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High-order harmonic generation (HHG) is one of the most commonly studied nonlinear optical phenomena,
originating in the ultrafast dynamics of electrons in atomic gases and semiconductors. It has attracted much
attention because of its nonperturbative nature and potential for future attosecond laser pulse sources. On the
theory side, a semiclassical picture based on tunneling ionization of electrons is successfully used in explaining
key characteristics of the HHG. This model assumes that electric fields nonperturbatively excite electrons beyond
the ionization potential or the band gap. Thus, intuitively, a larger gap should lead to an exponentially smaller
HHG emission. Despite this intuition, the HHG in the Mott insulator Ca2RuO4 has shown an unconventional
exponential increase with respect to the gap width. This experiment implies effects beyond the semiclassical
theory. However, most theoretical works have focused on the dependence of the HHG on external control
parameters, and the gap dependence of the HHG is poorly understood even in noninteracting systems. Thus,
it is essential to clarify the gap dependence of the HHG in a fully quantum mechanical approach. Here, we
analyze numerically exactly the gap dependence of the HHG in two-level systems. We find an increase in the
strength of the HHG when the Rabi frequency is large compared to the gap width. Furthermore, the relaxation
and scattering of electrons increase the visibility of this gap dependence. Finally, we find that the enhancement
rate follows a universal scaling law regardless of the driving frequency. The existence of this gap dependence
in two-level systems suggests that this unconventional gap dependence is a universal behavior that can be found
not only in Mott insulators but also in atomic gases and semiconductors.
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I. INTRODUCTION

Decades of progress in strong laser light technologies have
made it possible to probe and control the ultrafast dynamics
of electrons in materials. One of the most commonly stud-
ied optical phenomena in the field of strong laser light is
the high-order harmonic generation (HHG) in atomic gases
[1–3] and solids [4,5], where photons with multiples of the
driving photon energy are emitted, and the spectrum consists
of a characteristic plateau and cutoff energy. HHG has at-
tracted much attention not only because it is a nonperturbative
phenomenon with great potential for future attosecond light
sources but also because it can be a new all-optical probe
for states of matter, i.e., high-order harmonic spectroscopy
[6–26]. For example, HHG is now utilized for probing molec-
ular orbitals [6], band structures [12], the Berry curvature
of materials [18,24], topological phase transitions [23], and
Majorana fermions [26]. Recently, various types of HHG,
unique to strongly correlated electron systems, have also been
intensively studied [27–42], opening possibilities to detect
ultrafast light-induced phase transitions [28], quantum phase
transitions [36], and transitions from the strange metal phase
to the pseudogap phase [37].

*kofuji.akira.46c@st.kyoto-u.ac.jp
†peters@scphys.kyoto-u.ac.jp

Almost all of these previous studies can be understood
based on the well-known semiclassical three-step model
[43,44], which consists of (i) tunnel ionization of electrons
trapped in some potential, (ii) forced oscillatory motion,
and (iii) recombination of electrons in the potential. This
simple yet powerful model successfully explains the essential
characteristics of the HHG, i.e., the plateau and the cutoff
energy, and has been extended to solids [45]. However,
the nonlinearity of the band velocity in solids enriches the
HHG by evoking intraband processes, which are also closely
intertwined with interband processes. Moreover, because of
the periodicity of solids, the recombination is not restricted
to the original lattice site, where the electron is excited, and
this might enable real-space imaging of lattice potentials
[46]. A general feature of the tunnel ionization process in
the three-step model of atomic gases and solids is that the
tunneling amplitude becomes exponentially small when the
driving frequency is sufficiently smaller than the gap [47–53].
Thus, the three-step model leads us to the naive expectation
that the HHG emission should also become exponentially
small when the gap width becomes large.

