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Ability of loss to increase the spatial coherence of guided waves
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When loss is introduced in one arm of a pair of coupled waveguides, it can result in an output signal with
increased spatial coherence compared to the input beam. To theoretically investigate this phenomenon, we
employ the formalism of classical coherence theory and develop a continuous model for the waveguides, treating
them as a pair of Gaussian profiles. Our study focuses on the dynamics of the cross-spectral density function and
the effective degree of coherence.
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I. INTRODUCTION

In conventional optical experiments, it is typically assumed
that any optical losses are undesirable due to their potential
to introduce noise and degrade the accuracy of the measured
signal. However, intentional induction of loss in a material
has found applications in classical and quantum systems,
such as loss-induced transparency [1], tunability of quan-
tum interference [2,3], beam splitters [4], coherent perfect
absorption [5], and verifications of true quantum parity-time
(PT )-symmetric systems [6], to cite a few. These discov-
eries are now part of a broader research field known as
non-Hermitian optics [7–10], which originated from the pi-
oneering work of Bender and Boettcher on the real spectra of
non-Hermitian quantum PT -symmetric potentials [11].

In 1998, Bender and Boettcher suggested that a class of
nonrelativistic Hamiltonians having PT symmetry, although
non-Hermitian with respect to the usual inner product, have a
completely real spectrum [11,12]. This remarkable discovery
has led to extensive research on potential generalizations of
quantum theory [13,14]. Because there are several similari-
ties between the formal mathematics of quantum mechanics
and Maxwell’s equations, non-Hermitian concepts have been
integrated into optics, particularly in the refractive index
of materials. For a one-dimensional (1D) quantum potential
function to exhibit PT symmetry, the condition is that V (x) =
V ∗(−x). In optics, a material is considered PT symmetric
if its refractive index n(x) satisfies the same condition. This
implies that the real (imaginary) part of the refractive index
is an even (odd) function of position. The first experimen-
tally produced genuine PT -symmetric material was a coupled
system of waveguides that demonstrated a nonreciprocal light
propagation [15].

With a few exceptions [16–24], most papers in the field of
non-Hermitian optics assume the optical field to be fully co-
herent in both time and space. It has long been recognized that
the primary factor governing field evolution is the fluctuation
between distinct space-time points, which can be character-
ized by specific correlation functions [25–28]. These studies
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have demonstrated that gain and loss can affect the statistical
properties of stochastic fields in scattering systems. In this
paper, we consider the diffraction evolution inside materials
possessing only loss, which are more easily created in labo-
ratories. Our specific interest lies in exploring the potential to
improve the control over the spatial coherence properties of
a partially coherent beam that propagates through a coupled
non-Hermitian waveguide system. The theory can be tested
under experimental conditions using currently available pho-
tonic structures. [1].

Controlling the coherence of optical waves presents a sig-
nificant challenge in the field of statistical optics. Several
proposals have been published to address this issue, focusing
on the generation of partially coherent beams in free space
with adjustable coherence properties. These proposals include
the superposition of Bessel beams [29], coherence with or-
bital angular momentum (OAM) [30], and the utilization of
circularly coherent light [30], among others. The coherence
properties of light have also been explored in the context
of waveguides [31,32] and optical fibers [33,34]. However,
previous studies predominantly considered the passive role
of materials. In contrast, our theory bridges the gap between
non-Hermitian optics and a specific aspect of classical coher-
ence theory, namely the spatial coherence properties of guided
waves. By unifying these concepts, we provide a different
framework for understanding and manipulating the coherence
of guided optical waves.

Section II discusses the physical model considered in the
numerical calculations, as well as the coherence of the inci-
dent optical beam. Section III reviews the numerical method
used to solve the evolution equation for the cross-spectral
density. In Sec. IV, the principal findings are discussed by
defining the effective degree of coherence to characterize spa-
tial correlations. Finally, Sec. V presents the final remarks and
conclusions.

