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Non-Rayleigh signal of interacting quantum particles
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The dynamics of two interacting quantum particles on a weakly disordered chain is investigated. Spatial
quantum interference between them is characterized through the statistics of two-particle transition amplitudes,
related to Hanbury Brown-Twiss correlations in optics. The fluctuation profile of the signal can discern whether
the interacting parties are behaving like identical bosons, fermions, or distinguishable particles. An analog fully
developed speckle regime displaying Rayleigh statistics is achieved for interacting bosons. Deviations toward
long-tailed distributions echo quantum correlations akin to noninteracting identical particles. In the limit of
strong interaction, two-particle bound states obey compound Rician distributions.
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I. INTRODUCTION

Anderson localization is a universal phenomenon that
underlies wave physics [1]. It results from the destructive in-
terference of the waves due to a random potential. In quantum
mechanics, the problem is often addressed for noninteracting
particles. However, interaction can lead to involved physics
such as many-body localization, which has recently seen
significant progress [2]. The exponential growth of dimen-
sionality in an interacting multiparticle system makes it very
challenging to explore those effects.

Yet a system involving only two interacting particles de-
livers a rich set of features [3–11]. Earlier studies addressed
the conditions in which the interaction lead to an increase of
the localization length compared to the noninteracting case. It
started with the observation that in a disordered chain two in-
teracting electrons could propagate on a distance much larger
than one-particle localization length would allow for [12].
In the numerous works that followed, such an enhancement
mechanism in the presence of moderate particle-particle inter-
action and its scaling properties was explored in more depth
[13–17]. The enhancement of the localization length was also
reported in quasiperiodic chains [18] and explained in terms
of a resonant mixing of the noninteracting two-particle eigen-
states [19].

Classical and quantum correlations have been explored
in two-particle systems even in the absence of interaction
[4,5]. The quantum correlations in this case originate from
the symmetrization of the wave functions to accommodate
the bosonic or fermionic character of the particles [7]. Fur-
thermore, two-particle systems enjoy a convenient photonic
implementation based on a square waveguide lattice using
only classical sources of light [6,7,9,11,20].

The interplay between interaction and disorder in those
systems is not trivial [17] and depends on a number of fac-
tors, including the property that is being measured. Most
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characterizations require knowledge of many wave-function
amplitudes at a time (e.g., the participation ratio [11,19]). In
this work we propose another route to obtain relevant infor-
mation about the system. We are interested in the statistics
of successive measurements of Hanbury Brown-Twiss type of
correlations from a local standpoint. In a coupled waveguide
array [9] that means monitoring the beam intensity in a single
waveguide. It accounts for the joint probability of finding the
particles at specific locations. The procedure above yields
speckle patterns to which we obtain all the associated dis-
tributions in detail. Surprisingly, the speckle contrast is able
to precise the particle identity and the degree of interaction
between them. It shows up as specific deviations from the
exponential fully developed speckle regime.

Tailored speckle generation finds a handful of applications
[21]. Our main goal here, though, is to explore the following
question: what can a local speckle statistics tell us about
the nature of the physical mechanisms involved in its gen-
eration? As an example, the authors of Ref. [22] explored
the statistics of two-photon speckles as a mean to disclose
relevant information about their entanglement properties. The
statement above is particularly appealing to rogue wave phe-
nomena in optical and quantum systems. There has been a
renewed interest in the role of disorder on the generation of
rare and short-lived wave amplitude spikes [23,24]. In a recent
work, Kirkby et al. [25] addressed Fock-space caustics in
simple Bose-Hubbard models, which are also related to rogue
events. Here we realize that intrinsic quantum correlations
due to particle identity lead to long-tailed distributions. Rogue
waves are often studied as emergent phenomena in nonlinear
Schrödinger equations [26] that describe, for instance, Bose-
Einstein condensates [27]. A bottom-up approach should
therefore unveil the key linear elements responsible for
driving anomalous fluctuations in quantum systems.

II. HAMILTONIAN MODEL

Let us start by considering two interacting distinguishable
particles (e.g., two electrons with opposite spins) in a linear
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FIG. 1. Two-particle Hamiltonian graph structure. (a) The state
space of two distinguishable particles in one dimension can be
mapped onto a 2D array. Diagonal vertices represent states with dou-
ble occupation (bound states). (b) By exploiting the symmetry with
respect to the diagonal, the basis change |mn〉± = (|mn〉 ± |nm〉)/

√
2

decouples the Hamiltonian into one describing identical bosons
(upper red vertices) and another accounting for spinless fermions
(lower blue vertices). In the bosonic case, the coupling between
bound states with the other vertices are renormalized by

√
2 (thick

edges). Considering a 2D photonic waveguide implementation, each
of these subspaces is achieved by setting the proper relative phase
between two input beams at positions (m, n) and (n, m). Note that
such a decoupling is valid despite the strengths of disorder W and
interaction U .

chain with N sites described by the Hamiltonian (h̄ = 1)

H = J
N−1∑
j=1

(a†
j+1a j + b†

j+1b j + H.c.)

