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We consider an array of Ne noninteracting qubits or emitters that are coupled to a one-dimensional cavity array
with tunneling energy J and nonlinearity of strength U . The number of cavities is assumed to be larger than the
number of qubits. Working in the two-excitation manifold, we focus on the band-gap regime where the energy
of two excited qubits is off-resonant with the two-photon bound state band. A two-step adiabatic elimination of
the photonic degrees of freedom gives rise to a one-dimensional spin Hamiltonian with effective interactions;
specifically, the Hamiltonian features constrained single-qubit hopping and pair hopping interactions not only
between nearest neighbors but also between next-to-nearest and next-to-next-to-nearest spins. For a regularly
arranged qubit array, we identify parameter combinations for which the system supports droplet-like bound states
whose characteristics depend critically on the pair hopping. The droplet-like states can be probed dynamically.
The bound states identified in our work for off-resonance conditions are distinct from localized hybridized states
that emerge for on-resonance conditions.
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I. INTRODUCTION

Qubits or, more generally, few-level emitters coupled to
a cavity array provide a platform with which to investi-
gate fundamental aspects of matter-light interactions. Topics
of interest include the generation of photon-mediated en-
tanglement between noninteracting separated qubits [1–4],
of ultrastrong matter-light interactions [5–11], of broad
matter-light hybrid bound states [12–18], and of effective
photon-photon interactions [19–22]. Photonic baths have been
realized using nanophotonic wave guides [23–30], supercon-
ducting resonators [31–34], and plasmonic waveguides [35].
Qubit realizations include Rydberg atoms [36,37], quantum
dots [38], and transmon qubits [39–43].

It was recently shown that the addition of a Kerr-like
nonlinearity to the tight-binding Hamiltonian, which ac-
counts for the tunnel-coupling of the single-mode cavities,
leads to intriguing phenomena if the energy of two excited
qubits is tuned to be in resonance with the two-photon
bound state band that exists due to the Kerr-like nonlin-
earity [45–47]. For two qubits initialized in their excited
state, e.g., the nontrivial mode structure of the bath, i.e.,
the cavity array with nonlinearity, was shown to support
emission dynamics that ranges from exponential decay to
fractional populations to Rabi oscillations [46,47]. For many
qubits, supercorrelated radiance was predicted [45]. This
work instead investigates the off-resonant or band-gap regime
[48] within the framework of Schrödinger quantum me-
chanics. To reduce the high-dimensional Hilbert space to a
physically intuitive and numerically more tractable model, ef-
fective constrained single-qubit and pair hopping interactions
are derived through a two-step procedure that adiabatically
eliminates single- and two-photon processes. The resulting ef-
fective one-dimensional spin Hamiltonian, which lives in the

two-excitation manifold (i.e., two flipped spins), is shown to
capture the key features of the full Hamiltonian.

The effective constrained single- and two-qubit hopping
interactions, which are derived under the assumption that
the coupling strength g between an emitter and a cavity is
small compared to the tunneling energy J , are directly pro-
portional to g2 and g4, respectively. Even though the scaling
of the effective interactions with g suggests that the single-
qubit hopping dominates over the two-qubit hopping, we
identify a parameter regime where the latter, which depends
on the nonlinearity U , impacts the eigenstate characteris-
tics appreciably. Specifically, the pair hopping interaction
favors localization of excited qubits in or near the middle
of the qubit array, giving rise to a new class of droplet-
like bound states. These bound states are distinct from
two-string bound states that exist, e.g., in the XXX spin
Hamiltonian that is solvable via the Bethe ansatz [49,50]. Un-
like Hamiltonians that are tractable via the Bethe ansatz, our
emergent one-dimensional spin model features non-negligible
nearest-neighbor, next-to-nearest-neighbor, and next-to-next-
to-nearest-neighbor interactions. It is shown that the radiation
dynamics, if initiated from an initial state that contains two
qubit excitations but no photons, depends strongly on how
the two qubit excitations are distributed among all possi-
ble two-qubit excitation eigenkets. A fully symmetric initial
state is shown to induce oscillatory dynamics between the
droplet-like ground state and a scattering state. Dependence
of the dynamics on the initial state is, of course, a well-known
phenomenon that has, e.g., been exploited in the study of
phase transitions and critical points as well as in sensing
applications.

The remainder of this article is organized as follows.
Section II introduces the system Hamiltonian and the reduc-
tion of the Hilbert space to the qubit degrees of freedom.
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FIG. 1. Schematic of the setup. The jth qubit is coupled with
strength g to the nj th cavity of a one-dimensional cavity array (blue
boxes) with lattice spacing a. The cavities are tunnel-coupled to near-
est neighbors with strength J (blue lines between two neighboring
blue boxes). For more than one photonic excitation, there exists an
on-site interaction U between photons. As a result of the on-site
interaction, the cavity array (bath) supports two-photon bound states.
One of these is shown by the black line above the cavity array. The
distance between two neighboring qubits is denoted by x. In the
schematic, x is equal to a; values of x/a = 0 and 2 are also discussed
in this work. The top-left rectangular box illustrates a qubit, i.e., a
two-level system with a transition energy h̄ωe between the ground
state |g〉 and the excited state |e〉.

Section III shows that the effective qubit Hamiltonian supports
a class of liquid-like or droplet-like bound states. Section IV
illustrates that these droplet-like states can be probed dy-
namically. Last, a summary and outlook are provided in
Sec. V.

II. DERIVATION OF EFFECTIVE QUBIT HAMILTONIAN

Section II A introduces the total Hamiltonian Ĥ of the
matter-light hybrid system. Focusing on the band-gap regime
of the photonic lattice, Sec. II B derives the effective spin
Hamiltonian Ĥspin.

A. Total Hamiltonian Ĥ

The total Hamiltonian Ĥ reads

Ĥ = Ĥqubit + Ĥbath + Ĥqubit-bath, (1)

where Ĥqubit is the Hamiltonian of the uncoupled qubits, Ĥbath

the bath Hamiltonian, and Ĥqubit-bath the qubit-bath coupling
Hamiltonian. The qubit system consists of Ne qubits with
a transition energy of h̄ωe between the ground state |g〉 j
and the excited state |e〉 j of the jth qubit (see purple ovals
and rectangular box in top-left corner in Fig. 1). We are
interested in the regime where the qubits form a regularly
arranged finite lattice (Ne finite and much greater than 1). The
qubit Hamiltonian Ĥqubit is given by

Ĥqubit = h̄ωe

2

Ne∑
j=1

(
σ̂ z

j + Î j
)
, (2)

where σ̂ z
j = |e〉 j 〈e| − |g〉 j 〈g| and Î z

j = |e〉 j 〈e| + |g〉 j 〈g|.

FIG. 2. Schematic of the energy bands for the one- and two-
excitation manifolds for fixed ωc, ωe, and U . This work focuses on
the band-gap regime, i.e., negative detunings δ. Adiabatic elimination
of the gray single-photon and green two-photon bound state bands
introduces the effective interactions W and Y (see Fig. 3 for an
illustration of these interactions), respectively, between qubit groups.
The two-photon scattering continuum is far off-resonant and does not
play a role. Explicit expressions for the energy bands can be found,
e.g., in Ref. [53].

