and 〈δψ̃ (t )| is the variation
of the adjoint state of the trial state. Since the model under
study in this work is a variant of the spin-boson model, we
use the multi-D1 ansatz, which has been found to be powerful
in the spin-boson problem and takes the form [44]

|DM
1 (t )〉 =

4∑
j=1

M∑
n=1

An j |φ j〉| fn j〉, (5)

where M is the multiplicity, |φ j〉 ∈
{|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉} are the bases for the
two-qubit system, and |±〉 are the eigenstates of the
x-component Pauli matrix: σ x|±〉 = ±|±〉. | fn j〉 is the
multimode coherent state used for the bosonic modes,

| fn j〉 = exp

[∑
k

( fn jkb†
k − H.c.)

]
|0〉, (6)

where |0〉 is the multimode vacuum state of the reservoir.
Supposing that the truncation numbers of the left- and right-
propagating modes in the multi-D1 ansatz are identical and
given by Nb, we have introduced totally 4M(2Nb + 1) time-
dependent variational parameters: An j and fn jk . The former
represents the probability amplitude while the latter repre-
sents the displacement of the kth mode. One readily derives
the equations of motion for these variational parameters by
substituting the ansatz into Eq. (4), which yields

i〈φ j |〈 fm j

∣∣ḊM
1 (t )

〉 = 〈φ j |〈 fm j

∣∣H̃ (t )|DM
1 (t )

〉
, (7)

i
4∑

j=1

A∗
m j〈φ j |〈 fm j |bq

∣∣ḊM
1 (t )

〉

=
4∑

j=1

A∗
m j〈φ j |

〈
fm j |bqH̃ (t )|DM

1 (t )
〉
. (8)

This is a set of nonlinear differential equations, which can be
solved by using the Runge-Kutta method. We present the ex-
plicit form of the equations of motion and state the numerical
implementation of the variational method in Appendix A.

To perform the numerical simulation, we use a finite trun-
cated number of bath modes, 2Nb, which can be derived from
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a linear discretization of the spectral density. We divide the
frequency domain [0, ωc] into Nb equal intervals [xn−1, xn],
with xn = nωc/Nb(n = 0, 1, 2, . . . , Nb). The coupling con-
stants and frequencies for the right-propagating modes
(k > 0) are determined by

λ2
kn

= 1

2

∫ xn

xn−1

J (ω)dω, (9)

ωkn = 1

2
λ−2

kn

∫ xn

xn−1

ωJ (ω)dω, (10)

where we have assumed that the left- and right-propagating
modes contribute equally to the spectral density function
and 1/2 is used to cancel out the contribution from the
left-propagating modes. The frequencies and coupling con-
stants of the left-propagating modes can be obtained from
the relations ωk = ω−k and λk = λ−k . The wave number is
then specified via the relation kn = ±ωkn/vg. Throughout this
work, we use Nb = 300 in the simulation, which is sufficient
to yield convergent results when the final evolution time t �
300ω−1

0 , M < 10, and α � 0.1.
We are interested in the spontaneous emission process of

the two-qubit system; thus, the initial state of the whole sys-
tem is chosen as |ψ (0)〉S ⊗ |0〉, where |ψ (0)〉S is an initial
state of the two-qubit system and the reservoir is initially
in the vacuum state. In this work, we mainly consider three
kinds of initial states of the two-qubit system: �0 = |eg〉 and
�± = (|eg〉 ± |ge〉)/

√
2. �0 is a factorized state where the

first qubit is in the excited state |e〉 and the second qubit is in
the ground state |g〉. �± are the symmetric and antisymmetric
correlated (entangled) states, respectively.

On numerically solving the equations of motion, we can
obtain both reduced dynamics of the qubits and the field
dynamics. The excited-state population of the jth qubit can
be calculated as

Pe
j (t ) = 〈DM

1 (t )|σ+
j σ−

j |DM
1 (t )

〉
( j = 1, 2), (11)

where

σ±
j = (σ x

j ± iσ y
j

)
/2. (12)

For the field, we are interested in the emission spectrum,
which is defined as the number of photons with the frequency
ωk emitted into the reservoir at time t . The spontaneous emis-
sion spectrum is thus given by

N (ωk, t ) = N (k, t ) + N (−k, t ), (13)

where

N (k, t ) = 〈
DM

1 (t )|b†
kbk|DM

1 (t )
〉

=
4∑

j=1

M∑
m,n=1

A∗
m j f ∗

m jk〈 fm j | fn j〉 fn jkAn j, (14)

is the photon number at the kth mode at the given time t .
〈 fm j | fnl〉 is the overlap between the coherent states and is
given by

〈 fm j | fnl〉 = exp

[∑
k

(
f ∗
m jk fnlk − | fm jk|2 + | fnlk|2

2

)]
. (15)

The emission spectrum defined by N (ωk, t ) is generally time
dependent. Nevertheless, the steady-state spectrum can be

obtained in the long-time limit, i.e.,

N (ωk ) = lim
t→∞[N (k, t ) + N (−k, t )]. (16)

In simulation, we propagate the equations of motion for the
variational parameters to a finial time of t = 300ω−1

0 , which
is sufficient to obtain steady-state spectra in most cases. The
obtained spectra are referred to as the multi-D1 results.

To measure the accuracy of the variational results, we
calculate the scaled squared norm of the deviation vector [54],

σ 2(t ) = ∣∣[i∂t − H̃ (t )]|DM
1 (t )〉∣∣2/ω2

0

= ω−2
0

[〈
DM

1 (t )|H̃2(t )|DM
1 (t )

〉− 〈ḊM
1 (t )|ḊM

1 (t )
〉]
. (17)

The detailed calculation and behaviors of σ 2(t ) with the vari-
ation of t for the two-qubit spin-boson model are presented
in the Appendix A. We find that the upper bound of the
magnitude of σ 2(t ) in the interval [0, 300ω−1

0 ] is of order
10−3 or 10−2 when α � 0.1. This is sufficient to guarantee the
accuracy of the variational results according to the previous
work [47]. When α > 0.1, it turns out that the variational
method is accurate in short-time dynamics but becomes less
reliable in long-time dynamics because of the increase in the
error.