+
N∑

j=1

[ε j (a
†
j a j + b†

jb j ) + Ua†
j a jb

†
jb j], (1)

where a j , b j (a†
j , b†

j) are the corresponding annihilation and
creator operators at site j. U is the local particle (respulsive)
interaction strength, J is the nearest-neighbor hopping con-
stant, and ε j is the onsite potential which we set randomly
within the uniform interval [−W/2,W/2], with W being the
disorder width. The Hilbert space is spanned by N2 two-
particle states |mn〉 = b†

na†
m|0〉, where |0〉 is the vacuum state.

It is known that a basis change of the form |mn〉± =
(|mn〉 ± |nm〉)/

√
2 (m �= n), with respect to the “diagonal”

double occupancy (bound) states, decouple the Hamiltonian in
two parts [7]. The symmetric combinations alongside bound
states interact via a Bose-Hubbard Hamiltonian. The anti-
symmetric part behave as noninteracting spinless fermions.
Figure 1 depicts their state-space structure. Any speckle pat-
tern of the intensities will therefore be controlled by those
bosonic and fermionic subspaces, each playing a distinct role.

III. QUANTUM UNITARY DYNAMICS
AND ITS SPECKLE ANALOG

Before we elaborate on the speckle formalism for the
two-particle dynamics, it is appropriate to address the wave-
function statistics on a single-particle tight-binding model
H (1) = J

∑
j (a

†
j+1a j + H.c.) + ∑

j ε ja
†
j a j . Consider the tran-

sition amplitude between sites m and p due to the time

evolution operator U = e−iH (1)t ,

f p
m = 〈p|U |m〉 =

∑
k

ake−iEkt = Aeiθ , (2)

where A = A(m, p; t ), θ = θ (m, p; t ), and the lengths ak =
ak (m, p) = vk,mvk,p read from the eigenfunctions vk, j =
〈 j|Ek〉 of H (1).

Despite describing a deterministic time evolution, the
phasor sum above can effectively be treated as a ran-
dom one. Note that Re{ f p

m} = ∑
k ak cos (Ekt ) and Im{ f p

m} =
−∑

k ak sin (Ekt ). As the state evolves in time, the phase
Ekt covers the interval [0, 2π ) uniformly. If the evolution is
truncated in time steps �t � J−1, the resulting amplitude
statistics in the time domain is equivalent to that obtained by
sorting those phases at random, with fixed individual phasor
lengths ak . In other words, each time step works as one real-
ization of a series of random phases.

When the disorder is weak (meaning a large localization
length) it is reasonable to assume ak ∼ 1/N . If we let the
state evolve long enough, the central limit theorem applies
and thus the real and imaginary parts of f p

m asymptotically
reach circular Gaussian statistics (with standard deviation σ )
centered at zero. In turn, A obeys the Rayleigh distribution
pA(A) = (A/σ 2) exp (−A2/2σ 2), where σ is the scale param-
eter. The corresponding argument θ is uniformly distributed in
the full cycle [28]. The intensity I = A2 then follows the ex-
ponential distribution pI (I ) = pA(

√
I )|dA/dI| = s−1e−I/s ≡

Exp(s), with mean intensity 〈I〉 = s = 2σ 2. Note that no av-
erage over disorder realizations is being considered here. The
above statistical framework is valid for a single disorder real-
ization and built on the truncated time evolution of the wave
function [29].

We can also make use of the central limit theorem in the
case of a pure chain (ε j = ε), with vk, j being Bloch functions.
Now, the particle-hole symmetry entails Ek = −E−k and ak =
±a−k depending on the chosen pair of locations m and p.
Either way, we end up with A = |Re{ f p

m}| or A = |Im{ f p
m}|. In

such a particular case, A follows a half-normal distribution and
thus x = I/σ 2 has a chi-squared distribution with one degree
of freedom, pI (x) = e−x/2/

√
2πx.