The bath Hamiltonian Ĥbath is a one-dimensional tight-
binding Hamiltonian with nonlinearity U ,

Ĥbath = h̄ωc

N∑
n=1

â†
nân − J

N∑
n=1

(â†
nân+1 + â†

n+1ân)

+ U

2

N∑
n=1

â†
nâ†

nânân, (3)

where â†
n and ân, respectively, create and destroy a photon

at the nth cavity (blue box in Fig. 1). In our calculations,
the number of cavities N is chosen such that the results are
independent of N ; we find that N = 501 is sufficiently large
for the Ne considered. In Eq. (3), h̄ωc is the single-mode
photon energy, J (J > 0) denotes the tunneling energy of
the tunnel coupled cavities, and U is the nonlinear on-site
interaction. The Kerr-like nonlinearity in Eq. (3) corresponds
to effectively repulsively interacting photon pairs (U > 0) or
effectively attractively interacting photon pairs (U < 0). In
our work, we consider a negative U , which gives rise to two-
photon bound states ψK,b with center-of-mass wave vector
K and energy EK,b, in addition to the two-photon scattering
continuum (blue and dark green regions in Fig. 2) [51–54].
The black line in Fig. 1 shows a sketch of a two-photon bound
state wave function ψK,b that extends over several lattice sites.
Accounting for all allowed center-of-mass wave vectors K , the
two-photon bound states give rise to an energy band (green
and dark green regions in Fig. 2). For large values of the
on-site interaction strength |U | (|U |/J > 4), the two-photon
bound state band does not overlap with the two-photon scat-
tering continuum. For |U |/J = 1, as considered in this paper,
the upper part of the two-photon bound state band overlaps
with the lower part of the two-photon scattering continuum
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(the overlap region is shown in dark green in Fig. 2). The dif-
ference between the energy 2h̄ωe of the two-qubit excited state
and the K = 0 two-photon bound state energy E0,b, which
coincides with the bottom of the two-photon bound state band,
defines the detuning δ,

δ = 2h̄ωe − E0,b. (4)

The band-gap regime, which is the focus of the present work,
is characterized by negative detunings δ.

The qubits are coupled to the photons through the system-
bath or qubit-bath Hamiltonian Ĥqubit-bath,

Ĥqubit-bath = g
Ne∑
j=1

(ân j σ̂
+
j + â†

n j
σ̂−

j ), (5)

where σ̂+
j is the raising operator (σ̂+

j = |e〉 j 〈g|) and σ̂−
j the

lowering operator (σ̂−
j = |g〉 j 〈e|) of the jth qubit. The label

n j can take any value between 1 and N . In this work, the qubits
are assumed to be arranged in a regular pattern with spacing x,
where x/a = n j − n j−1. Related works considered regularly
placed impurity qubits coupled to an atomic array [55,56].
Our figures concentrate on x/a = 1. For reference, a larger
qubit spacing x/a = 2 as well as the case where the qubits are
all coupled to the same cavity (x/a = 0) are discussed in the
text. Since the counterrotating terms are excluded in Eq. (5),
our treatment is restricted to the weak coupling regime, i.e.,
g � J . The requirement that single- and two-photon processes
are off-resonant [|(h̄ωc − 2J ) − h̄ωe| > g and |δ| > g] can,
for negative δ as considered in this work, be combined into
one equation, namely,

|U | > 4J

√(
1 + g

4J

)2

− 1. (6)

For fixed U/J , Eq. (6) puts an upper limit on g/J . Conversely,
for fixed g/J , Eq. (6) puts a lower limit on |U |/J .

The total Hamiltonian conserves the number of total exci-
tations (sum of qubit and photonic excitations) [12–15,45]. As
a consequence, the Hilbert spaces with 0, 1, 2, . . . total excita-
tions are decoupled. This work focuses on the two-excitation
manifold.

B. Effective spin Hamiltonian Ĥspin

As mentioned above, we focus on negative detunings
such that the energy of two excited qubits is in resonance
with the band gap. We find that the band-gap physics in
the two-excitation manifold is well described by the spin
Hamiltonian Ĥspin, which is derived by adiabatically eliminat-
ing the photon degrees of freedom in a two-step process (see
the Appendix for details). We emphasize that the approach
taken here is distinct from the master equation approach pur-
sued in Ref. [45]. The first step is, in spirit, identical to prior
work [45–47]. Neglecting the two-photon scattering contin-
uum and adiabatically eliminating the single-photon states,
effective constrained single-qubit hopping interactions of
strength Wjl (see Ĥsingle below), effective interactions between
states with two and no qubit excitations [FK,b in Eq. (A12)],
and effective interactions between two two-photon bound
states with wave vector K and K ′ [GK,K ′ in Eq. (A13)]

arise. While the latter two interactions were discussed in
Refs. [45–47], the effective qubit hopping interaction was not.
The reason is that Refs. [45–47] focused on Ne = 2 (Ĥsingle

vanishes for Ne = 2). The hopping Hamiltonian Ĥsingle reads

Ĥsingle = 1

2

Ne∑
i, j,l=1

(Wjl σ̂
+
i σ̂+

j σ̂−
i σ̂−

l + Wil σ̂
+
i σ̂+

j σ̂−
l σ̂−

j ). (7)

Since the triple sum includes terms where two or three of
the indices are equal, the order of the operators in Eq. (7)
is important. As discussed in more detail below, Ĥsingle

describes constrained single-qubit hopping or constrained
flip-flop interactions. We find that the effective interactions
GK,K ′ contribute negligibly to the band-gap physics consid-
ered in this work; thus, they are set to zero.

Calculations that treat the full Hamiltonian Ĥ show that
the photonic contribution to the eigenstates is smaller than
10% for the parameter combinations considered in this work.
This motivates our second approximation, namely, the adi-
abatic elimination of the states B̂†

K |g, . . . , g, vac〉, i.e., basis
kets that describe a photon pair with wave vector K , with the
qubits in the ground state. Step two yields the effective spin
Hamiltonian Ĥspin (see the Appendix for details),

Ĥspin = Ĥsingle + Ĥpair, (8)

where

Ĥpair =
Ne−1∑
i=1

Ne∑
j=i+1

Ne−1∑
l=1

Ne∑
h=l+1

Yi j,lhσ̂
+
i σ̂+

j σ̂−
l σ̂−

h . (9)

The effective four-qubit (or two-qubit hopping) interactions
Yi j,lh emerge from the interactions FK,b (see below). As might
be expected naively, Wjl and Yi j,lh are directly proportional to
g2 and g4, respectively, since they emerge as a consequence of
the first and second adiabatic elimination steps, respectively.
The effective spin Hamiltonian Ĥspin is independent of the
photonic degrees of freedom. The characteristics of the cav-
ity array and the geometric arrangement of the qubits (i.e.,
the value of x) enter through the interaction strengths Wjl

and Yi j,lh.
We now highlight selected properties of the single- and

two-qubit hopping interactions. Figure 3(a) illustrates the
constrained single-qubit hopping interaction Wjl σ̂