B. Analytical theory for spontaneous emission spectrum

In this section, we use two approximate approaches to
analytically calculate the emission spectra with the resolvent-
operator formalism [50]. In the first approach, we derive an
effective Hamiltonian in a transformed frame and then com-
bine it with the resolvent-operator formalism to evaluate the
transition amplitude associated with the spontaneous emission
process, which can be used to calculate the photon number at
the kth mode in the long-time limit, N (k). The steady spec-
trum is then obtained via Eq. (16). This treatment is referred
to as the TRWA method. The second approach is similar to the
first one but we use the original Hamiltonian, which is referred
to as the SP.

To go beyond the weak-coupling regime, we apply a po-
laronlike unitary transformation to Eq. (1) [28,51],

H ′ = eSHe−S, (18)

with the generator given by

S =
2∑

j=1

σ x
j

∑
k

λk

2ωk
ξk (b†

keikx j − bke−ikx j ), (19)

where ξk are determined by requiring the first-order qubit-
reservoir coupling to take the rotating-wave form in the trans-
formed frame. Neglecting the higher-order qubit-reservoir
coupling terms, we construct an effective Hamiltonian from
the transformed Hamiltonian,

H ′ ≈ H ′
0 + H ′

1, (20)

H ′
0 = 1

2
ηω0

2∑
j=1

σ z
j +

∑
k

ωkb†
kbk, (21)

H ′
1 = Vcσ

x
1 σ x

2 +
2∑

j=1

∑
k

λ̃k (σ+
j bke−ikx j + σ−

j b†
keikx j ), (22)

023706-3



RONGZHEN HU, JUNYAN LUO, AND YIYING YAN PHYSICAL REVIEW A 108, 023706 (2023)

where

η = exp

[
−1

2

∫ ωc

0

J (x)dx

(x + ηω0)2

]
, (23)

Vc = −
∫ ωc

0

J (x)(x + 2ηω0)

2(x + ηω0)
cos

(
xd

vg

)
dx, (24)

d = x1 − x2, (25)

λ̃k = λkηω0

ηω0 + ωk
. (26)

This effective Hamiltonian is named as TRWA Hamiltonian.
The detailed derivation of the TRWA Hamiltonian is presented
in Appendix B.

Some remarks on the TRWA Hamiltonian are in order.
First, it is worthwhile to note the important consequences of
the qubit-reservoir coupling: the renormalization of the transi-
tion frequencies (ηω0) and a reservoir-induced dipole-dipole
coupling (Vcσ

x
1 σ x

2 ). Physically, these effects arise from virtual
photon processes and have been studied in Refs. [38,55] with
similar approaches in the strong-coupling regime. Second, the
qubit-reservoir interaction takes on the RWA-like form, which
simplifies the mathematical treatment. Third, the total number
of excitations of the TRWA Hamiltonian can be assumed to
be conserved, which does not contradict the nonconservation
of the total number of excitations in the laboratory frame
[56]. This is because the excitation number operator N̂ =∑2

j=1 σ+
j σ−

j +∑k b†
kbk does not commute with the transfor-

mation generator S, which results in the excitation number in
the transformed frame not being equal to that in the laboratory
frame.

Combining the effective Hamiltonian with the resolvent-
operator formalism, we calculate the photon number at the kth
mode in the long-time limit for the three kinds of the two-qubit
initial states when the reservoir is initially in the vacuum state.
The detailed calculation is given in Appendix C. When the
initial state of the two qubits is the factorized state �0, we
find

N (k) = λ̃2
k

∣∣∣∣ Ã(ω̃k ) + e−ikd B̃(ω̃k )

Ã2(ω̃k ) − B̃2(ω̃k )
+ 1

2ηω0

∣∣∣∣
2

, (27)

where

ω̃k = ωk − V 2
c

2ηω0
, (28)

Ã(ω) = ω − ηω0 − �̃(ω, 0) + i�̃(ω, 0), (29)

B̃(ω) = Vc + �̃(ω, d ) − i�̃(ω, d ), (30)

�̃(ω, d ) = P
∫ ωc

0

J (x) cos(xd/vg)

ω − x

(
ηω0

x + ηω0

)2

dx, (31)

�̃(ω, d ) = π

(
ηω0

ω + ηω0

)2

J (ω) cos

(
ωd

vg

)
. (32)

When the two-qubit initial state is �±, the photon number at
the kth mode is found to be given by

N (k) = λ̃2
k

∣∣∣∣1 ± e−ikd

√
2

∣∣∣∣
2∣∣∣∣ 1

Ã(ω̃k ) ∓ B̃(ω̃k )
+ 1

2ηω0

∣∣∣∣
2

. (33)

Interestingly, it seems that Eq. (33) is much simpler than
Eq. (27), reflecting the fact that the spontaneous emission
from the correlated states plays a more fundamental role than
that from the factorized state [57,58]. In the following, the
spectra obtained based on Eqs. (27) and (33) are referred to as
the TRWA results.