As we will see in what follows, a variety of speckles
are obtained depending on the nature of the particles, their
interaction, and initial configuration. A relevant measure to
discriminate between them is the ratio between the standard
deviation of the intensity σI by its mean, namely, the contrast
C = σI/〈I〉. A fully developed speckle obeying exponential
statistics renders C = 1. This gives us a reference value to
evaluate the degree of fluctuations of a given speckle pattern.

IV. TWO-PARTICLE SPECKLES

A. Noninteracting particles

Now that we visualize the single-particle quantum evolu-
tion as a random process over time, let us extended it to the
case of two distinguishable particles when U = 0. Consider-
ing an input prepared at sites (m, n), the transition to (p, q),
hpq

mn = 〈pq|e−iHt |mn〉, reads

hpq
mn = f p

m f q
n = A1A2ei(θ1+θ2 ). (3)
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The corresponding intensity is analogous to the two-particle
correlation function 〈a†

mb†
nbnam〉, known as Hanbury Brown-

Twiss correlations in optics [4,5,8,11]. Each individual
intensity in Eq. (3) follows an exponential distribution Ii =
A2

i ∼ Exp(si ). If we let I1 and I2 be independent random
variables, it can be shown that their product I = I1I2 obeys
the K distribution [30]

K(I; μ, ν) = 2ν

μ�(ν)

⎛
⎝

√
I

μ
ν

⎞
⎠

ν−1

Kν−1

⎛
⎝2

√
I

μ
ν

⎞
⎠, (4)

with shape parameter ν = 1. Therein Kν (x) is a modified
Bessel function of the second kind of order ν and μ = s1s2

is the mean intensity. The speckle contrast for the K distri-
bution reads C(ν) = √

(ν + 2)/ν. Hence, larger fluctuations
are expected when two distinguishable particles are involved,
that is, C = √

3 ≈ 1.73, even in the absence of interaction.
We highlight that K distributions arise whenever some speckle
intensity is known to obey exponential statistics but there is
uncertainty about its mean [28,31].

Previously we assumed that I1 and I2 were independent.
This is true for most input (m, n) and output (p, q) location
pairs. However, some residual correlations can be present.
This happens, for instance, when |p − m| = |q − n| and disor-
der is weak. Both intensities become fully correlated (I1 = I2)
when the transition amplitude involve only bound states, i.e.,
|hpp

mm| = | f p
m|2 ∼ Exp(s). The intensity I = | f p

m|4 then obeys
a Weibull distribution pI (y) = α−1(2y)−1/2e−√

2y, where y =
I/α and α = 2s2 is the mean intensity. The contrast now reads
C = √

5 ≈ 2.24.
The long-tailed character of the speckles generated

by noninteracting distinguishable particles stems from
the spectral correlations of the two-particle Hamiltonian
[Eq. (1)]. When U = 0 its diagonal form reads H =∑N

k1,k2
Ek1k2 b†

k2
a†

k1
|0〉〈0|ak1 bk2 , with |0〉 being the vacuum and

Ek1k2 = Ek1 + Ek2 . As such the N2 phases Ek1k2t are combina-
tions of two identical sets of N single-particle inputs. Based
on the two-dimensional (2D) mapping (Fig. 1), the observed
speckles featuring higher contrasts are the result of structural
correlations. Shortly, we will see that those correlations are
partially destroyed when U �= 0.

Let us now discuss the speckle profile of identical bosons
and spinless fermions separately. In a photonic waveguide
array, each set can be explored by injecting two coherent
beams at locations (m, n) and (n, m) with the proper sym-
metric or antisymmetric phase relationship [7,11]. Given an
input |ψ (0)〉 = (b†

na†
m ± b†

ma†
n)|0〉 the transition amplitudes

read hpq
mn(B) = ( f p

m f q
n + f q

m f p
n )N , with N = 2−(δmn+δpq )/2, for

bosons and hpq
mn(F ) = f p

m f q
n − f q

m f p
n for fermions. In both cases

there is interference between K-distributed speckles. This is
expected since we are now dealing with entangled input states.