II. WAVEGUIDE MODEL AND THE INCIDENT
PARTIALLY COHERENT BEAM

In second-order classical coherence theory, assuming the
scalar approximation, the fundamental correlation function
in the space-time domain is the mutual coherence function,
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defined as �(r1, r2, τ ) = 〈u∗(r1, t )u(r2, t + τ )〉, which de-
pends only on τ for a statistically stationary process (at least
in the wide sense), and the average is performed over an
ensemble of realizations of the field u(r, t ) [25]. However,
it is more desirable to work in the space-frequency domain
with the cross-spectral density function W (r1, r2, ω), defined
as the Fourier transform of the mutual coherence function,
W (r1, r2, ω) = (1/2π )

∫
�(r1, r2, τ )eiωτ dτ . It is also possi-

ble to interpret the cross-spectral density as the average of a
suitable product of an ensemble of monochromatic compo-
nents of the field [25].

In this context, we consider an optical beam u(r, t )
that propagates mainly in the z direction with a transverse
x-dependent field profile, where r = (x, z). It can be demon-
strated that the cross-spectral density satisfies the partial
differential equation

i
∂W12

∂ξ
+

(
∂2

∂η2
2

− ∂2

∂η2
1

)
W12 + (V2 − V ∗

1 )W12 = 0, (1)

where W12(ξ ) = W (η1, η2, ξ ), Vj = V (η j ), and the normal-
ized coordinates (η, ξ ) are given by η = x/x0 and ξ =
z/2k0n0x2

0. Here, x0 is an arbitrary scale factor, k0 =
2π/λ0, where λ0 is the free-space wavelength. The potential
function V (η) is related to the refractive-index distribu-
tion n(η) = n0 + nR(η) + inI (η) by V (η) = 2k2

0n0x2
0[nR(η) +

inI (η)] [35]. Here, n0 is a real and positive number repre-
senting the background refractive index of the substrate, and
n j ( j = R, I) are real functions of position. The imaginary
part is assumed to be positive to account for losses in the
material. Once Eq. (1) is solved, the spectral density S(η, ξ ) =
W (η, η, ξ ) can be determined, which represents the average
beam intensity at distance ξ from the initial plane.

There are various ways to model a coupled system of
waveguides. We have opted for the simplest approach, which
involves using continuous Gaussian functions. This enables
us to observe the effects without sacrificing generality. To
accomplish this, we consider the double Gaussian model for
two coupled waveguides, defined as

V (η) = V0e−(η/w)2 + (V0 + iβ )e−(η−d )2/w2
. (2)

The parameter V0 regulates the real part of the waveguide’s re-
fractive index, while the non-Hermitian parameter β controls
the loss rate of the waveguide centered at η = d . Additionally,
the waveguide width is characterized by the parameter w. A
plot of the potential model is shown in Fig. 1. The model rep-
resented by Eq. (2) has the advantage of being well behaved
so that it generates less numerical error in the spectral method
used, as described below.

To model the incident partially coherent beam, we have
selected the Gaussian-Schell model, which has been thor-
oughly examined in laboratories, and its properties are widely
understood [36]. Suppose that at the entrance of W G1, the
spectral density S(η, 0) and the spectral degree of coherence
μ(η1, η2, 0) are given by

S(η, 0) = e−η2/2σ 2
I , (3)

μ(η1, η2, 0) = e−(η1−η2 )2/2σ 2
μ, (4)
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FIG. 1. Plot of the potential function (2) for V0 = 1, w = 2, d =
6, and β = 1/2. The blue continuous line represents the real part,
while the red dashed line represents the imaginary part of V (η).

where σI and σμ represent the beam width and the spa-
tial coherence parameter, respectively. In the limit σμ →
∞, the fully coherent Gaussian beam is recovered. The
incident cross-spectral density is given by W (η1, η2, 0) =
[S(η1, 0)S(η2, 0)]1/2μ(η1, η2, 0). The main objective of this
paper is to investigate the changes in spatial coherence prop-
erties, specifically defined by the effective spectral degree of
coherence (Sec. IV), as the guided wave propagates.