To examine the improvement of the variational and TRWA
method with respect to the SP, we further calculate the steady
emission spectrum with the resolvent-operator formalism and
the original Hamiltonian. The calculation details are presented
in Appendix C. When the two-qubit initial state is �0, the
photon number at the kth mode is given by

N (k) = λ2
k

4

∣∣∣∣A(ω′
k ) + e−ikd B(ω′

k )

A2(ω′
k ) − B2(ω′

k )

∣∣∣∣
2

, (34)

where

ω′
k = ωk + 2�(−ω0, 0), (35)

A(ω) = ω − ω0 − �(ω, 0) − �(ω − 2ω0, 0)

+ i�(ω, 0) + i�(ω − 2ω0, 0), (36)

B(ω) = �(ω, d ) + �(ω − 2ω0, d ) − i�(ω, d )

− i�(ω − 2ω0, d ), (37)

�(ω, d ) = P
∫ ωc

0

J (x) cos(xd/vg)

4(ω − x)
dx, (38)

�(ω, d ) = π

4
J (ω) cos(ωd/vg). (39)

When the two-qubit initial state is �±, the photon number at
the kth mode is given by

N (k) = λ2
k

4

∣∣∣∣∣
1√
2
(1 ± e−ikd )

A(ω′
k ) ∓ B(ω′

k )

∣∣∣∣∣
2

. (40)

Hereafter, the spectra calculated based on Eqs. (34) and (40)
are referred to as the SP results. In the following we address
the validity of the analytical results in comparison with the
variational results.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we calculate the emission spectra by using
the three methods: the variational method, the TRWA, and the
SP. We make comparison between the multi-D1 results and
the analytical ones. This helps to clarify not only the emis-
sion spectral features but also the validity of the analytical
treatments. Throughout this work, we set the cutoff frequency
ωc = 5ω0 and define L0 ≡ vg/ω0 as a unit of distance. Physi-
cally, 2πL0 is equal to the wavelength of light of the angular
frequency ω0.

To begin with, let us address the consistency among the
three approaches. Figure 1 shows the emission spectra calcu-
lated by the three methods for α = 0.05 and for the three kinds
of initial states and the three values of the two-qubit distance
d . It is evident that the multi-D1 results and the TRWA ones
agree perfectly with each other, suggesting the validity of the
latter. The SP results are found to be inconsistent with the
multi-D1 spectra. Particularly, for larger values of d , the SP
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FIG. 1. Emission spectra calculated by the three methods for α = 0.05, the three values of d , and the three kinds of initial states. “4-D1”
strands for the multi-D1 result with the multiplicity M = 4.

results are strikingly different from the multi-D1 results. The
present results suggest that the variational method and the
TRWA treatment are applicable to a strong-coupling regime
where the SP treatment breaks down. Nevertheless, we should
point out that the SP treatment and the TRWA treatment
slightly differ from each other when α = 0.01 and become
indistinguishable from each other when α = 0.001; that is,
the two analytical approaches coincide in the weak-coupling
regime.

To further examine the consistency between the variational
method and the TRWA one, we employ the two methods to
calculate the emission spectra for α = 0.1 and for the three
kinds of the initial states and the three values of d , which
are shown in Fig. 2. We see that the TRWA results are sat-
isfactorily accurate in comparison with the multi-D1 results,
confirming the validity of the TRWA method. It is worthwhile
to note that in Figs. 2(g) and 2(h), there are more peaks in the
multi-D1 spectra than in the TRWA spectra. This difference
can be attributed to the fact that the multi-D1 spectra shown
are not actually in the steady state; that is, we just propagate
the equations of motion of the variational approach to the final
time t = 300ω−1

0 and use N (ωk, t )|t=300ω−1
0

to approximate
the steady-state spectrum. This approximation may not be
justified when a subradiant state with an utlraslow decay is
encountered. We discuss such a phenomenon later. All in all,
the present results show that the variational method and the
TRWA treatment are applicable to the strong-coupling regime

when α � 0.1. This is a significant improvement over the SP
treatment which is justified when α � 0.01. In addition, we
should point out that the TRWA becomes less accurate when
α > 0.1 because the higher-order terms omitted in the TRWA
should contribute, which has been explored in the dissipative
Rabi and Jaynes-Cummings model [59].

Next, we focus on the multi-D1 and TRWA results to an-
alyze the emission spectral features of the two distant qubits.
Figure 1(a) shows that, when d = L0, the spectrum exhibits
one narrow peak and one broad peak for the factorized ini-
tial state �0. In contrast, Figs. 1(b) and 1(c) show that the
spectrum exhibits a single broad peak for the symmetric cor-
related initial state �+ and exhibits a single narrow peak for
the antisymmetric correlated initial state �−, corresponding
to the superradiant and subradiant states, respectively. Intu-
itively, it seems like that the formation of the doublet spectrum
can be ascribed to the spontaneous emission from the cor-
related initial states. This situation is in analogy with the
vacuum Rabi splitting which occurs in a qubit inside a cavity
[60]. By using the analytical theory, we can figure out that
the splitting between the two peaks is approximately given
by 2|Vc + �̃(ηω0, d )| when d ∼ L0, which depends on the
reservoir-induced dipole-dipole coupling strength Vc and the
Lamb shift �̃(ηω0, d ).

Figures 1(d)–1(f) show that, when d = 3L0, the spectrum
exhibits a single peak for the three kinds of initial states.
Moreover, the formation of the spectrum in Fig. 1(d) can be
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FIG. 2. Emission spectra calculated by the variational method and the TRWA method for α = 0.1, the three values of d , and the three kinds
of initial states.

understood as a result of the superposition of the spectrum
in Figs. 1(e) and 1(f). It is worthwhile to note that the emis-
sion peak for the symmetric correlated initial state is very
narrow, which indicates the occurrence of the subradiance.
Figures 1(g)–1(i) show that, when the distance d further in-
creases to 12L0, the spectrum is generally multipeaked for the
three kinds of the initial states. The generation of the mul-
tipeaked spectrum is a result of the quantum interference of
the radiating fields from the two distant qubits [37]. Besides,
for large distances, the emission lines are, in general, sharply
different from the typical Lorentzian lines, suggesting the

non-Markovian nature of the spontaneous emission process
arising from the finite distance between the two qubits.