Recently, an unconventional HHG which contradicts this
intuition has been experimentally observed in the Mott insu-
lator Ca2RuO4 [39]. Utilizing the temperature dependence of
the Mott gap of this material, the dependence of the HHG
on the excitation gap has been investigated, and it has been
shown that the HHG grows exponentially as the gap width
increases. More surprisingly, the gap dependence obeys an
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empirical and universal scaling law regardless of the driving
frequency. While such a strange gap dependence has been ob-
served in experiments, most theoretical studies have focused
on the dependence of the HHG on external control parameters,
such as the ellipticity, strength, and carrier-envelope phase of
the incident laser pulse [54,55]. Recently, Murakami et al.
[56] have studied the unconventional temperature (gap) de-
pendence of the HHG by analyzing the laser-driven Hubbard
model with nonequilibrium dynamical mean-field theory, sug-
gesting a relation between the unconventional gap dependence
and doublon scattering. Murakami and Schüler [57] have also
studied the gap dependence of the HHG in gapped graphene,
where they have found that the modification of the intraband
dipole via interband transitions leads to a nonmonotonic gap
dependence of the HHG. While these studies show that the
HHG can have an unconventional gap dependence in corre-
lated systems and gapped graphene, the gap dependence of
the HHG in noninteracting systems is actually not well under-
stood. It remains unclear to what extent the unconventional
gap dependence is due to correlations and whether it can
also be observed in uncorrelated systems. Furthermore, under-
standing the gap dependence of the HHG can open a new path
to realize a stronger HHG emission by tuning the excitation
gap of materials and new high-order harmonic spectroscopic
methods through the gap dependence of the HHG.

We here demonstrate that an unconventional gap depen-
dence of the HHG can be observed even in uncorrelated
models. For this purpose, we study the HHG in a two-level
system. Two-level systems are very simplified models that do
not include intraband current and multiband effects, which
occur in realistic solid-state systems. However, two-level sys-
tems still share various aspects of the HHG in atomic gases
and solids [58–62]. The advantage of these simplified models
is that we can reduce the numerical cost significantly. Thus,
we can investigate the HHG in a fully quantum mechanical ap-
proach and numerically exactly in a wide range of parameters,
such as the Rabi frequency, the relaxation time, and the excita-
tion gap. Based on this two-level system, we first analyze the
gap dependence of the HHG varying the Rabi frequency. We
observe an increase in the HHG with increasing gap width
when the Rabi frequency is large compared to the gap. In
contrast, the HHG decreases exponentially when the gap is
large. To investigate the origin of this gap dependence, we
consider the effects of relaxation processes on the HHG and
calculate the time-resolved spectrum of the HHG. We see that
relaxation is not necessary for the appearance of an uncon-
ventional gap dependence. Finally, we study the enhancement
ratio at each emission energy and see that it obeys a universal
behavior regardless of the incidental frequency, which is also
observed in the experiment [39]. From the above analysis, we
expect that this unconventional gap dependence of the HHG,
as observed in the experiment, is a universal characteristic not
only found in Mott insulators but also in atomic gases and
semiconductors.

The remainder of this paper is structured as follows.
Section II introduces the two-level system driven by an elec-
tric laser pulse. In Sec. III, we analyze the gap dependence of
the HHG and the effects of relaxation processes. Finally, we
calculate the enhancement ratio of the emission energy and
show its universal behavior. Finally, we conclude the paper

in Sec. IV. Furthermore, we show an analysis of the HHG in
semiconductors based on semiconductor Bloch equations in
the Appendix.

II. MODEL AND METHODS

First, we explain the Hamiltonian of the two-level system.
In this paper, we use the following units: e = h̄ = d = 1,
which correspond to the elementary charge, Planck’s constant,
and the transition dipole moment of the system. We also set
h̄ωu = 1 eV = 1 as a unit for energy. Then, the Hamiltonian
can be written as

Ĥ (t ) = Ĥ0 + Ĥext =
[−�/2 −�(t )
−�(t ) �/2

]
. (1)

Ĥ0 is the original Hamiltonian of the two-level system, which
corresponds to the diagonal part of Ĥ . Ĥext(t ) is the contribu-
tion from the external electric field, which corresponds to the
off-diagonal part of Ĥ . � represents the gap of the system,
and �(t ) depends on the strength and the shape of the electric
field.