III. NUMERICAL METHOD

Equation (1) can be solved by using standard split-
step Fourier transform techniques [37]. Since this method
is usually applied in 1D and 2D paraxial wave equa-
tions, we highlight here the main differences that occur
in dealing with Eq. (1). To start, write the evolution
equation as ∂W12(ξ )/∂ξ = i(∇2

12 + V )W12(ξ ), where ∇2
12 =

∂2/∂η2
2 − ∂2/∂η2

1 and V = V2 − V ∗
1 . The formal solution to

this equation is given by

W12(ξ ) = ei(∇2
12+V )ξW12(0). (5)

Equation (5) can be used to obtain the new values of
the cross-spectral density after step �ξ : W12(ξ + �ξ ) =
ei(∇2

12+V )�ξW12(ξ ). To implement this algorithm, we employ
the approximation

ei�ξ (∇2
12+V ) ≈ eiV�ξ/2ei�ξ∇2

12 eiV�ξ/2, (6)

introducing an error O(�ξ 3) after each step [38]. The first
exponential acting on W12(0) can be performed by a simple
matrix multiplication. Then, the second exponential factor
involving the operator ∇2

12 can be applied by using the Fourier
transform,

ei�ξ∇2
12 g12(ξ ) = F−1

12 {ei�ξ (k2
1−k2

2 )F12{g12(ξ )}}, (7)

where (k1, k2) are the Fourier spatial frequencies and F12 de-
notes a two-dimensional Fourier transform operation having
an inverse F−1

12 .
The presence of a minus sign in the free-space prop-

agator ei�ξ (k2
1−k2

2 ) for the cross-spectral density implies
that W (η1, η2, ξ ) evolves under a different dynamics when
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FIG. 2. The cross-spectral density W (η1, η2, ξ ) evolves in the
presence of lossless waveguides with β = 0 and under high coher-
ence conditions, where σμ = 40 and σI = 5. The top row displays
three snapshots of |W (η1, η2, ξ )| at (a) ξ = 0, (b) ξ = 135, and
(c) ξ = 270, capturing a complete energy transfer between the
waveguides. The dashed diagonal line corresponds to values of
the spectral density S(η, ξ ) = W (η, η, ξ ), shown below each cor-
responding plot. The parameters utilized are as follows: V0 = 0.1,
w = 10, and d = 20.

compared to the free-space evolution of a coherent two-
dimensional optical beam E (x, y, z) [20]. In all simulations,
we used a computational window of size L × L with L = 300,
having 210 points in each direction, and the fast Fourier trans-
form algorithm was used to calculate Eq. (7).

IV. DYNAMICS OF THE EFFECTIVE DEGREE OF
COHERENCE

To characterize the spatial coherence of the optical beam
inside the waveguides, we use the effective degree of coher-
ence μ, defined as [39–41]

μ2(ξ ) =
∫∫

A2 |W (η1, η2, ξ )|2 dη1dη2[∫
A S(η, ξ )dη

]2 , (8)

where A2 = [−d/2, 3d/2] ∪ [−d/2, 3d/2] is the total trans-
verse waveguide “area” (the dashed lines η = −d/2, η =
d/2, and η = 3d/2 are shown in Fig. 1). Values of this param-
eter such that μ = 1 imply a high coherence and are bounded
below by zero (implying a lack of spatial coherence). Defini-
tion (8) can also be viewed as the rms average of the two-point
spectral degree of coherence weighted by the spectral density
in A [41]. This definition is convenient as it considers the
intensities of the field in a finite region. Additionally, it is more
suitable for numerical implementation. With this in place, we
are now prepared to explore the dynamics of the spectral
degree of coherence in both passive and lossy waveguide
systems.

A. Lossless waveguide

Consider a passive waveguide with β = 0. Figure 2 dis-
plays three snapshots of the cross-spectral density for different
values of ξ during a complete transfer of optical energy be-
tween the two waveguides. We chose σμ = 40 and σI = 5
to generate a spatially coherent propagation. The transverse
profile of the spectral density is also shown below each plot,
representing a diagonal cross-sectional cut of W12(ξ ).