+
i σ̂+

j σ̂−
i σ̂−

l .
The term “constrained” is used since the hopping of the ex-
citation from qubit l to qubit j (σ̂+

j σ̂−
l piece) depends on the

number of excitations at qubit i (σ̂+
i σ̂−

i piece; in this example,
we assume i �= j and i �= l). If qubit i is excited, hopping from
qubit l to qubit j occurs with strength Wjl . If, in contrast, qubit
i is not excited, hopping from qubit l to qubit j does not take
place. We refer to the excited qubit i as a spectator. We em-
phasize that our treatment does not assume that the system is
in the Markovian regime. After the first adiabatic elimination,
basis kets with two excited qubits are coupled to each other
via Ĥsingle if they contain a common excited qubit. The second
adiabatic elimination leaves Ĥsingle unchanged. Thus, in the
Hilbert space spanned by the Ne(Ne − 1)/2 two-excitation
qubit states, Ĥsingle couples each basis ket that contains two
excited qubits to 2(Ne − 2) other basis kets as well as to itself.
While we refer to W (0) as an on-site hopping interaction, it
is also known as “self-interaction” or “self-energy” (see, e.g.,
Ref. [45]).
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FIG. 3. Schematic of constrained single-qubit hopping interac-
tion W and pair hopping interaction Y entering into Ĥspin. (a) The
term Wjl σ̂

+
i σ̂+

j σ̂−
i σ̂−

l (here illustrated assuming i �= j �= l) describes
the annihilation of an excitation at the lth qubit and the creation of
an excitation at the jth qubit (solid blue arrow). This corresponds to
the hopping of an excitation with strength Wjl , with the excitation
at the ith qubit acting as a “spectator,” i.e., the single-qubit hopping
is only allowed if qubit i is excited. (b) The term Yi j,lhσ̂

+
i σ̂+

j σ̂−
l σ̂−

h

(here illustrated assuming i �= j �= l �= h) describes the annihilation
of excitations at qubits l and h, and the creation of excitations at
qubits i and j (solid purple arrows). This corresponds to the hopping
of a pair of excitations with strength Yi j,lh. The open blue and open
purple arrows show selected additional constrained hopping and pair
hopping interactions, respectively.

The strength Wjl ,

Wjl = W (0) exp(−|n j − nl |a/L0), (10)

of the constrained single-qubit hopping interaction falls off
exponentially as a function of |n j − nl |a, i.e., the difference
between the cavities n j and nl that the qubits j and l are
coupled to. The on-site hopping energy W (0) and length L0

read

W (0) = − 2J
( g

2J

)2√(
�
2J

)2 − 1
(11)

and

L0 = − a

ln
(

�
2J −

√(
�
2J

)2 − 1
) , (12)

respectively, where

� = h̄(ωc − ωe) = 1

2

(
− δ + 4J

√
1 +

(
U

16J

)2)
. (13)

Figure 4 shows the on-site hopping energy W (0) and length
L0 for fixed g/J and U/J as a function of the dimensionless
detuning δ/J . It can be seen that W (0)/J is negative and
that the magnitude of W (0) increases with decreasing |δ/J|.
Larger |W (0)| (note, Fig. 4 shows W (0) as opposed to |W (0)|)
are accompanied by larger L0. For the detuning considered in
this work (|δ/J| � 1), Wjl is—for x/a = 1—appreciable not
only for nearest-neighbor hopping but also for next-to-nearest
and next-to-next-to-nearest neighbor hopping.

FIG. 4. The red solid and blue dashed lines show the dimen-
sionless on-site hopping energy W (0)/J (left axis) and length L0/a
(right axis) as a function of the detuning δ/J for g/J = 1/50 and
U/J = −1.

Next, we discuss the effective pair hopping interaction
Yi j,lh. Figure 3(b) illustrates Yi j,lhσ̂

+
i σ̂+

j σ̂−
l σ̂−

h , which annihi-
lates excitations at the lth and hth qubit and creates excitations
at the jth and ith qubit. The effective pair hopping interaction
Yi j,lh is given by

Yi j,lh = − g4

NJ2

∑
K

FK,b(ni, n j )F ∗
K,b(nl , nh)

�K,b
, (14)

where FK,b is given in Eq. (A12). As Wjl , Yi j,lh is negative.
The pair hopping interaction Ĥpair couples each excited qubit
pair to all other excited qubit pairs. Figure 5 shows the inter-
action Yi j,lh for x/a = 1 as functions of the pairs (i, j) and
(l, h) for Ne = 60. Specifically, the indices that specify the
states σ̂+

i σ̂+
j |g, . . . , g〉 are organized based on the separation

FIG. 5. Contour plot of the effective dimensionless interaction
Yi j,lhJ3/g4 for U/J = −1, δ/J = −1/50, Ne = 60, and x/a = 1. The
x and y axis are labeled by the index pairs (i, j) and (l, h); the plot
includes all (i, j) and (l, h) pairs with | j − i| � 9 and |h − l| � 9.
In each block, the separation (i.e., j − i and h − l) between the
two qubit excitations is fixed while the “center-of-mass coordinates”
[i.e., (i + j)/2 and (l + h)/2] are changing. As an example, the blue
rectangle corresponds to a block with | j − i| = 2 and |h − l| = 3.
Values of (x, y) = (100, 150), e.g., correspond to (i, j) = (41, 43)
and (l, h) = (33, 36).
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between the excited qubits, i.e., | j − i|. In a qubit array with
Ne qubits, there are Ne − 1 basis states with a separation of
| j − i| = 1, Ne − 2 basis states with a separation of | j − i| =
2, and so on. The lower left block corresponds to | j − i| =
|h − l| = 1 [the pairs (i, j) and (l, h) both take the values
(1,2), (2,3),. . . , (59,60)]. The upper right block corresponds
to | j − i| = |h − l| = 9 [the pairs (i, j) and (l, h) both take
the values (1,10), (2,11),. . . , (51,60)]. Note that Fig. 5 only
considers a subset of pairs, i.e., | j − i| � 9 and |h − l| � 9.
Within each block, the interaction is most negative along the
diagonal and falls off approximately Lorentzian as one moves
away from the diagonal. Moreover, starting with the block
in the lower left corner, the interactions on the diagonal are
less negative as one moves to blocks characterized by larger
separations.

A key characteristic of the interaction Yi j,lh is that it is—
within each block—constant along the diagonal, along the
off-diagonal, and so on. The fall-off of the interactions as one
moves away from the diagonal within each block indicates
that the Yi j,lh interaction depends on the actual locations of
the involved qubits in the spin chain. This implies that it is
energetically more favorable for two excitations to be located
in the middle of the chain than at the edge of the chain since
the pair can hop to the left and to the right when located at
the center and only to one side when located at the edge.
This location dependence is critical for the formation of the
droplet-like states discussed in the next section.