To take relaxation processes into account, we use the von
Neuman equation, which is more suitable for calculating the
time evolution of this system. Calculating the commutator of
the Hamiltonian, Eq. (1), and the density matrix of the system,
ρ̂, and adding relaxation terms, we arrive at the following
equations of motion [58]:

ẋ = 2i�(t )(y − y∗) − γL(x − 1), (2)

ẏ = −(i� + γT)y + i�(t )x. (3)

x = ρ11 − ρ22 is the population difference of the levels in the
system, and y = ρ21 measures the coherence between both
levels. γL is the longitudinal relaxation rate, which induces
the relaxation from the upper level to the lower level, and γT

is the transverse relaxation rate, which induces decoherence
between both levels. The origin of these relaxation terms can
be traced back to spontaneous emission, interatomic inter-
actions, electron-electron interactions, and electron-phonon
interactions. In this paper, it is not our primary purpose to
study how these relaxation terms appear from microscopic
interactions. Thus, we include these relaxation processes just
phenomenologically. (For details, see Ref. [63].)

In two-level systems, the origin of the HHG is a fast
oscillation of the polarization of the system. To obtain the
spectrum of the HHG, first, we numerically calculate the time
dependence of the density matrix ρ of the system and obtain
the time-dependent expectation value of the position operator,
corresponding to the polarization given as

p(t ) = Tr[ρ̂(t )x̂] = y + y∗. (4)

Then, by calculating the Fourier transform of the polariza-
tion, we obtain the spectrum of the HHG. We note that the
transition dipole moment is assumed to be constant here. The
external field is modulated by a Gaussian amplitude and is
written as

�(t ) = �0 cos(ω0t )e−t2/τ 2
. (5)
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FIG. 1. A typical example of an HHG spectrum. The inset shows
the enlarged view of the spectrum for low frequencies. The param-
eters are � = 2.1, �0 = 22.7, γL = 2.0, γT = 1.0, τ = 8.5π , and
ω0 = 0.3. The vertical axis is log scale.

�0 is the Rabi frequency, which is the product of the strength
of the electric field and the transition dipole moment. ω0 is the
frequency of the incidental light.

The HHG in a two-level system has common character-
istics with the HHG in atomic potentials and solids. We
here briefly review the mechanism of the HHG in two-level
systems following Ref. [61]. For the sake of simplicity, we
ignore relaxation processes and analyze the Hamiltonian in
Eq. (1). We note that the “adiabatic” basis is more convenient
for understanding the origin of the HHG. The adiabatic basis
diagonalizes the time-dependent Hamiltonian Ĥ (t ) at each
instant of time. This can be done by the following unitary
operator,

Û (t ) =
[

cos (χ (t )) sin (χ (t ))
− sin (χ (t )) cos (χ (t ))

]
, (6)

where χ (t ) = − 1
2 tan−1( 2�(t )

�
). In this basis, the time evolu-

tion of the system is described by the following Hamiltonian,

Ĥ ′(t ) = Û †(t )Ĥ (t )Û (t ) + i
∂Û †

∂t
Û (t ) =

[
ε−(t ) −iχ̇

iχ̇ ε+(t )

]
,

(7)

where ε± = ± 1
2

√
�2 + 4�2(t ) are the “eigenenergies” at

each instant, and iχ̇ induces a nonadiabatic transition between
the “energy” levels, which is given as χ̇ = − �̇/�

1+(2�(t )/�)2 .
Transitions between both states can easily occur near the
nodes of the pulse, where �(t ) = 0. On the other hand, the
states evolve adiabatically near the antinodes of the pulse,
where �̇ = 0 so that χ̇ = 0. Thus, in intervals of time with
small electric fields, the electrons in the lower “energy” level
are excited to the upper level, then perform an adiabatic time

FIG. 2. Gap and Rabi frequency dependence of the 5th harmon-
ics (ω = 5ω0).

evolution generating ultrafast oscillations of the polarization,
and finally return to the lower level. This process is anal-
ogous to the three-step model in atomic gases and solids.
Furthermore, in semiconductors, the description of the system
is identical to that of the two-level system under special condi-
tions, such as low doping and identical effective masses in the
valence and conduction bands [61,64,65]. Therefore, the HHG
in two-level systems can capture the general characteristics of
the HHG in various systems.