We now analyze in detail the change of the spectrum from
the symmetric correlated initial state �+ due to the variation
of the distance by using the TRWA analytical results (33)
(which plays a fundamental role and a similar analysis can
be carried out for the antisymmetric correlated initial state).
To this end, we can simplify the spectrum by neglecting the
constant term 1/(2ηω0), the contribution of which is relatively
small. In doing so, we obtain the photon number at the kth
mode,

N (k) ≈ 2λ̃2
k cos2

(
kd
2

)
[ω̃k − ηω0 − Vc − �̃(ω̃k, 0) − �̃(ω̃k, d )]2 + �̃2+(ω̃k, d )

, (41)

where

�̃+(ω, d ) = 2π

(
ηω0

ηω0 + ω

)2

J (ω) cos2

(
ωd

2vg

)
. (42)

The emission spectrum is then given by N (ωk ) = N (k) +
N (−k) = 2N (k) (which is a good approximate spectrum com-
pared to the variational results). From the analytical result,
we see that in the numerator and the denominator there are
distance-dependent squared cosine functions, which reflects

the interference effect due to the field propagating between
the two emitters. cos2(kd/2) in the numerator simply leads
to the multiple peaks for d � L0. cos2( ωd

2vg
) in �̃+(ω, d ) may

strongly alter the width of the emission line. To be specific, let
us consider the values of �̃+(ω, d ) at ω = ηω0 for different
d , which are given by π

2 J (ηω0) cos2( ηω0d
2vg

). Taking α = 0.05,
when d = L0 and d = 3L0, one finds that the squared cosine
function cos2( ηω0d

2vg
) yields 0.7902 and 0.0204, respectively,

suggesting a strong modification to the decay rate due to
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FIG. 3. (a) Excited-state population of the jth qubit Pe
j (t ) as a function of t obtained by the variational method. (b) Photon number N (ωk, t )

as a function of t obtained by the variational method for the two values of ωk . The parameters are set as α = 0.1 and d = 12L0. The initial
state is the symmetric correlated state �+.

the distance. This explains the change from a broad spec-
trum [Fig. 1(b)] to a narrow spectrum [Fig. 1(e)] due to the
change of the distance. In addition, we note that as d → 0,
�̃+(ω, d ) becomes a slowly varying function of ω as long
as α is relatively small and thus it is able to replace it with
a constant decay rate [50], corresponding to a Markovian
dynamical regime. However, if d � L0, �̃+(ω, d ) is a fast-
varying function of ω and is unable to be approximated by
a constant decay rate. Thus the non-Markovian effects arise
even in a weak-coupling regime [33].

From Fig. 2 we see that the spectral features in the case of
α = 0.1 are overall similar to those in the case of α = 0.05.
Besides, Fig. 2 further confirms that the spectra from the fac-
torized initial state are composed of the emission lines arising
from the two correlated states. Interestingly, we observe the
ultranarrow emission lines in Figs. 2(g) and 2(h), signifying
the subradiance. The present results suggest that the emission
spectrum strongly depends on the distance of the two qubits,
and the subradiance and superradiance may occur by tuning
the distance. In addition, we find that the spectrum is generally
asymmetric irrespective of the distance in the strong-coupling
regime, in contrast with the RWA symmetric spectra in the
weak-coupling regime [37].

We now discuss in detail the subradiance in Fig. 2(h),
which results in the ultranarrow emission line in the TRWA
spectrum as well as the inconsistency between the multi-D1

and TRWA spectra in Figs. 2(g) and 2(h). To illustrate the
subradiance, we employ the variational approach to calculate
the dynamics of the excited-state population of the qubits as
well as the dynamics of the photon number for α = 0.1, d =
12L0, and the symmetric correlated initial state. Figure 3(a)
displays that the excited-state populations of the two qubits
are identical and oscillate at short times, and as the time goes
on such oscillation dies out and the populations ultraslowly
decay with a vanishingly small beat behavior. The identical
behaviors of the qubits can be ascribed to the symmetry of the
Hamiltonian (1) and the initial state �+, which are invariant
under the exchange of the qubits. The short-time oscillation
is due to the dipole-dipole coupling, which is described by
Eq. (C14) and physically related to the exchange of either real
or virtual photons between the two qubits [52]. Clearly, the

qubits do not reach the steady state when t = 300ω−1
0 . The

steady-state populations can be calculated by [38]

lim
t→∞ Pe

j (t ) = 〈ψG|σ+
j σ−

j |ψG〉, (43)

where |ψG〉 is the ground state of the whole system and one
can expect a nonvanishing steady value of the excited-state
population due to the entangled light-matter ground state.
Figure 3(b) displays that the photon number at ωk = 0.8084ω0

slowly increases with time while the photon number at ωk =
1.1250ω0 oscillates with an ultraslowly decaying amplitude,
indicating that it takes a long time for the field to arrive at
the steady state. The present finding suggests that even in the
presence of a strongly dissipative reservoir, the spontaneous
decay of the two qubits can be ultraslow due to the subradi-
ance, which is in sharp contrast to the case of a single qubit
strongly coupled to the reservoir [52].

IV. CONCLUSIONS

In summary, we have studied the emission spectrum of the
two distant qubits strongly coupled to an Ohmic waveguide
by using the variational approach and two analytical meth-
ods: TRWA and SP. The variational approach is based on the
combination of the Dirac-Frenkel time-dependent variational
principle and the multi-D1 ansatz. The TRWA (SP) approach
combines the resolvent-operator formalism and the TRWA
(original) Hamiltonian, which allows us to derive the ana-
lytical spectrum function. The variational approach and the
TRWA treatment are found to be consistent with each other
and valid in certain strong-coupling regimes where the SP
treatment breaks down. By using the variational and TRWA
approaches we have illustrated that the emission spectrum of
the two distant qubits is generally asymmetric and exhibits
a single peak, double peaks, and multiple peaks depending
on the distance and initial state of the two qubits. We have
also elucidated that in spite of the strong coupling between
the qubits and the reservoir, the occurrence of the subradiance
leads to the fact that the two qubits and the radiation field ul-
traslowly reach their steady states. Our results provide insights
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into the emission spectral features of the two distant qubits in
the strong light-matter coupling regime.