III. STATIONARY SOLUTIONS

Since we are working in the regime where g/J � 1, it
might be expected naively that the constrained single-qubit
hopping term Ĥsingle, which is directly proportional to g2,
dominates over the pair hopping term Ĥpair, which is directly
proportional to g4. While this is, indeed, the case in an ap-
preciable portion of the parameter space, we show that there
exists a parameter window in which the pair hopping inter-
action qualitatively changes the system characteristics. It is
noted that a fourth-order two-photon virtual process, which is
proportional to g4, was observed experimentally in transmon
qubits coupled to a photonic crystal [43]. Specifically, this sec-
tion shows that the Y term has a “pinning effect” that leads to
the emergence of liquid- or droplet-like bound states. Droplet
states are self-bound and incompressible, and their excita-
tion spectrum can be divided into compressional and surface
modes [44]. We will show that the states referred to as droplet-
like in this work are incompressible (their size is not solely
set by the extent of the emitter array but by the entirety of
system parameters). Moreover, the ground state is accompa-
nied by a sequence of excitations that resemble compressional
modes. While our analysis is based on the approximate spin
Hamiltonian Ĥspin, we checked that this Hamiltonian captures
the key features of the full system Hamiltonian Ĥ qualitatively
and in many cases even quantitatively correctly. The main
advantage of using Ĥspin comes from the fact that it allows for
a transparent interpretation of the results, in addition to being
an interesting model in its own right.

We start by setting Ĥpair = 0. We find it useful to compare
Ĥsingle to the unconstrained one-qubit hopping Hamiltonian
ˆ̃Hsingle, where ˆ̃Hsingle = 2

∑Ne
i, j=1 Wi j σ̂

+
i σ̂−

j . This Hamiltonian

FIG. 6. Eigenenergy, measured with respect to E0,b, for Ne = 60,
g/J = 1/50, U/J = −1, δ/J = −1/50, and x/a = 1 as a function of
the state index. The black filled circles, red open squares, and blue
open circles show the energy for Ĥspin, Ĥsingle, and ˆ̃Hsingle, respec-
tively. Inset: Blow-up of the lower part of the energy spectrum.

emerges (without the factor of 2) when one works in the
single-excitation manifold and adiabatically eliminates the
single-photon states [16–18]. Ĥsingle differs from ˆ̃Hsingle be-
cause of the presence of the spectator, i.e., the constraint
makes the Hamiltonian Ĥsingle considered in our work unique.
To highlight the differences, red and blue circles in Fig. 6
show the eigenenergies of Ĥsingle and ˆ̃Hsingle, respectively, for
Ne = 60, g/J = 1/50, U/J = −1, δ/J = −1/50, and x/a =
1. The constraint introduces an upshift of the eigenenergies
for all eigenstates. The upshift is larger for the more negative
eigenenergies (measured relative to the bottom E0,b of the
two-photon bound state band) than the less negative eigenen-
ergies. Interestingly, both Ĥsingle and ˆ̃Hsingle support a step-like
pattern, with each plateau containing close to Ne eigenstates
for the energetically lowest-lying states. For the higher ex-
cited states, the steps are less pronounced. Reference [15]
referred to the energy band formed by the qubit dominated
states as a metaband. While we observe, similarly to Ref. [15],
that the width of the band decreases with increasing x, it is
important to point out that that work considered qubit-array
physics in the single-excitation manifold on resonance (and
not off-resonance as in our case) and for significantly stronger
coupling strengths (g/J of order 1).

For comparison, the black circles in Fig. 6 show the
eigenenergies for Ĥspin. It can be seen that Ĥpair appreciably
impacts the 10 or so energetically lowest-lying states and less
so the higher-lying states. Importantly, the energies of the
lowest few eigenstates of Ĥspin are pushed down due to the
presence of the Ĥpair term. The downshift of the energies is
associated with significant changes of the character of the
eigenstates, i.e., a change from delocalized scattering states
to localized bound states. We refer to this as “pinning” (see
below for details). The energy spectrum shown in Fig. 6 is
unique to a qubit spacing of x/a = 1. For larger spacings,
but otherwise identical parameters, the hopping energies are
smaller and the step-like pattern is washed out. Moreover,
the most strongly bound states are less separated from the
other states than for x/a = 1 (i.e., Ĥpair introduces a smaller
downshift for the ground state for x/a = 2 than for x/a = 1).
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FIG. 7. Energy of droplet-like states, measured with respect to
E0,b, for Ne = 60, g/J = 1/50, U/J = −1, and x/a = 1 as a function
of (a) the excitation number n for δ/J = −1/50 and (b) the detuning
δ/J for n = 1. The black filled circles, green open triangles, red open
squares, and blue open circles show the energies for Ĥspin, Ĥsingle,
the variational wave function given in Eqs. (18)–(20), and for the
perturbative calculation (Ĥpair is treated in first-order perturbation
theory), respectively. In (a), the red and black symbols are nearly
indistinguishable. In (b), all four calculations yield, on the scale
shown, nearly indistinguishable energies except when |δ/J| is ex-
tremely small. The arrow in (b) marks the detuning used in (a).

For x = 0, there exist three degenerate energy levels: for the
same Ne, g/J , U/J , and δ/J as considered in Fig. 6, the
x/a = 0 spectrum for Ĥspin contains a single state with energy
E − E0,b = −0.2256J , Ne − 1 states with energy E − E0,b =
−0.0629J , and Ne(Ne − 3)/2 states with energy E − E0,b =
δ = −0.02J .

To understand the influence of Ĥpair on the eigenspectrum,
we use first-order nondegenerate perturbation theory. Treating
Ĥpair as a perturbation, the first-order correction E (1)

n to the
eigenenergy E (0)

n of the nth droplet-like eigenket |φ(0)
n 〉 of

Ĥsingle is given by

E (1)
n = 〈

φ(0)
n

∣∣ Ĥpair

∣∣φ(0)
n

〉
. (15)

Figure 7(a) considers the six energetically lowest-lying
droplet-like states (n = 1 − 6). These droplet-like states cor-
respond to state numbers 1, 2, 3, 4, 7, and 10. Figure 7(a)
shows that the perturbation energies (the open blue circles
show E (0)

n + E (1)
n ) lie below the zeroth-order energies E (0)

n
(green open triangles), i.e., the stronger binding of Ĥspin

compared to Ĥsingle due to Ĥpair is captured qualitatively

in first-order perturbation theory. Higher-order corrections,
which account for the mixing of the unperturbed states |φ(0)

n 〉,
play a larger role for the ground state (n = 1) than for the
excited droplet-like states (n = 2 − 6). Figure 7(b) focuses on
the energy of the lowest-lying droplet-like state and shows that
energy as a function of the detuning. The detuning marked by
an arrow is identical to the detuning used in Fig. 7(a). For
large to moderate detunings, the results from the perturba-
tion calculation (blue open circles) agree well with the exact
diagonalization of Ĥspin (black solid circles). For relatively
small detunings, however, deviations are visible. While the
first-order perturbative energy improves upon the unperturbed
energy, higher-order corrections play an increasingly more
important role.

To characterize the eigenstates |φE 〉 of Ĥspin, we expand
them in terms of the basis kets σ+

i σ+
j |g, . . . , g〉,

|φE 〉 =
Ne−1∑
i=1

Ne∑
j=i+1

c(E )
i, j σ+

i σ+
j |g, . . . , g〉 , (16)

and analyze the expansion coefficients c(E )
i, j as well as the pair

correlation function Ppair(α), which measures the likelihood
that the two excitations are located at qubits that are separated
by α. The corresponding operator is given by

P̂pair(α) =
Ne−α∑
i=1

σ̂+
i σ̂+

i+α |g, . . . , g〉 〈g, . . . , g| σ̂−
i σ̂−

i+α, (17)

where α takes the values 1, 2, . . . , Ne − 1. For example, if α =
1, the excitations are located at neighboring spins. In terms of
the expansion coefficients, the pair correlation function for the
eigenstate |φE 〉 is given by Ppair(α) = ∑Ne−α

i=1 |c(E )
i,i+α|2.