A typical example of an HHG spectrum, calculated in the
two-level system, is shown in Fig. 1. The spectrum shows
the characteristic of the HHG, i.e., the plateau, at which the
intensity of the spectrum stays constant or only decreases
slightly with increasing harmonic order, and the cutoff at
high frequencies, above which the intensity decreases quickly.
We note that throughout the paper the incidental frequency
is much smaller than the gap energy. Thus, the system is
off-resonant. We consider the case in which the tunneling
ionization is dominant compared to multiphoton excitations.

III. RESULTS

A. Unconventional gap dependence

First, we analyze the strength of the HHG depending on
the gap width � and the Rabi frequency �0. In this subsec-
tion, τ , ω0, γL, and γT are fixed as τ = 8.5π , ω0 = 0.3, and
γL = 2γT = 2.0, and we vary � and �0. In Fig. 2, we show
the intensity of the 5ω0 harmonics for various gap widths and
Rabi frequencies. For sufficiently large values of the Rabi
frequency compared to the gap width, i.e., in the upper left
region of Fig. 2, the intensity of the HHG grows as the gap
increases. The intensity takes a maximum at approximately
�0/� ∼ 6 and decreases for larger gap widths. To confirm
this behavior, we show the intensity for �0 = 22.7 over the
gap width in Fig. 3. This figure reveals that the intensity
increases until the gap reaches some threshold value and
then decreases exponentially. This nonmonotonic behavior
suggests that the naive intuition that larger gaps result in a
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FIG. 3. Gap dependence of the 5th harmonics for �0 = 22.7.
The vertical axis is log scale.

smaller HHG intensity is not true for large values of the Rabi
frequency. We note that the 5ω0 harmonics represents a typical
harmonic order. Indeed, Fig. 2 looks very similar for all odd
harmonics between the 3rd and the 23rd harmonics (using the
current parameters). Thus, we use the 5ω0 harmonics in the
rest of this paper.

To understand the enhancement of the HHG for small gap
widths better, we next analyze the time dependence of the
HHG. We first show in Fig. 4 the time evolution of x(t ) and
Re[y(t )] for three different parameters using �0 = 22.7, cor-
responding to the three different regimes, i.e., (a) the regime
where the strength of the HHG increases with increasing gap
width at � = 1.5, (b) the regime where the strength of the
HHG is near the maximum at � = 4, and (c) the regime where
the strength of the HHG decreases with increasing gap width
at � = 9. As described above, x(t ) is the occupation differ-
ence between both levels and the real part of y(t ) corresponds
to the polarization.

In all regimes, x(t ) decreases at small times; electrons are
excited to the other level. However, we see that x(t ) decreases
faster for small gaps. This also results in faster growth of
the polarization at small times if the gap is small, which is
demonstrated by a horizontal arrow indicating the value of the
peak of y(t ) around t ∼ −50 in each figure for clarity. This
corresponds to the fact that electrons are easily excited when
the gap is small. We can determine the time at which a high
harmonic is generated by multiplying the polarization with
a Gaussian window function before Fourier transform. This
results in an HHG spectrum, which depends on time through
the window function as

p(ω, tp) =
∫ ∞

−∞
dt p(t )W (t, tp)eiωt , (8)

W (t, tp) = 1√
2πσ 2

e− (t−tp )2

2σ2 . (9)

FIG. 4. Time-resolved x(t ) and Re[y(t )] for three different regimes, small gap (left panels), an intermediate gap where the 5ω0 HHG is
maximal (middle panels), and a large gap (right panels). The horizontal arrows in the panels of Re[y(t )] indicate the value of the peak of y(t )
around t ∼ −50. The pulse shape of the external field is also plotted in each figure in gray. The Rabi frequency is �0 = 22.7.
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FIG. 5. Time-resolved spectrum of HHG for three different gaps (left panel: � = 1.5; center panel: � = 4.0; right panel: � = 9.0). The
Rabi frequency is �0 = 22.7.