The appearance of four lobes in (η1, η2) space at ξ =
135 can be explained more clearly by a discrete version of
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FIG. 3. Dynamics of the effective degree of coherence in lossless
waveguides. Evolution μ(ξ ), calculated from Eq. (8), for several
values of σμ. Two snapshots of |W (η1, η2, ξ )| are shown for (i) and
(iii) marked in the plot. The other parameters are the same as in
Fig. 2.

field propagation. If En(ξ ) is the field amplitude at waveg-
uide n (ξn = nd), then idEn(ξ )/dξ + γ En(ξ ) + C[En−1(ξ ) +
En+1(ξ )] = 0, where γ is the propagation constant, which is
the same for each waveguide, and C is the coupling constant.
The discrete version Wnm(ξ ) of the cross-spectral density
thus satisfies idWn,m/dξ = C(Wn+1,m + Wn−1,m − Wn,m+1 −
Wn,m−1) and in the special case involving two waveguides
n = 1 and 2, we have dS1/dξ = −2C Im(W12), dS2/dξ =
2C Im(W12), and idW12/dξ = C(S2 − S1), where W11 = S1

and W22 = S2 are the spectral densities in waveguides 1 and 2,
respectively. Thus, there are four sites excited in the (η1, η2)
plane during propagation in this discrete version, W11 = S1,
W12 = W ∗

21, and W22 = S2 which explains the observed pat-
tern in Fig. 2. A comprehensive theory of discrete spatial
coherence in waveguide arrays is currently under investigation
and will be published elsewhere. The subsequent discussion
exclusively concerns continuous functions. Note that in this
lossless scenario the propagation constants are the same for
both waveguides.

The dynamics depicted in Fig. 2 exhibit remarkable coher-
ence, as indicated by the constant value of μ ≈ 1 throughout
the entire range of propagated distance (further discussed
below). Before delving into a comparison with dissipative
dynamics, it is also of interest to investigate the behavior
of guided waves with low spatial coherence in this lossless
scenario.

Figure 3 displays plots of μ(ξ ), calculated from Eq. (8), for
five values of the coherence parameter σμ = 40, 20, 10, 5, and
4, while keeping the incident beam width fixed at σI = 5. The
largest value (σμ = 40), represented by the continuous blue
line, is the same as used in Fig. 2. It can be observed that the
beam remains spatially coherent throughout the exchange of
optical energy between the waveguides. A similar behavior is
observed for σμ = 20 (dashed orange line) and σμ = 10 (long
dashed-dotted yellow line). However, for lower values, such as
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FIG. 4. Effective degree of coherence [Eq. (8)] as a function of
propagation distance ξ for dissipative waveguides. Each continuous
line represents one value of σμ exactly as in Fig. 3. The graph dis-
plays three plots representing increasing values of the loss parameter
β = 0.01, 0.02, and 0.03. The remaining parameters are the same as
in Fig. 3.

σμ = 5 (short dashed-dotted purple line) and σμ = 4 (dotted
green line), the effective degree of coherence increases as the
beam propagates. They reach a maximum value of μ ≈ 0.8
around ξ ≈ 60 and remain approximately stable thereafter.

To confirm that the statistical correlations between field
amplitudes are significantly influenced in this low coherence
regime (by the field itself and the geometry considered), two
snapshots of |W12(ξ )| at ξ = 270 are shown for σμ = 20 and
σμ = 4. The reader can infer the spectral density by inspecting
these plots in the same way as we did in Fig. 2. Notice
that these complex pattern deformations of the cross-spectral
density cannot be captured by the simple discrete model intro-
duced earlier.

The evolution of the spectral density in the low coherence
regime closely resembles the high coherence case, with the
exception that at ξ = 0, there is a slight energy leakage caused
by the inefficient coupling of a partially coherent beam to the
waveguide W G1. This is due to the fact that a partially coher-
ent beam tends to spread more during propagation compared
to a fully coherent beam. However, after an initial transient
leaking, the partially coherent wave remains confined within
the waveguide system.

These results indicate that a passive waveguide system
has the potential to enhance the spatial coherence among the
guided waves (for the considered parameters and geometry).
We will now examine the impact of introducing loss to one
of the waveguides and investigate how energy dissipation
influences the behavior of the effective degree of coherence.