Figures 8(a) and 8(b) show Ppair(α) for the ground
state for Ne = 60, g/J = 1/50, U/J = −1, and x/a = 1 for
two different detunings, namely, δ/J = −1/50 and −3/20.
The blue dotted lines are obtained using Ĥspin. The full
Hamiltonian Ĥfull (black solid lines) yields results that are
quite similar to those for Ĥspin, thus providing evidence that
Ĥspin yields faithful results. For small |δ/J| [Fig. 8(a)], the pair
correlation function peaks at α = 1 and is essentially zero for
α � 1. This indicates that the two excited qubits want to stay
together. The fall-off of Ppair(α) suggests that the ground state
corresponds to a bound state. This interpretation is confirmed
by calculations for larger arrays (larger Ne) with otherwise
identical parameters. We find that Ppair(α) for the ground state
remains essentially unchanged when Ne is increased, i.e., the
size of the ground state is independent of Ne, thereby justi-
fying the classification as a self-bound state. For larger |δ/J|
[Fig. 8(b)], in contrast, the pair correlation function peaks at
α ≈ 10 for Ĥfull and Ĥspin. This indicates that the two excited
qubits have a tendency to spread out over the entire array.
This interpretation is supported by the fact that the fall-off
of the pair correlation function moves to larger α for larger
Ne but otherwise identical parameters. Correspondingly, we
classify the ground state considered in Fig. 8(b) as unbound.
The inclusion of Ĥpair in the effective spin Hamiltonian Ĥspin

(blue dotted line) is crucial. A comparison of the blue dotted
line [Ppair(α) for Ĥspin] and red dashed line [Ppair(α) for Ĥsingle]
reveals that Ĥpair has a pinning effect: it enhances, as already

023702-6



PHOTON-INDUCED DROPLETLIKE BOUND STATES IN A … PHYSICAL REVIEW A 108, 023702 (2023)

FIG. 8. Pair correlation function Ppair(α) for the ground state as a
function of the separation α between two excited qubits for Ne =
60, g/J = 1/50, U/J = −1, x/a = 1, and (a) δ/J = −1/50 and
(b) δ/J = −3/20. The black solid, blue dotted, and red dashed lines
are for Ĥfull, Ĥspin, and Ĥsingle, respectively. The inset in (a) replots
the blue dotted line and additionally shows the variational results by
green open circles.

alluded to in Sec. II B, the probability to find excitations
located at qubits that are close to each other. The effect is very
prominent in Fig. 8(a), where the red line is much broader
than the blue line. If Ĥpair is neglected and Ne is increased,
the red line in Fig. 8 does not maintain its size, as is the case
for Ĥspin, but increases. This unequivocally shows that Ĥpair is
responsible for the emergence of self-bound states.

Figure 9 shows the real part of the coefficients c(n)
i, j for the

four energetically lowest-lying droplet-like bound states (n =
1 − 4) for Ne = 60, g/J = 1/50, U/J = −1, δ/J = −1/50,
and x/a = 1; the imaginary part is equal to zero. The droplet-
like states shown in Fig. 9 correspond to the state numbers
1, 2, 3, and 4. Figure 9 employs relative and center-of-mass
coordinates r and R, respectively, of the two excited qubits,
r = | j − i| and R = (i + j)/2. The white area characterized
by r � 2R for R < Ne/2 and r � 2(Ne − R) for R � Ne/2 is
unphysical as there is a constraint of i < j on the eigenco-
efficients due to the bosonic character or, equivalently, the
exchange symmetry of the excitations. The small white dots,
which exist in the physical i < j portions in Fig. 9, result
from the transformation from the (i, j) spin indices to the
(R, r) coordinates. In Figs. 9(a)–9(d), the magnitude of the
coefficients c(n)

i, j decreases with increasing r for fixed R. Along
the R coordinate, the number of nodes increases from zero
for the ground state [n = 1 in Fig. 9(a)] to three for the third

FIG. 9. Contour plots of the dimensionless expansion coeffi-
cients c(n)

i j as functions of R and r for Ne = 60, g/J = 1/50, U/J =
−1, δ/J = −1/50, and x/a = 1. The coefficients are obtained by
diagonalizing the effective Hamiltonian Ĥspin. (a), (b), (c), and (d) are
for n = 1 (droplet-like ground state), 2 (droplet-like first excited
state), 3 (droplet-like second excited state), and 4 (droplet-like third
excited state), respectively.

excited droplet-like state [n = 4 in Fig. 9(d)]. The nodes are to
a very good approximation parametrized by Rnode ≈ constant,
i.e., they are, on the scale of Fig. 9, independent of r.

In what follows, we use a variational ansatz to understand
the length scale that governs the droplet-like states and the
number of droplet-like states that are supported by a qubit
array of size Ne. Since Fig. 9 suggests that the expansion
coefficients of the nth droplet-like eigenstate decouple when
plotted as functions of the relative coordinate r and the center-
of-mass coordinate R, we introduce the product ansatz

c(n)
r,R = Q(n)(R)q(r). (18)

Here, the function Q(n)(R),

Q(n)(R) =
√

2

Ne
sin

(
nπ

Ne
R

)
, (19)

corresponds to the nth particle in the box wave function and
the function q(r),

q(r) = 2

√
L3

r

πa3

[
1

(r − 1)2 + ( Lr
a

)2

]
, (20)

to an n-independent Lorentzian with characteristic length Lr .
The length Lr is treated as a variational parameter. By con-
struction, the variational states with different n are orthogonal.

Figure 7(a) compares the variational energies (red open
squares) of the six droplet-like states that are supported by
the qubit array for Ne = 60, g/J = 1/50, U/J = −1, δ/J =
−1/50, and x/a = 1 with those obtained by diagonalizing
Ĥspin (black solid circles). We see that the variational energies
agree extremely well with the exact eigenenergies of Ĥspin.
In Fig. 7(b), the energy of the ground droplet-like state is
shown as a function of δ/J for the same Ne, g/J , U/J , and
x/a as used in Fig. 7(a). For large to moderate, in magni-
tude, detunings, the energies from the variational calculation
(red open squares) agree well with the exact eigenenergies
of Ĥspin (black solid circles). For small detunings, small
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deviations are visible. The variational calculation not only
predicts the eigenenergy accurately but also the corresponding
eigenstates. As an example, the green open circles in the inset
of Fig. 8(a) show the pair correlation function obtained by the
variational treatment; it agrees well with the results obtained
for Ĥspin (blue dotted line). The number of droplet-like states
supported by the qubit array is approximately equal to aNe/Lr .
Intuitively, this can be understood as follows. The system
develops additional nodes along the R direction till the spacing
between the nodes is comparable to the size of the droplet-
like state along the r direction. For g/J = 1/50, U/J = −1,
δ/J = −1/50, and x/a = 1, the variational ground state en-
ergy is minimized for Lr ≈ 10a. The qubit array with Ne = 60
supports six droplet-like states, in agreement with the estimate
aNe/Lr ≈ 6. As the qubit array spacing x is changed from
a to 2a, the number of droplet-like bound states decreases
from six to four. For x = 3a, droplet-like bound states are no
longer supported. Similar results are found for other parameter
combinations. We note that Ĥspin also supports more highly
excited modes, which have nodes along the r coordinate.
The variational treatment of these energetically higher-lying
droplet-like states is beyond the scope of this work.