The width of the window function used here is σ = 3.5. In
Fig. 5, we show the time-resolved HHG spectrum for the same
parameters as in Fig. 4. This figure shows that a reasonably
strong HHG is created already at t = −40 for � = 1.5, while
the HHG spectrum for � = 4 and � = 9 is very small at
this time. This HHG can be seen in the polarization as an
additional dip (inside the maximum) for � = 1.5 at t = −40,
which is absent for � = 4 and � = 9. Thus, large gaps gen-
erally slow down the process of exciting electrons and the
generation of high harmonics in the polarization at small
times.

On the other hand, the fast decrease of x(t ) at small times
due to a large Rabi frequency and a small gap width leads to
an extended period in which x(t ) is small (besides a periodic
spike). This results in a saturation of polarization because a
finite population difference x(t ) is essential for the buildup
of polarization [see Eq. (2)]. Finally, the magnitude of the
polarization even decreases towards the center of the pulse,
t = 0, for � = 1.5, as can be seen in Fig. 4. As a consequence,
the contribution to the HHG from the center of the pulse
becomes weak. Thus, we can say that for � = 1.5 the system
is too strongly excited, which results in a situation where the
HHG is only generated at the beginning and the end of the
pulse but not over an extended period in the center of the
pulse.

For � = 4 in Fig. 4, we see that the magnitude of the polar-
ization quickly reaches a large value and remains large during
the whole pulse. Although the generation of the HHG starts at
a time later than that for � = 1.5, the HHG is generated over
a longer time period and especially around t = 0. For � = 9,
the excitations of a large number of electrons, the buildup of
a large polarization, and the generation of HHG take a longer
time. A large HHG is only generated around the center of the
pulse at t = 0.

We conclude here that these three regimes not only have
a different HHG dependence on the gap width but can also
be distinguished from their time-dependent polarization y(t ).
Decreasing �0/�, we see that the dominant contribution
gradually moves from the start or the end to the center of
the pulse. In the region where the gap dependence shows a
conventional exponential decrease, the dominant contribution
comes from the center of the pulse. On the other hand, in
the region where the HHG grows with an increasing gap, the
dominant contribution originates from the start or the end of

the pulse. This implies that the origin of the unconventional
gap dependence is a very strong light-matter coupling that
results in the saturation of the polarization before the center
of the pulse, and, thus, the contributions from the center of the
pulse become weak.

B. Effects of relaxation on the gap dependence

Next, we study the effect of relaxation on the HHG. In this
subsection, τ and ω0 are fixed as τ = 8.5π and ω0 = 0.3,
and we vary �, �0, γL, and γT. Relaxation processes are
common in various systems. They originate from interatomic
interactions in atomic gases and the electron-electron inter-
actions in solids. For example, the spin-charge coupling in
Mott insulators generates a transverse relaxation term, which
physically corresponds to the dephasing of doublon-holon
pairs [56]. Therefore, it is important to clarify the effects
of relaxation processes on the HHG, in particular, because
in the strongly correlated materials, as in the Mott insulator
Ca2RuO4, electron-electron interactions and relaxation pro-
cesses can be large. In Fig. 6, we show the intensity of the
5ω0 harmonics over the gap width and the strength of the
Rabi frequency for three values of the relaxation rate, γL =
2γT = 0.001, 0.03, and 0.1. We note that the range of the
gap dependence is limited to the region � � 2.0 to avoid the
effect of a multiphoton resonance at � = 5ω0 so that we can
understand the unconventional gap dependence more clearly.