The variational approach with the multi-D1 ansatz allows
us to go beyond the widely used RWA and the Born-
Markovian approximation. This approach captures not only
the reduced dynamics but also the field dynamics in a sin-
gle simulation and can be further extended and applied to

waveguide QED problems involving few multilevel emitters
in strong light-matter coupling regimes.

ACKNOWLEDGMENTS

Support from the National Natural Science Foundation of
China (Grants No. 12005188 and No. 11774311) is gratefully
acknowledged.

APPENDIX A: EQUATIONS OF MOTION FOR THE VARIATIONAL PARAMETERS

To obtain the equations of motion for the variational parameters, we differentiate the multi-D1 state with respect to t , which
yields

∣∣ḊM
1 (t )

〉 = 4∑
j=1

M∑
n=1

(
an j + An j

∑
k

ḟn jkb†
k

)
|φ j〉| fn j〉, (A1)

where

an j = Ȧn j − 1

2
An j

∑
k

( ḟn jk f ∗
n jk + fn jk ḟ ∗

n jk ). (A2)

By using the explicit form of the multi-D1 state and its time derivative, it is straightforward to write the equations of motion (7)
and (8) in terms of the variational parameters as follows:

0 = i
M∑

n=1

(
an j + An j

∑
k

f ∗
m jk ḟn jk

)
〈 fm j | fn j〉 −

4∑
l=1

M∑
n=1

〈φ j |HS|φl〉Anl〈 fm j | fnl〉

−
M∑

n=1

An j

2∑
h=1

〈φ j |σ x
h |φ j〉

∑
k

λk

2
( f ∗

m jkeikxh+iωkt + fn jke−ikxh−iωkt )〈 fm j | fn j〉, (A3)

0 = i
M∑

n=1

⎛
⎝ 4∑

j=1

A∗
m jan j fn jq +

4∑
j=1

A∗
m jAn j

∑
k

(δk,q + f ∗
m jk fn jq) ḟn jk

⎞
⎠〈 fm j | fn j〉

−
4∑

j,l=1

M∑
n=1

A∗
m jAnl〈φ j |HS|φl〉〈 fm j | fnl〉 −

4∑
j=1

M∑
n=1

A∗
m jAn j

2∑
h=1

〈
φ j |σ x

h |φ j
〉

×
∑

k

λk

2
[ fn jk fn jqe−ikxh−iωkt + (δk,q + f ∗

m jk fn jq )eikxh+iωkt ]〈 fm j | fn j〉. (A4)

These differential equations can be integrated by the following steps. First, we rewrite the above equations in the matrix form
iM�y = �I, where M is the coefficient matrix, �y is a vector consisting of an j and ḟn jk , and �I is the inhomogeneous term. Second,
the matrix equation is solved to yield the values of an j and ḟn jk . Ȧn j is obtained via Eq. (A2). Third, the values of the derivatives
are used to update the variational parameters based on the fourth-order Runge-Kutta algorithm.

The scaled squared norm of the deviation vector depends on the squared norm of |ḊM
1 (t )〉 and the mean value of H̃2(t ) over

the multi-D1 state, which can be formally calculated as follows:

〈
ḊM

1 (t )
∣∣ḊM

1 (t )
〉 = 4∑

j=1

M∑
n,l=1

⎡
⎣a∗

m jan j + a∗
m jAn j

∑
k

ḟn jk f ∗
m jk + A∗

m jan j

∑
k

ḟ ∗
m jk fn jk + A∗

m jAn j

∑
k,q

(
δk,q + f ∗

m jk fn jq
)

ḟ ∗
m jq ḟn jk

⎤
⎦

× 〈 fm j | fn j〉, (A5)

〈H̃2(t )〉 = 〈DM
1 (t )

∣∣H̃2(t )
∣∣DM

1 (t )
〉

=
4∑

j,l=1

M∑
n,m=1

A∗
m jAnl〈φ j

∣∣H2
S

∣∣φl〉〈 fm j | fnl〉 +
4∑

j,l=1

M∑
n,m=1

2∑
h=1

A∗
m j〈φ j |{HS, σ

x
h }|φl〉Anl

∑
k

λk

2
( f ∗

m jkeikxh+iωkt + fnlke−ikxh−iωkt )

× 〈 fm j | fnl〉 +
4∑

j=1

M∑
n,m=1

2∑
h=1

A∗
m jAn j

⎧⎨
⎩
[∑

k

λk

2

(
f ∗
m jkeikxh+iωkt + fn jke−ikxh−iωkt

)]2

+
∑

k

λ2
k

4

⎫⎬
⎭〈 fm j | fn j〉
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FIG. 4. Scaled squared norm σ 2(t ) of the deviation vector as a function of time t for the two values of α, the three values of d , and the
three kinds of initial states.

+ 2
4∑

j=1

M∑
n,m=1

A∗
m jAn j〈φ j |σ x

1 σ x
2 |φ j〉

[∑
k

λk

2
( f ∗

m jkeikx1+iωkt + fn jke−ikx1−iωkt )

×
∑

q

λq

2
( f ∗

m jqeiqx2+iωqt + fn jqe−iqx2−iωqt ) +
∑

k

λ2
k

4
cos(kd )

⎤
⎦〈 fm j | fn j〉. (A6)

In Fig. 4, we plot the behaviors of σ 2(t ) versus time for the two values of α, the three values of d , and the three kinds of the
initial states. It turns out that the magnitude of σ 2(t ) takes on relatively small values, the order of which is 10−2 or smaller. This
guarantees the reliability of the variational results [47].