Indeed, the quantum correlations manifest in the speckle
statistics by delivering weaker fluctuations than those pro-
moted by distinguishable particles. To see this, consider
(bound states excluded) f p

m f q
n ± f q

m f p
n = A1eiθ1 + A2eiθ2 is

a two-component random phasor sum with independent
K-distributed amplitudes Ai ∼ 2

√
IiK(

√
Ii; μ, 1) with mean

〈Ai〉 = π
√

μ/4 and uniformly distributed phases θi. Note that
we are assuming a common mean for both variables. This

is a reasonable assumption for a weakly disordered chain.
The output intensity speckle can be evaluated by means of a
version of a modified Kluyver-Pearson formula [32]. It results
in another K distribution [see Eq. (4)], now with shape pa-
rameter ν = 2 and mean μ′ = 2μ, that is, pI (I ) = K(I; μ′, 2).
The contrast is now C = √

2 ≈ 1.41, lower than that ob-
tained for distinguishable particles (C = √

3). Note that the
entanglement due to wave-function symmetrization modifies
the classical speckle signal. Figure 2(a) displays all the dis-
tributions obtained so far in agreement with the numerical
simulations.

B. Interacting particles

We are now ready to see how the presence of a lo-
cal interaction between both particles modifies the speckle
statistics. When U �= 0 transition amplitudes between the
quantum states can no longer be expressed in terms of
single-particle wave functions. This symmetry loss in the two-
particle spectrum tends to drive the intensity statistics toward
the exponential regime. However, when we expand the dy-
namics in terms of the bosonic and fermionic subspaces (see
Fig. 1), the latter is not affected by U . A given input b†

na†
m|0〉

will evolve independently in each one of those subspaces, hav-
ing symmetric and antisymmetric components. The fermionic
part maintains its K-distributed profile K(I; μ′, 2). For now,
it thus suffices to examine transitions between bosonic states
against U .

Figure 3 shows the contrast C for several values of the
interaction U within distinct timescales. When U � J , ex-
ponential statistics is only obtained in the long-time regime.
As the hitherto noninteracting bosonic spectrum is slightly
altered it takes awhile before the random phasor sum con-
verges to a fully developed speckle [see Fig. 2(b)]. When U is
weak, whether or not both bosons are loaded in the same site,
the short-time regime typically features higher fluctuations.
Figure 3(a) [Fig. 3(b)] indicates that these fluctuations are
reminiscent of the speckle pattern associated to the K distribu-
tion (Weibull distribution). For intermediate values of U that
transient dynamics becomes less pronounced and the speckle
pattern rapidly becomes exponentially distributed.

As U increases further, a smaller band of N bound (B)
states builds up apart from the scattering (S) part of the
spectrum consisting of N (N − 1)/2 states [3,8]. It is then
convenient to express the transition amplitude as the phasor
sum of the form hpq

mn(B) = ∑
k∈S bkeiφk + ∑

k′∈B b′
keiφ′

k . When
U � J , if both bosons are injected in different sites they will
display fermion-like correlations such as spatial antibunching
[8] as the phasor sum running over the bound states be-
comes negligible. This is heralded as the high contrast seen in
Fig. 3(a) at short and intermediate timescales. Yet, although
transitions between scattered and bound states always remain
negligible in this case, the speckle will eventually set as a fully
developed one (C ≈ 1). That is, the antibunching dynamics
lasts indefinitely for the repelling bosons, but the phase re-
lationships embedded in the corresponding phasor sum bring
the central limit theorem to hold, unless U → ∞ (hard-core
limit).

We now realize that when loading two distinguishable
particles in different locations (m, n), the resulting speckle
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FIG. 2. Scaled probability density functions of two-particle in-
tensities for a single sample of a disordered array featuring N = 40
sites and W = 0.01J . The statistics is taken from many operations
of e−iHt up to tJ = 107 in steps of size 100. (a) Noninteract-
ing case (U = 0). Two particles are prepared at sites (m, n) =
(20, 22) and the intensity I = |hpq

mn|2 measured at (p, q) = (23, 26).
The output for distinguishable particles is shown as green dia-
monds, with the corresponding K-distribution function with shape
parameter ν = 1 (green curve) with contrast C = √

3. When both
particles are identical bosons or fermions with properly symmetrized
input-output kets the intensity reads I = |hpq

mn(B)|2 and I = |hpq
mn(F )|2,

respectively (red squares and blue circles). For both cases we
get another K distribution with shape parameter ν = 2 and (blue
curve) contrast C = √

2 as a consequence of entanglement due to
wave-function symmetrization. Gray triangles represent a transi-
tion between bound states, I = |hpp

mm|2, with m = 20 and p = 22.
In this case, only the bosonic subspace is involved. The solid gray
curve represents the fitting Weibull distribution (C = √

5). For ref-
erence, the exponential distribution is shown as the dashed black
curve. (b) Interacting case (U = 1J). The same quantities are plot-
ted. Now, all the data approach the exponential distribution but
that corresponding to identical fermions (not affected by U ). The
bosonic distribution (red squares) fits the most whereas that cor-
responding to distinguishable particles displays an extended tail.
When only bound states (gray triangles) are involved the tail re-
tracts. This signalizes the onset of modes with a shorter localization
length.