In Fig. 6, we see that while the HHG spectrum is smooth
for large relaxation rates, small relaxation rates lead to a fine
structure inside the spectrum. However, these figures also
show that, regardless of the value of the relaxation rate, the
qualitative structure of the HHG spectrum and the unconven-
tional gap dependence remain. Thus, when the Rabi frequency
is sufficiently large compared to the gap width, the HHG
grows as the gap increases, regardless of the value of the
relaxation rate. Thus, we conclude that relaxation processes
are not essential for the observation of the unconventional gap
dependence in the HHG. However, relaxation processes help
us observe it by hiding the fine structure.

C. Emission energy dependence of enhancement rate of HHG

Finally, we show in Fig. 7 the enhancement ratio for small
gap widths, |p(ω; � = 1.5)|2/|p(ω; � = 1.0)|2, over the
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FIG. 6. Gap and Rabi frequency dependence of the 5th harmonics (ω = 5ω0) for three different relaxation rates (left panel: γL=2γT=0.001;
center panel: γL = 2γT = 0.03; and right panel: γL = 2γT = 0.1)

emission frequency for different incidental frequencies
ω0. The incidental frequency is varied in the range
ω0 = 0.3 ∼ 0.9. Thus, this figure includes different high
harmonics depending on ω and ω0. This figure shows
that the enhancement ratio obeys a universal behavior
regardless of the incidental frequency until ω ∼ 4.0. It also
shows that the enhancement is larger for larger emission
energy. Furthermore, especially around ωemit = 1.0 ∼ 3.0,
we can see that the enhancement ratio shows a power-law
dependence with respect to the emission energy. This
behavior is consistent with the experimental observation of
an unconventional scaling law in Ca2RuO4 [39].

We note that, for frequencies ω = 4 ∼ 7, it seems that the
scaling law breaks down. The frequency at which the scaling
law breaks down is related to the definition of the enhance-
ment ratio and is parameter dependent. Here, we compare the
HHG intensity at � = 1.5 and � = 1.0 in the enhancement
ratio. However, if we choose different (larger) gaps, e.g.,

FIG. 7. Emission energy dependence of the enhancement ratio
|p(ω; � = 1.5)|2/|p(ω; � = 1.0)|2 of HHG. The Rabi frequency is
�0 = 22.7. Both of the axes are log scale.

� = 2.0 and � = 1.5, the scaling law in the enhancement
ratio holds until higher emission frequencies. Furthermore,
we note that a scaling behavior can only be observed for
parameters inside the regime where the unconventional gap
dependence appears, and here we have chosen � = 1.5 and
� = 1.0 to consider a region well inside this regime. This
behavior is also supported by considering the enhancement
ratio in semiconductors, shown in the Appendix.

Moreover, we note that the behavior for ω0 = 0.3 deviates
from the other incidental frequencies. This can be under-
stood as an effect of the pulse duration. In the experiment on
Ca2RuO4, the pulse duration and the incidental frequency is
100 fs and 0.26 eV (0.19 eV), respectively, which corresponds
to ω0τ ∼ 39.5(28.9). In our parameters, the product of the
pulse duration and the incidental frequency is ω0τ ∼ 8.0,
which is smaller than that in the experiment. As shown in
Fig. 7, as the incidental frequency becomes large, i.e., as the
pulse contains more cycles, the enhancement ratio converges
to a single curve even in the region ω = 4 ∼ 7. This trend
also exists in the case of semiconductors, as shown in the
Appendix.