APPENDIX B: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The Hamiltonian in the transformed frame can be readily
derived as follows:

H ′ = eSHe−S

= ω0

2

2∑
j=1

(
σ z

j cosh Xj − iσ y
j sinh Xj

)

+
∑

k

ωkb†
kbk +

∑
k

λ2
k

2ωk

(
ξ 2

k − 2ξk
)

+
2∑

j=1

σ x
j

2

∑
k

λk (1 − ξk )
(
bke−ikx j + b†

keikx j
)

+
∑

k

λ2
k

2ωk

(
ξ 2

k − 2ξk
)

cos (kd )σ x
1 σ x

2 , (B1)

where

Xj =
∑

k

λk

ωk
ξk
(
b†

keikx j − bke−ikx j
)
. (B2)

We divide the transformed Hamiltonian into three parts:

H ′ = H ′
0 + H ′

1 + H ′
2, (B3)

H ′
0 = 1

2
ηω0

2∑
j=1

σ z
j +

∑
k

ωkb†
kbk +

∑
k

λ2
k

2ωk

(
ξ 2

k − 2ξk
)
,

(B4)

H ′
1 =

2∑
j=1

σ x
j

2

∑
k

λk (1 − ξk )
(
bke−ikx j + b†

keikx j
)

− iηω0

2∑
j=1

σ
y
j

2

∑
k

λk

ωk
ξk
(
b†

keikx j − bke−ikx j
)

+ Vcσ
x
1 σ x

2 , (B5)

H ′
2 = ω0

2

2∑
j=1

(cosh Xj − η)σ z
j − i

ω0

2

2∑
j=1

(sinh Xj − ηXj )σ
y
j ,

(B6)

where

η = 〈0| cosh Xj |0〉 = exp

(
−1

2

∑
k

λ2
k

ω2
k

ξ 2
k

)
, (B7)
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Vc =
∑

k

λ2
k

2ωk

(
ξ 2

k − 2ξk
)

cos(kd ). (B8)

To proceed, we reformulate the qubit-reservoir interaction
in H ′

1 to be in the RWA form, which can be achieved by setting

λk (1 − ξk ) = ηω0
λk

ωk
ξk . (B9)

This equation results in ξk = ωk
ωk+ηω0

and H ′
1 = Vcσ

x
1 σ x

2 +∑2
j=1

∑
k λ̃k (σ+

j bke−ikx j + σ−
j b†

keikx j ). We should emphasis
that the value of ξk can also be obtained by minimizing the
ground-state energy of H ′

0. Up till now we have not introduced
any approximations.

To make the analytical calculation manageable, we use
H ′ ≈ H ′

0 + H ′
1 as the effective Hamiltonian because H ′

2 com-
prises the second- and higher-order bosonic processes, the
contribution of which is on the order of λ4

k and higher. This
approximation is expected to be reasonable in a moderately
strong coupling regime and is referred to as the TRWA.

APPENDIX C: ANALYTICAL CALCULATION OF
SPONTANEOUS EMISSION SPECTRUM

Without loss of generality, we consider the initial state
|eg0〉 ≡ |eg〉 ⊗ |0〉. In the laboratory frame, the transition am-
plitude associated with the spontaneous emission process is
given by

〈gg1k|U (t )|eg0〉, (C1)

where |gg1k〉 denotes the state that the two qubits are in the
ground state and one photon occupies the kth mode of the
reservoir, and U (t ) = exp(−iHt ) is the time-evolution opera-
tor of the whole system. The steady photon number at the kth
mode is then calculated as

N (k) = lim
t→∞ |〈gg1k|U (t )|eg0〉|2. (C2)

We use the resolvent-operator formalism to calculate
the transition amplitude. This formalism relates the time-
evolution operator to the resolvent operator via the integral
[50],

U (t ) = 1

2π i

∫ −∞

+∞
G(ω + i0+)e−iωt dω (t > 0), (C3)

where

G(z) = 1

z − H
(C4)

is the resolvent operator and z is a complex variable. In
general, H is able to be divided into two parts: an exactly
diagonalized H0 and a perturbation V .

To calculate the matrix elements of the resolvent operator
between some bases, e.g., the interested eigenstates of H0,
we introduce projectors P and Q = 1 − P , where P projects
onto a subspace spanned by some interested eigenstates of
H0 and Q projects onto the complementary space. By using
these projectors, we can derive the following equations from
Eq. (C4):

P (z − H )PG(z)P − PVQG(z)P = P, (C5)

Q(z − H )QG(z)P − QVPG(z)P = 0. (C6)

The second equation can be solved to yield

QG(z)P = 1

Q(z − H )QQVPG(z)P . (C7)

Substituting this solution of QG(z)P into Eq. (C5), one read-
ily obtains

PG(z)P = P
z − H0 − PR(z)P , (C8)

where

R(z) = V + V
Q

Q(z − H )QV

= V + V
Q

z − H0
V + · · · (C9)

is the level-shift operator. Using Eq. (C8), we can rewrite
QG(z)P as

QG(z)P = 1

Q(z − H )QQV
P

z − H0 − PR(z)P . (C10)

Similarly, one can derive the expression of QG(z)Q as
follows:

QG(z)Q = Q
z − QHQ + Q

z − QHQV

× P
z − H0 − PR(z)PV

Q
z − QHQ . (C11)

In the following, we show that the transition amplitudes as-
sociated with the spontaneous emission process can be derived
from Eqs. (C8), (C10), and (C11).

1. Spontaneous emission spectrum with the
unitary transformation

In this section, we calculate the transition amplitude with
the effective Hamiltonian in the transformed frame. With the
unitary transformation, we have

〈gg1k|U (t )|eg0〉 = 〈gg1k|e−SeSU (t )e−SeS|eg0〉

≈ 〈gg1k|U ′(t )|eg0〉 +
∑

q

λq

2ωq
ξqeiqx1〈gg1k|U ′(t )|gg1q〉

− λk

2ωk
ξkeikx1〈eg0|U ′(t )|eg0〉 − λk

2ωk
ξkeikx2〈ge0|U ′(t )|eg0〉, (C12)
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where we have used eSU (t )e−S ≈ exp(−iH ′t ) ≡ U ′(t ) and just retained the transition amplitudes associated with the single-
excitation states. It is evident that in the transformed frame we need to evaluate four transition amplitudes with the transformed
Hamiltonian H ′.