B. Lossy waveguide

Figure 4 shows the evolution of the effective degree of
coherence μ(ξ ) in the case where W G2 dissipates energy at
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FIG. 5. (a) Effective degree of coherence at ξ = 270 as a func-
tion of the loss parameter β for three values of σμ = 10, 5, and
4. (b) Spectral density profiles S for the points marked (i), (ii),
(iii), and (iv).

rate β. All parameters are the same as in Fig. 2, except that
β 
= 0. Remarkably, these curves suggest that as β increases,
an initially spatially incoherent beam can gain coherence dur-
ing propagation. The yellow shaded area marks the boundary
between minimum and maximum values of μ(ξ ). To confirm
that indeed the effective degree of coherence increases, we
fix ξ = 270 and inspect what happens to μ as a function
of β. Figure 5(a) reveals that, beyond a minimum value of
β ≈ 0.005, the optical beam becomes more spatially coherent
as the amount of loss into W G2 increases. Of course, this is
accompanied by a decrease of optical intensities, as revealed
in Fig. 5(b). It must be remarked that the standard definition
of the spectral degree of coherence as a two-point correlation
function also reveals an increase of the spatial coherence
between the waveguides as β increases.

It should be noted that as the loss rate β reaches a
sufficiently high value, Rabi-like oscillations between the
waveguides cease to occur. In this scenario, the incident
optical beam remains confined to the passive waveguide.
Interestingly, the energy transmission throughout the entire
structure actually increases with increasing β. This phe-
nomenon is known as loss-induced transparency [1]. The
corresponding behavior is evident in the plots of the spectral
density shown in Fig. 5(b). For β = 0.04, it can be observed
that the optical beam at (ii) and (iv) is localized around W G1,
and Rabi-like oscillations no longer occur as in cases (i) and
(iii). By carefully incorporating lossy factors into the struc-
ture, we anticipate nontrivial changes in the effective degree
of coherence.

To explain this effect, one must examine the correlation
distribution amplitude of the cross-spectral density W12 in the
(η1, η2) plane. The reason why μ increases in the lossless case
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(Fig. 3) is because the spectral density S decreases slightly
faster over the region A during propagation compared to the
region A2 occupied by W12. This discrepancy arises from the
fact that the field energy present in the line η1 = η2 spreads
out in the (η1, η2) plane right from the beginning of the
propagation. When loss is introduced, this effect is amplified,
leading to a more rapid decrease in the spectral density com-
pared to W12. Consequently, the fraction in Eq. (8) increases.
Thus, a strategy to design systems that enhance spatial co-
herence involves the careful engineering of non-Hermitian
profiles V (η) in a way that promotes a faster decrease in the
field energy S(η, ξ ) compared to W (η1, η2, ξ ) over the same
region.

One possible method to experimentally confirm the find-
ings presented in this study is to generate a Gaussian-Schell
optical beam using a rotating diffuser [36] and then focus the
transmitted beam at the entrance of W G1. Subsequently, the
output signals at W G1 and W G2 can be directed towards a
double-slit setup, allowing the measurement of fringe visibil-
ity. This measurement provides direct information about the
spectral degree of coherence. Thus, an increase in visibility
should be observed as the level of loss in one of the waveguide
arms increases. It is worth noting that the loss mechanism
related to the parameter β does not necessarily have to involve
a material located inside the waveguide. Instead, it can be
achieved by coupling smaller waveguides to W G2 in order to
enable the leakage of optical energy.

V. CONCLUSIONS

These observations prompt an intriguing question: Can
we develop a “coherence management” system analogous to
diffraction management [42] to engineer structures that gener-
ate desired coherence properties? It should function as a type
of coherence filter, giving output fields that are highly corre-
lated over some waveguides and highly uncorrelated at others.
Something similar has been proposed for speckle beams [43].
Currently, to the best of my knowledge, the answers to these
questions remain unknown.

In conclusion, waveguide arrays offer a versatile approach
to customizing the coherence characteristics of optical beams.
By introducing loss into the system, we can observe intricate
alterations in the spectral degree of coherence, which hold
potential for integrated optics applications. However, there
is still much research to be conducted in order to gain a
deeper understanding of how dissipative systems influence
the coherence properties of classical waves. Our findings may
represent an initial step in this direction, paving the way for
further investigations in this field.
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