IV. CONCLUSION

In this paper, we have demonstrated that the HHG is
enhanced as the gap width increases if the Rabi frequency
is sufficiently large compared to the excitation gap. This
suggests that the unconventional gap dependence, experimen-
tally observed in Ca2RuO4, originates in significantly strong
light-matter coupling. We note that, in Mott insulators, large
nonlinear optical responses have been observed, which also
suggests a strong light-matter coupling in Mott-insulating
systems [66–69]. Our analysis has revealed that the uncon-
ventional gap dependence is related to the saturation and even
decrease in polarization towards the center of the pulse when
the light-matter coupling is too strong. Thus, in the regime
where the HHG is enhanced by increasing the gap width,
the dominant HHG contributions appear at the start and the
end of the pulse. Increasing the gap width in this regime, we
find that the time when the dominant contribution appears
moves towards the center of the pulse. The enhancement
can thus be understood as an increase in the HHG at the
center of the pulse. On the other hand, a conventional gap
dependence is observed when the dominant contribution to
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the HHG appears only at the center of the peak. We note that
time-resolved high-order harmonic spectroscopy, utilizing the
pump-probe method [70], might be able to observe this signa-
ture in Ca2RuO4.

Furthermore, we have shown that relaxation processes are
unnecessary to induce this gap dependence of the HHG.
However, it is easier to observe such a gap dependence in
systems with strong relaxation because the relaxation smears
fine structures in the dependence of the HHG strength on the
gap width. Finally, we have investigated the enhancement of
the emission energy depending on the incidental frequency.
We have found a universal behavior demonstrating that the
HHG increases faster for larger emission energy, which is also
confirmed in semiconductors in the Appendix. This behavior
is consistent with observations in Ca2RuO4.
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APPENDIX: CALCULATIONS IN SEMICONDUCTORS

In this Appendix, we calculate the gap dependence of the
HHG in semiconductors and confirm that the results in the
main text are not restricted to two-level systems. Here, we
use the following units: e = h̄ = a = 1, which correspond
to the elementary charge, Planck’s constant, and the lattice
constant of the system. We also set h̄ωu = 1 eV = 1 as a unit
for energy. In this Appendix, we use the theoretical model
suggested by Tamaya et al. [71], which can describe the
parameter region where the Rabi frequency is larger than the
gap width. The Hamiltonian is

H =
∑

k

(
Ee

kα
†
kαk + Eh

k β
†
−kβ−k

)

+ �(t )
∑

k

cos θk(α†
kαk + β

†
−kβ−k − 1)

+ i�(t )
∑

k

sin θk(α†
kβ

†
−k − β−kα−k). (A1)

Ee
k and Eh

k are the energy bands of the electrons and holes,
α

†
k and αk are the creation and annihilation operators of the

electrons with wave number k, β
†
−k and β−k are the creation

and annihilation operators of the holes with wave number −k,
θk is the angle describing the wave vector k in the momentum
space, and �(t ) is the light-matter coupling. The second term
corresponds to a temporal deformation of the band structure
by the external field, and the third term describes an interband
transition. For the detailed theoretical derivation, we refer to
the original paper by Tamaya et al. [71]. Equations of motion

FIG. 8. A typical example of an HHG spectrum in semiconduc-
tors. The inset shows the enlarged view of the spectrum for low
frequencies. The parameters are � = 2.0, �0 = 27.0, and ω0 = 0.3.
The vertical axis is logarithmic.

for the distribution of the electrons f e
k = 〈α†

kαk〉, the holes
f h
k = 〈β†

−kβ−k〉, and the polarization Pk = 〈β−kαk〉 are

ḟ e
k = ḟ h

k = 2�(t ) sin θkRe(Pk) − γL f e/h
k , (A2)

Ṗk = −i
[
εe

k(t ) + εh
k (t )

]
Pk − γT Pk

+�(t ) sin θk
(
1 − f e

k − f h
k

)
. (A3)

ε
e/h
k (t ) is defined as ε

e/h
k (t ) = Ee/h

k + �(t ) cos θk. We have in-
troduced relaxation terms to the above equation phenomeno-
logically, as done in Sec. II. We define the macroscopic
polarization of the system as the conjugate variable of the
external field (light-matter coupling) as

p(t ) =
〈
− ∂H

∂�(t )