Using P = |eg0〉〈eg0| + |ge0〉〈ge0| and setting H ′
0 and H ′

1 as the free and interaction Hamiltonians, respectively, we can derive
the elements of the level-shift operator as follows:

〈eg0|R(z)|eg0〉 = 〈ge0|R(z)|ge0〉 =
∑

q

λ̃2
q

z + ηω0 − ωq
, (C13)

〈ge0|R(z)|eg0〉 = 〈eg0|R(z)|ge0〉 = Vc +
∑

q

λ̃2
q cos(qd )

z + ηω0 − ωq
. (C14)

It follows from Eq. (C8) that

〈eg0|G(z)|eg0〉 = 〈ge0|G(z)|ge0〉 =
z −∑q

λ̃2
q

z+ηω0−ωq

D̃(z)
, (C15)

〈ge0|G(z)|eg0〉 = 〈eg0|G(z)|ge0〉 =
Vc +∑q

λ̃2
q cos(qd )

z+ηω0−ωq

D̃(z)
, (C16)

where

D̃(z) =
⎡
⎣z −

∑
q

λ̃2
q

z + ηω0 − ωq

⎤
⎦

2

−
⎡
⎣Vc +

∑
q

λ̃2
q cos(qd )

z + ηω0 − ωq

⎤
⎦

2

. (C17)

Using Eq. (C10), we find

〈gg1k|G(z)|eg0〉 = 〈gg1k| Q
Q(z − H ′)QH ′

1PG(z)P|eg0〉

= 〈gg1k| Q
Q(z − H ′)QH ′

1|eg0〉〈eg0|G(z)|eg0〉 + 〈gg1k| Q
Q(z − H ′)QH ′

1|ge0〉〈ge0|G(z)|eg0〉

≈ λ̃keikx1〈gg1k| Q
Q(z − H ′)Q |gg1k〉[〈eg0|G(z)|eg0〉 + e−ikd〈ge0|G(z)|eg0〉]

= λ̃keikx1
1

z + ηω0 − ωk − V 2
c

z−ηω0−ωk

⎡
⎢⎣ z −∑q

λ̃2
q

z+ηω0−ωq

D̃(z)
+ e−ikd

Vc +∑q
λ̃2

q cos(qd )
z+ηω0−ωq

D̃(z)

⎤
⎥⎦, (C18)

where we have used

〈gg1k| Q
z − QH ′Q |gg1q〉 ≈ δk,q

z + ηω0 − ωk − V 2
c

z−ηω0−ωk

, (C19)

which is derived from Eq. (C11).
To proceed, we should replace z with ω + i0+ in the matrix elements of the resolvent operator before integrating and use

∑
q

λ̃2
q cos(qd )

ω − ωq + i0+ = �̃(ω, d ) − i�̃(ω, d ), (C20)

where

�̃(ω, d ) = P
∑

q

λ̃2
q cos(qd )

ω − ωq
, (C21)

�̃(ω, d ) = π
∑

k

λ̃2
q cos(qd )δ(ωq − ω). (C22)

In the long-time limit t → ∞ and d �= 0, the transition amplitudes given in Eq. (C12) can be evaluated as follows:

〈eg0|U ′(t )|eg0〉 = 〈ge0|U ′(t )|ge0〉 = 1

2π i

∫ −∞

∞
dωe−iωt Ã(ω + ηω0)

Ã2(ω + ηω0) − B̃2(ω + ηω0)
= 0, (C23)
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〈ge0|U ′(t )|eg0〉 = 〈eg0|U ′(t )|ge0〉 = 1

2π i

∫ −∞

∞
dωe−iωt B̃(ω + ηω0)

Ã2(ω + ηω0) − B̃2(ω + ηω0)
= 0, (C24)

〈gg1k|U ′(t )|gg1p〉 ≈ 1

2π i

∫ −∞

∞
dωe−iωtδk,q

1

ω + i0+ + ηω0 − ωk − V 2
c

ω−ηω0−ωk

= δk,q exp

[
−i

(
ωk − ηω0 − V 2

c

2ηω0

)
t

]
, (C25)

〈gg1k|U ′(t )|eg0〉 = 1

2π i

∫ −∞

∞
dωe−iωt λ̃keikx1

1

ω + i0+ + ηω0 − ωk − V 2
c

ω−ηω0−ωk

Ã(ω + ηω0) + e−ikd B̃(ω + ηω0)

Ã2(ω + ηω0) − B̃2(ω + ηω0)

= λ̃keikx1

Ã
(
ωk − V 2

c
2ηω0

)
+ e−ikd B̃

(
ωk − V 2

c
2ηω0

)
Ã2
(
ωk − V 2

c
2ηω0

)
− B̃2

(
ωk − V 2

c
2ηω0

) exp

[
− i

(
ωk − ηω0 − V 2

c

2ηω0

)
t

]
, (C26)

where we have used the fact that in the long-time limit the simple pole ω ≈ ωk − ηω0 − V 2
c

2ηω0
contributes to the steady state.

Ã(ω) and B̃(ω) are defined in Eqs. (29) and (30) in the main text. Similarly, we also have

〈gg1k|U ′(t )|ge0〉 = λ̃keikx1

e−ikd Ã
(
ωk − V 2

c
2ηω0

)
+ B̃

(
ωk − V 2

c
2ηω0

)
Ã2
(
ωk − V 2

c
2ηω0

)
− B̃2

(
ωk − V 2

c
2ηω0

) exp

[
− i

(
ωk − ηω0 − V 2

c

2ηω0

)
t

]
. (C27)

Using the above transition amplitudes, we can calculate the photon number at the kth mode in the long-time limit and thus
derive the steady-state emission spectra.