IV. DYNAMICS

This section discusses the dynamics for negative δ

(band-gap regime) for two different initial states in the
two-excitation manifold, namely, the partially symmetric
state |PS〉,

|PS〉 = 1√
Ne − 1

Ne−1∑
i=1

σ+
i σ+

i+1 |g, . . . , g〉 , (21)

and the fully symmetric state |FS〉,

|FS〉 =
√

2√
Ne(Ne − 1)

Ne−1∑
i=1

Ne∑
j=i+1

σ+
i σ+

j |g, . . . , g〉 . (22)

The fully symmetric state is a superposition of all basis
kets (all basis kets contribute with an expansion coefficient√

2√
Ne(Ne−1)

). The partially symmetric state, in contrast, only
considers basis kets for which the excited qubits are nearest
neighbors.

Figures 10(a) and 10(b) show the decomposition of the
states |PS〉 and |FS〉, respectively, into the energy eigenstates
|φE 〉 of Ĥspin for Ne = 60, g/J = 1/50, U/J = −1, δ/J =
−1/50, and x/a = 1. The state |PS〉 has finite overlap with
a large number of eigenstates from all over the eigenspec-
trum. The ground state contributes about 10% and the other
states 3% or less. For the state |FS〉 [Fig. 10(b)], in contrast,
there are two energy eigenstates that dominate and together
contribute 89% [52.6%, red square in Fig. 10(b), and 36.4%,
blue triangle in Fig. 10(b)]. The lowest eigenstate, which
contributes 52.6%, has droplet-like character while the excited
eigenstate, which contributes 36.4%, has scattering character-
istics. Since the fully symmetric initial state is dominated by
two eigenstates, the dynamics is expected to feature Rabi-like
two-state oscillation dynamics. The dynamics for the partially
symmetric state, in contrast, is expected to display features

FIG. 10. Square of the absolute value of the projection of the ini-
tial state |ψ (0)〉 onto the energy eigenstates |φE 〉 of Ĥspin as a function
of the eigenenergy E , measured relative to the bottom E0,b of the
two-photon bound state band, for Ne = 60, g/J = 1/50, U/J = −1,
δ/J = −1/50, and x/a = 1. (a) The initial state is |ψ (0)〉 = |PS〉.
(b) The initial state is |ψ (0)〉 = |FS〉. The red square and blue trian-
gle correspond to the two largest values of | 〈φE |FS〉 |2.

of dephasing, at least over certain time scales, due to the
superposition of many energy eigenstates.

Figure 11 shows the time dependence of the probabil-
ity that two excitations belong to nearest-neighbor qubits,
i.e., qubits that are separated by α = 1 (black solid line),
to qubits that are separated by α = 6 (red dashed line), and
to qubits that are separated by α = 21 (blue dotted line).
These observables are for the same parameters as those used
in Fig. 10. The time evolution of Ppair(α, t ) for the initial
states |PS〉 [Fig. 11(a)] and |FS〉 [Fig. 11(b)] is—as already
anticipated based on the initial state decomposition—distinct.
In Fig. 11(a), Ppair(α, t ) for α = 1 decays with damped oscil-
lations. The damping or decay are attributed to the fact that a
large number of eigenstates contribute to the initial state with
comparable weight, giving rise to dephasing. In Fig. 11(b),
Ppair(α, t ) oscillates with nearly undamped amplitude for all
α considered. The slight distortions of the oscillations are
caused by dephasing effects of the eigenstates that contribute
to the fully symmetric initial state with a small weight, i.e.,
less than 5%. The oscillation period of t ≈ 2000 h̄/J corre-
sponds to an energy of 0.0031 J . This energy agrees with
the difference in energies of the two eigenstates that have the
largest overlap with the initial state |FS〉 [red square and blue
triangle in Fig. 10(b)].
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FIG. 11. Pair correlation function Ppair(α, t ) for Ĥspin as a func-
tion of time for three different separations α for Ne = 60, g/J =
1/50, U/J = −1, δ/J = −1/50, and x/a = 1. The solid black, red
dashed, and blue dotted lines show Ppair(α, t ) for α = 1, 6, and 21,
respectively. The initial state |ψ (0)〉 is equal to (a) |PS〉 and (b) |FS〉.

Figure 12 shows the spin-spin correlation function
Pcorr(i, j, t ),

Pcorr(i, j, t ) = 〈ψ (t )| σ̂+
i σ̂+

j |g, . . . , g〉 〈g, . . . , g| σ̂−
i σ̂−

j |ψ (t )〉
(23)

at eight different times ranging from zero in Fig. 12(a) to
Jt/h̄ = 7500 in Fig. 12(h) for Ne = 60, g/J = 1/50, U/J =
−1, δ/J = −1/50, and x/a = 1. The initial state is |FS〉. The
plots in the left column are for Jt/h̄ = 0, 2220, 4440, and
6540. Comparison with Fig. 11(b) shows that Ppair(α = 1, t )
takes on a local minimum at these times. The plots in the right
column of Fig. 12, in contrast, are such that Ppair(α = 1, t )
takes on a local maximum. We can see that Pcorr(i, j, t ) is
mostly concentrated around the middle of the diagonal in the
right column while it is much more spread out in the left
column. The observation that the spin-spin correlations alter-
nate between being more localized and being more spread out
can be readily explained by the fact that the initial state |FS〉
is dominated by contributions from the ground droplet-like
state and a delocalized scattering state [red square and blue
triangle Fig. 10(b)]. This suggests that the droplet-like ground
state can be probed by initializing the qubit array in the fully
symmetric state |FS〉.

The calculations presented consider the ideal case scenario,
where the excited state qubit has an infinite lifetime, the pho-
ton loss from the cavities is ignored, and imperfections—such

FIG. 12. Snapshots of Pcorr(i, j, t ) for Ĥspin for Ne = 60, g/J =
1/50, U/J = −1, δ/J = −1/50, and x/a = 1 as functions of i and j
for the initial state |ψ (0)〉 = |FS〉 [the quantity Pcorr(i, j, t ) is dimen-
sionless]. (a)–(h) correspond to Jt/h̄ = 0, 960, 2220, 3080, 4440,
5220, 6540, and 7500, respectively. As discussed in the main text in
the context of Fig. 9, the coefficients c(n)

i, j are only defined for i < j; to

plot Pcorr(i, j, t ), we artificially set c(n)
i, j = c(n)

j,i for i > j and c(n)
i, j = 0

for i = j for ease of readability.

as, e.g., a finite spread �J of the tunneling energies J and a
finite spread �ωc of the cavity frequencies ωc that exist to a
varying degree in experiment—are neglected. To observe the
oscillations displayed in Fig. 11(b), the time scales associated
with spontaneous qubit decay, photon losses, and dephasing
due to the spread of system parameters must be larger than
about 104 h̄/J . In the following discussion, we assume that
the excited state lifetime of the qubit is longer than the time
scale for photon losses.