〉

=
∑

k

{
cos θk

(
1 − f e

k − f h
k

) − 2 sin θkIm(yk)
}
. (A4)

We consider the dispersion as Ee/h
k =�/2+h̄2k2/2m (−π�kx,

ky � π ), and an external field �(t ) = �0e− t2

τ2 cos(ω0t ). In this
Appendix, the parameters are m = 2.0, γL = 2.0, γT = 1.0,
and τ = 16.0π , and we vary �, �0, and ω0. First, we show
a typical HHG spectrum calculated for a semiconductor in
Fig. 8. The spectrum shows a plateau and cutoff energy similar
to two-level systems. Figure 9 shows the intensity of the 5ω0

harmonics for various gap widths and Rabi frequencies. It
becomes clear that for sufficiently large values of the Rabi fre-
quency compared to the gap width, the intensity increases as
the gap width is increased. The intensity of the 5ω0 harmonics
takes a maximum around �0/� ∼ 7. To confirm this behav-
ior, we also show the gap dependence of the HHG at �0 =
27.0 in Fig. 10. The figure shows that the intensity increases
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FIG. 9. Gap and Rabi frequency dependence of the 5th har-
monics (ω = 5ω0) in semiconductors. The incidental frequency is
ω0 = 0.3.

until the gap width reaches some threshold and then decreases
exponentially. Next, we show the enhancement ratio over
the emission frequency [|p(ω; � = 1.5)|2/|p(ω; � = 1.0)|2]
for various incidental frequencies in Fig. 11. The incidental
frequency is varied in the range ω0 = 0.3 ∼ 0.9. The fig-
ure reveals that the enhancement ratio increases for increasing
emission frequencies, demonstrating a universal scaling law
that does not depend on the incidental frequency. We note that
the enhancement ratio increases monotonically until ω = 7
(except for ω0 = 0.3), contrary to the two-level system. This
can be understood by considering the band dispersion, result-

FIG. 10. Gap dependence of the 5th harmonics in semicon-
ductors for �0 = 27.0. The incidental frequency is ω0 = 0.3. The
vertical axis is log scale.

FIG. 11. Emission energy dependence of the enhancement ratio
|p(ω; � = 1.5)|2/|p(ω; � = 1.0)|2 of the HHG in semiconductors.
The Rabi frequency is �0 = 22.7. Both of the axes are log scale.

ing in a momentum-dependent gap width. Semiconductors
can partly be viewed as an ensemble of two-level systems
with various gaps, which also include larger gaps compared
to the minimum gap width �. As we have noted in Sec. III C,
for larger gaps, the enhancement ratio holds even for higher
emission frequencies. This explains the monotonic increase
of the enhancement ratio in the case of semiconductors. Of
course, this behavior is also parameter dependent similar to
the case of two-level systems.

Thus, we conclude that when the Rabi frequency is
sufficiently large compared to the gap width, HHG in semi-
conductors also shows an unconventional gap dependence
similar to the two-level systems studied in the main text.
This clearly shows that the origin of the unconventional gap
dependence in the main text cannot be traced back to some
particularity of two-level systems.

Finally, we comment on the momentum dependence of the
Rabi frequency in Eq. (A1). The momentum dependence of
the light-matter coupling is decided by the crystalline sym-
metry and the microscopic details of the system. It is known
that they have crucial effects on the HHG [21,72,73]. For
example, a momentum-dependent transition dipole moment
increases the harmonic yields and the cutoff frequency sig-
nificantly [73], and the anisotropy of the transition dipole
moment directly leads to the anisotropy of the HHG [21].
However, in the experiment on the unconventional gap depen-
dence of the HHG, they varied the intensity of the incidental
laser field [39]. They did not find significant changes in the
intensity dependence of the HHG. Thus, they concluded that
the unconventional gap dependence of the HHG results from
another origin other than the momentum dependence of the
light-matter coupling. We also adopted this assumption and
have shown one possible origin in this paper.
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