2. Standard perturbation calculation

In this section, we calculate the spontaneous emission spectrum with the original Hamiltonian by setting H0 = ω0
2

∑2
j=1 σ z

j +∑
k ωkb†

kbk and V =∑2
j=1

σ x
j

2

∑
k λk (bke−ikx j + b†

keikx j ). Similarly, we use P = |eg0〉〈eg0| + |ge0〉〈ge0|. The matrix elements of
the level-shift operator can be computed up to the second order in λk as follows:

〈eg0|R(z)|eg0〉 = 〈ge0|R(z)|ge0〉

=
∑

q

(
λ2

q/4

z + ω0 − ωq
+ λ2

q/4

z − ω0 − ωq

)
, (C28)

〈ge0|R(z)|eg0〉 = 〈ge0|R(z)|eg0〉

=
∑

q

(
λ2

q cos(qd )/4

z + ω0 − ωq
+ λ2

q cos(qd )/4

z − ω0 − ωq

)
. (C29)

From Eq. (C8) one readily derives the following matrix elements:

〈eg0|G(z)|eg0〉 =
z −∑q

(
λ2

q/4
z+ω0−ωq

+ λ2
q/4

z−ω0−ωq

)
D(z)

, (C30)

〈ge0|G(z)|eg0〉 =
∑

q

(
λ2

q cos(qd )/4
z+ω0−ωq

+ λ2
q cos(qd )/4
z−ω0−ωq

)
D(z)

, (C31)

where

D(z) =
⎡
⎣z −

∑
q

(
λ2

q/4

z + ω0 − ωq
+ λ2

q/4

z − ω0 − ωq

)⎤⎦
2

−
⎡
⎣∑

q

(
λ2

q cos(qd )/4

z + ω0 − ωq
+ λ2

q cos(qd )/4

z − ω0 − ωq

)⎤⎦
2

. (C32)

Using Eq. (C10), we have

〈gg1k|G(z)|eg0〉 = 〈gg1k| Q
Q(z − H )QVPG(z)|eg0〉

= 〈gg1k| Q
Q(z − H )QV |eg0〉〈eg0|G(z)|eg0〉 + 〈gg1k| Q

Q(z − H )QV |ge0〉〈ge0|G(z)|eg0〉
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≈ λk

2
eikx1〈gg1k| Q

Q(z − H )Q |gg1k〉〈eg0|G(z)|eg0〉 + λk

2
eikx2〈gg1k| Q

Q(z − H )Q |gg1k〉〈ge0|G(z)|eg0〉

= λk

2
eikx1〈gg1k| Q

Q(z − H )Q |gg1k〉[〈eg0|G(z)|eg0〉 + e−ikd〈ge0|G(z)|eg0〉]

= λk

2
eikx1

1

z + ω0 − ωk − 1
2

∑
q

λ2
q

z−ωk−ωq

×
z −∑q

(
λ2

q/4
z+ω0−ωq

+ λ2
q/4

z−ω0−ωq

)
+ e−ikd

∑
q

(
λ2

q cos(qd )/4
z+ω0−ωq

+ λ2
q cos(qd )/4
z−ω0−ωq

)
D(z)

, (C33)

where we have used

〈gg1k| Q
Q(z − H )Q |gg1k〉 ≈ 1

z + ω0 − ωk − 1
2

∑
q

λ2
q

z−ωk−ωq

. (C34)

Similarly, we have

〈gg1k|G(z)|ge0〉 = λk

2
eikx1

1

z + ω0 − ωk − 1
2

∑
q

λ2
q

z−ωk−ωq

×
e−ikd

[
z −∑q

(
λ2

q/4
z+ω0−ωq

+ λ2
q/4

z−ω0−ωq

)]
+∑q

(
λ2

q cos(qd )/4
z+ω0−ωq

+ λ2
q cos(qd )/4
z−ω0−ωq

)
D(z)

, (C35)

To perform the integral we replace z with ω + i0+ and use

∑
q

λ2
q cos(qd )/4

ω − ωq + i0+ = �(ω, d ) − i�(ω, d ), (C36)

where

�(ω, d ) = P
∑

q

λ2
q cos(qd )/4

ω − ωq
, (C37)

�(ω, d ) = π

4

∑
q

λ2
q cos(qd )δ(ω − ωq). (C38)

In the long-time limit, we have

〈gg1k|U (t )|eg0〉 = 1

2π i

∫ −∞

+∞
〈gg1k|G(ω + i0+)|eg0〉e−iωt dω

= 1

2π i

∫ −∞

+∞

λk

2
eikx1

1

ω + i0+ + ω0 − ωk − 2�(ω − ωk, 0)
× A(ω + ω0) + e−ikd B(ω + ω0)

A2(ω + ω0) − B2(ω + ω0)
e−iωt dω

≈ λk

2
eikx1

A[ωk + 2�(−ω0, 0)] + e−ikd B[ωk + 2�(−ω0, 0)]

A2[ωk + 2�(−ω0, 0)] − B2[ωk + 2�(−ω0, 0)]
e−i[ωk−ω0+2�(−ω0,0)]t , (C39)

〈gg1k|U (t )|ge0〉 = 1

2π i

∫ −∞

+∞
〈gg1k|G(ω + i0+)|ge0〉e−iωt dω

= 1

2π i

∫ −∞

+∞
dωe−iωt λk

2
eikx1

1

ω + i0+ + ω0 − ωk − 2�(ω − ωk, 0)
× e−ikd A(ω + ω0) + B(ω + ω0)

A2(ω + ω0) − B2(ω + ω0)

≈ λk

2
eikx1

e−ikd A[ωk + 2�(−ω0, 0)] + B[ωk + 2�(−ω0, 0)]

A2[ωk + 2�(−ω0, 0)] − B2[ωk + 2�(−ω0, 0)]
e−i[ωk−ω0+2�(−ω0,0)]t , (C40)

where A(ω) and B(ω) are defined in Eqs. (36) and (37) in the main text, respectively, and we have used the fact that the simple
pole ω ≈ ωk − ω0 + 2�(−ω0, 0) determined from ω + ω0 − ωk − 2�(ω − ωk, 0) = 0 contributes to the long-time behavior.
Using the above results, it is straightforward to calculate the emission spectra for the three kinds of the initial states.
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