A finite bare photon lifetime of h̄κ−1 leads to a charac-
teristic decay time (�c)−1 that scales, for |δ0| � 2J , as �c =
pphκ/h̄, where pph ≈ g2J−1/2δ

−3/2
0 /4 and δ0 denotes the de-

tuning in the single-excitation manifold, δ0 = (h̄ωc − 2J ) −
h̄ωe [15,45]. Physically, the multiplicative factor pph can be
understood as arising from the admixture of the photonic
degrees of freedom to the hybridized bound state in the single-
excitation manifold. Rewriting δ0 in terms of the detuning δ in
the two-excitation manifold, we find

pph = g2

4
√

J

[
1

2
(−δ +

√
U 2 + 16J2) − 2J

]−3/2

. (24)

For δ/J = −1/50 and −3/20, as used in this paper, pph

is equal to 5×10−3 and 2×10−3, respectively. To observe
multiple oscillations, (�c)−1 must be much larger than
104 h̄/J; the equal sign holds for κ/J = 2×10−2 and 5×10−2,
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respectively. Superconducting circuit experiments have real-
ized an eight-cavity system with U/h = −255 MHz, J/h =
5 − 20 MHz, and κ/h = 5 kHz [34]. This translates to κ/J =
2.5×10−4 to 10−3, i.e., experiments are already operating in
a regime where the photon lifetime is sufficiently long to
observe the predicted phenomena. For fixed spreads �J and
�ωc, one may attempt to increase δ such that the spreads
become, if measured as a multiple of the detuning, smaller.
Since a larger δ corresponds to a smaller photon contribution
pph and hence a longer time scale for the photon losses,
there is some room to optimize the parameters for a specific
experimental setup. While challenging, we conclude that the
theory predictions put forward in this paper can be tested in
state-of-the-art experiments.

V. CONCLUSION

This paper discussed the time-independent and time-
dependent behaviors of a qubit array coupled to a nonlinear
photonic waveguide. Our interest was in the regime where
the two-qubit transition energy lies in the band gap below
the two-photon bound state band that is supported by the
one-dimensional waveguide. We focused our attention on
the two-excitation manifold. Even though the qubits are not
interacting with each other, effective interactions—mediated
by the waveguide—are introduced between qubits as a result
of a two-step adiabatic elimination process. The resulting
effective spin Hamiltonian, which was shown to accurately
reproduce the key characteristics of the full Hamiltonian, fea-
tures constrained single-qubit hopping and pair hopping inter-
actions. The emergence of the latter critically depends on the
presence of the Kerr-like nonlinearity U . The effective spin
Hamiltonian was shown to support a class of droplet-like
bound states that arise due to the pair hopping interaction.
These droplet-like states extend over many qubit lattice sites
and can be probed dynamically. For the fully symmetric initial
state, the populations were found to oscillate back and forth
between a droplet-like bound state and a delocalized scatter-
ing state. While most of our discussion focused on Ne = 60,
g/J = 1/50, U/J = −1, and δ/J = −1/50, we emphasize
that the characteristics discussed in this paper are also ob-
served for other parameter combinations.

For fixed g/J , δ/J , Ne, and x/a, we find that the number
of droplet-like states supported by the qubit array decreases

as U/J becomes more negative. As |U |/J increases, the two-
photon bound state becomes more localized and hence the
overall strength of the pair hopping interaction becomes less
negative. Whether or not droplet-like bound states exist also
depends on the qubit array spacing x. If the separation be-
tween two neighboring qubits is increased, the number of
droplet-like states supported by the array decreases.

The giant droplet-like bound states discovered in this work
provide an intriguing example of utilizing structured baths
to engineer effective spin-spin interactions that support quan-
tum states with nontrivial correlations. The droplet-like states
considered in this paper, which emerge in the two-excitation
subspace, are distinct from the two-excitation scattering states
considered in Ref. [17] in the absence of the nonlinearity
U . They are also distinct from hybrid qubit-photon states
that emerge in the single-excitation manifold [45]. Possible
extensions may focus on topological wave guides [57,58],
higher-dimensional baths, superlattice-type arrangements of
the qubits, qubits with multiple transition frequencies [59],
multilevel emitters, qubits with multiple point contacts [60],
and higher-excitation manifolds [61]. In all these scenarios,
it will be interesting to explore the interplay between con-
strained single-qubit and pair hopping interactions.
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APPENDIX: DERIVATION OF Ĥspin

Starting with the full Hamiltonian Ĥ , this Appendix derives
the effective spin Hamiltonian Ĥspin. The adiabatic elimination
procedure discussed in this Appendix is illustrated in Fig. 13.

1. Time-dependent wave packet

Throughout, we assume that the two-photon scattering
states can be neglected. This is justified since we are working
in a regime where the two-qubit transition energy is far de-
tuned from the two-photon scattering continuum. Under this
approximation, the wave packet |ψ (t )〉 in the two-excitation
manifold can be written as [45–47]

|ψ (t )〉= exp(−2ıωet )

[
Ne−1∑
i=1

Ne∑
j=i+1

di j (t )σ+
i σ+

j |g, . . . , g, vac〉 +
Ne∑

i=1

∑
k

cik (t )σ+
i â†

k |g, . . . , g, vac〉 +
∑

K

cK,b(t )B̂†
K |g, . . . , g, vac〉

]
,

(A1)

where di j (t ), cik (t ), and cK,b(t ) denote expansion coefficients. The operator B̂†
K creates a two-photon bound state with momentum

K , |ψK,b〉 = B̂†|vac〉. Inserting Eq. (A1) into the time-dependent Schrödinger equation, we obtain a set of coupled differential
equations

ı h̄ḋi j (t ) = g√
N

∑
k

[exp(ıkani )c jk (t ) + exp(ıkan j )cik (t )], (A2)

ı h̄ċik (t ) = �kcik (t ) + g√
N

Ne∑
j=1, j �=i

exp(−ıkan j )dĩ j̃ (t ) + g

N

∑
K

Mb(k, ni, K )cK,b(t ), (A3)
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FIG. 13. Approximations made to obtain the effective spin Hamiltonian Ĥspin (right column) from the total Hamiltonian Ĥ (left column).
The schematic considers Ne = 4 as an example and shows only a subset of the basis kets. The red and black horizontal lines show a subset of
basis kets. The blue, pink, purple, green, and dark red lines represent interactions. As a result of the adiabatic elimination of the single-photon
states |eggg, k〉, interactions 1 and 2 give rise to interaction W between states |eegg, vac〉 and |egeg, vac〉 (solid pink line), interactions 1 and 3
give rise to interaction F between states |eegg, vac〉 and |gggg, K1〉 (solid purple line), interactions 2 and 3 give rise to interaction F between
states |egeg, vac〉 and |gggg, K1〉 (dotted purple line), interactions 1 and 4 give rise to interaction F between states |eegg, vac〉 and |gggg, K2〉
(dashed purple line), interactions 2 and 4 give rise to interaction F between states |egeg, vac〉 and |gggg, K2〉 (dash-dotted purple line), and
interactions 3 and 4 give rise to interaction G between states |gggg, K1〉 and |gggg, K2〉 (green line). As a result of setting G to zero and
adiabatically eliminating the two-photon bound states |gggg, K〉, interactions F (e.g., solid and dotted lines, and dashed and dash-dotted lines)
give rise to interaction Y between states |eegg〉 and |egeg〉 (solid dark red line). The down shifts of the red basis states in the middle and right
columns represent the energy shifts (sometimes called Stark shifts) that are due to the adiabatic eliminations.

and

ı h̄ċK,b(t ) = �K,bcK,b(t ) + g

N

Ne∑
i=1

∑
k

[Mb(k, ni, K )]∗cik (t ), (A4)

where ĩ = min(i, j) and j̃ = max(i, j). The energy detunings
�k and �K,b are given by

�k = Ek − h̄ωe (A5)

and

�K,b = EK,b − 2h̄ωe, (A6)

where Ek denotes the energy of a single photon with wave
vector k. The matrix elements Mb(k, n, K ) are defined as
[46,47]

Mb(k, n, K )

=
√

2
∑

m

exp

[
ım

(
k − K

2

)
a + ın(K − k)a

]
ψK,b(m),

(A7)

where ψK,b(m) = 〈ma|ψK,b〉 is the two-photon bound state
wave function (ma denotes the relative distance between the
two photons). Stationary and time-dependent solutions to the
Schrödinger equation for Ĥfull are obtained through exact
diagonalization, excluding the basis kets that span the two-
photon scattering continuum. To characterize the distribution
of the excited qubits, we monitor the pair correlation function

Ppair(α, t ),

Ppair(α, t ) = 〈ψ (t )|
Ne−α∑
i=1

σ̂+
i σ̂+

i+α |g, . . . , g, vac〉

× 〈g, . . . , g, vac| σ̂−
i σ̂−

i+α |ψ (t )〉 , (A8)

as well as the spin-spin correlation function Pcorr(i, j, t ),

Pcorr(i, j, t ) = 〈ψ (t )| σ̂+
i σ̂+

j |g, . . . , g, vac〉
× 〈g, . . . , g, vac| σ̂−

i σ̂−
j |ψ (t )〉 . (A9)

In what follows, we introduce several approximations that
eliminate the photonic degrees of freedom from the problem
and, in turn, introduce effective interactions between groups
of qubits.

2. Adiabatic elimination of the single-photon states

Assuming that the changes of cik (t ) with time can be ne-
glected, i.e., ċik (t ) = 0 in Eq. (A3), the single-photon states
σ̂+

j |g, . . . , g, k〉 can be adiabatically eliminated. This approx-
imation breaks down when g is too large or the single-qubit
transition energy is too close to the single-photon band. The
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resulting differential equations read

ı h̄ḋi j (t ) =
Ne∑

l=1,l �= j

Wildl̃ j̃ (t ) +
Ne∑

l=1,l �=i

Wl jdĩl̃ ′ (t )

+ g2

√
NJ

∑
K

FK,b(ni, n j )cK,b(t ) (A10)

and

ı h̄ċK,b(t ) =�K,bcK,b(t ) + g2

√
NJ

Ne∑
i=1

Ne∑
j=i+1

F ∗
K,b(ni, n j )di j (t )

+ g2

NJ

∑
K ′

GKK ′ (�n)cK ′,b(t ), (A11)

where l̃ = min(l, j), j̃ = max(l, j), ĩ = min(l, i),
l̃ ′ = max(l, i), and �n = (n1, n2, . . . , nNe ). It can be seen
that the adiabatic elimination of the single-photon states
introduces three effective interactions, namely, FK,b, GKK ′ ,
and Wjl . The effective interaction FK,b(ni, n j ) between states
σ̂+

i σ̂+
j |g, . . . , g, vac〉 and B̂†

K |g, . . . , g, vac〉 is given by
[45–47]

FK,b(ni, n j ) = −
∑

k

J

N�k
(exp(−ıkani )[Mb(k, n j, K )]∗

+ exp(−ıkan j )[Mb(k, ni, K )]∗). (A12)

The effective interaction GKK ′ (�n) between states B̂†
K |g,

. . . , g, vac〉 and B̂†
K ′ |g, . . . , g, vac〉 is given by [45–47]

GKK ′ (�n) = −
Ne∑
j=1

∑
k

J

N�k
[Mb(k, n j, K )]∗Mb(k, n j, K ′).

(A13)

The interactions FK,b and GKK ′ have been discussed exten-
sively in the context of the two-qubit system (Ĥ with Ne = 2)
[45–47]. The effective interaction Wjl , in contrast, does not
exist for Ne = 2; it critically depends on having more than
two qubits coupled to the cavity array. The functional form of
Wjl is given in Eq. (10) of the main text.

Equations (A10) and (A11) correspond to the effective
Hamiltonian Ĥadia,0,

Ĥadia,0 = Ĥsingle + g2

J
√

N

Ne∑
i=1

Ne∑
j=i+1

∑
K

[FK,b(ni, n j )σ̂
+
i σ̂+

j B̂K

+ F ∗
K,b(ni, n j )σ̂

−
i σ̂−

j B̂†
K ]

+
∑

K

�K B̂†
K B̂K + g2

NJ

∑
K

∑
K ′

GKK ′ (�n)B̂†
K B̂K ′ ,

(A14)

where Ĥsingle is given in Eq. (7) of the main text. For Ne = 2,
Refs. [46,47] found that the effective interaction GKK ′ plays a
non-negligible role only when the transition energy 2h̄ωe of
two qubits is in or nearly in resonance with the bottom of the
two-photon bound state band. Since GKK ′ plays, in general,
a negligible role away from the bottom of the band, it is
useful to define the effective Hamiltonian Ĥadia,1 by setting
GKK ′ in Ĥadia,0 to zero. The effective Hamiltonians Ĥadia,0

and Ĥadia,1 live in the ( Ne(Ne−1)
2 + N )–dimensional Hilbert

space that is spanned by the states σ̂+
i σ̂+

j |g, . . . , g, vac〉 and

B̂†
K |g, . . . , g, vac〉 with wave vector K .

3. Adiabatic elimination of the two-photon bound states:

For the band-gap physics considered in this paper, the
energy 2h̄ωe of two excited qubits is not in resonance with the
two-photon bound state band. Consequently, we adiabatically
eliminate the two-photon bound states, i.e., we set the left-
hand side of Eq. (A11) to zero. Using this to eliminate cK,b(t )
from Eq. (A10), the resulting set of coupled equations—
setting GKK ′ = 0—reads

ı h̄ḋi j (t ) =
Ne∑

l=1,l �= j

Wildl̃ j̃ (t ) +
Ne∑

l=1,l �=i

Wl jdĩl̃ ′ (t )

+
Ne−1∑
l=1

Ne∑
h=l+1

Yi j,lhdlh(t ). (A15)

Equation (A15) corresponds to the effective spin Hamiltonian
Ĥspin given in Eq. (8) of the main text, which lives in the
Ne(Ne − 1)/2–dimensional Hilbert spanned by the qubit states
σ̂+

i σ̂+
j |g, . . . , g〉.
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