FIG. 3. Bosonic speckle contrast C against interaction strength
U on a chain with N = 26 sites and W = 0.01J . For a given disorder
sample, the statistics for I = |hpq

mn(B)|2 is taken within three distinct
time windows, namely, short (tJ ∈ [0, �]; squares), intermediate
(tJ ∈ [106, 106 + �]; circles), and long (tJ ∈ [109, 109 + �]; trian-
gles), with � = 105, in steps of 100. Contrast curves are averaged
over 100 independent realizations of disorder. In (a) two bosons
are loaded at sites (10,11), with the intensity measurements being
taken at (13,16). Panel (b) depicts the case of bound states, with
the two bosons placed at (10,10) and measured at (11,11). Contrast
C = 1 corresponds to a fully developed speckle (exponential inten-
sity statistics).

in (p, q) comes as an interference between Rayleigh- and
K-distributed phasors (bosonic and fermionic components,
respectively). Figure 2(b) shows that the speckle is nearly
exponentially distributed aside from a pronounced tail (the
contrast is numerically found to be C ≈ 1.05). Here, the
fermionic correlations associated to the antisymmetric sub-
space forbid the formation of a fully developed speckle.
Therefore, such a contrast C > 1 will always hold in the limit
of infinite time evolution of interacting distinguishable parti-
cles for any U/J , in the regime of weak disorder W � J . If
the disorder were higher, the speckle contrast would be lower
due to the onset of strongly localized Anderson modes. In the
following we discuss a related scenario that involves bound
states in the large U/J regime.

C. Bound states and sub-Rayleigh statistics

A noteworthy trend that occurs in the regime of strong
interaction U is the decrease in contrast when both input and
output involves bound states [see Fig. 3(b)]. A tail retrac-
tion can already be noticed for intermediate U [compare the
triangles with the reference exponential curve in Fig. 2(b)].
This can be readily explained in terms of the energy pulling
effect taking place in the band of bound states [3,8]. Even
if the disorder W � J , the effective hopping strength within
the band will eventually diminish to the point that strongly
localized bound states prevail. It fosters asymmetry between
the amplitudes in a random phasor sum. One or a few phasors
will stand out compared to the remaining terms that amount
to an exponentially distributed intensity with mean sn.

In the simplest case of a single dominant phasor with
intensity I0, we get the Rician distribution [28]

R(I; r) = s−1
n e−(r+I/sn )I0(2

√
Ir/sn), (5)
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FIG. 4. Scaled probability density functions associated to
bosonic bound-state transitions. Here, I = |hpp

mm|2, with m = 20 and
p = 22, considering a chain with N = 40 sites in the strong U
regime. Statistics is taken on a single disorder sample with W =
0.01J evolving up to time tJ = 107 in steps of 100. Up (right) Trian-
gles represent the case for U = 200J (U = 500J). Solid curves are
the compound Rician fittings obtained by isolating the four greatest
amplitudes of the corresponding random phasor sum to build g(r)
(see text). The exponential distribution is displayed as the dashed
curve for reference.

where I0(x) is the modified Bessel function of the first kind of
order zero and r = I0/sn. The contrast in this case is C(r) =√

1 + 2r/(1 + r). If more than one dominant phasors is set
apart we can compound the distribution above over different r
to obtain pI (I ) = ∫

R(I|r)g(r)dr where R(I|r) is the Rician
distribution conditioned on knowledge of r and g(r) is its
probability density function.

The above generalized form of Rician distributions will
also display a lower contrast compared with a fully developed
speckle. It ultimately depends on U as well as the distance
between input and output sites given the typical spatial profile
of localized modes. (It is important to mention that there
is a nonmonotonic relationship between U and the degree
of Anderson localization in disordered two-particle systems
[19].) That is, if such a distance is large enough we expect
g(r) ∼ Exp(s0) and then the Rician compound turns into an
exponential distribution with mean 〈I〉 = sn + s0.

To see the compound Rician distributions in operation, let
us turn our attention to the regime of strong U . Figure 4
confirms the predicted statistics for short-haul transitions in-

volving bound states. The integral
∫

R(I|r)g(r)dr is evaluated
numerically. The necessary number of phasors involved to
make g(r) depends on both U and the distance between
input and output locations. When the distribution is nearly
exponential, the standard Rician distribution with only one
dominant phasor (g(r) being a Dirac delta function) should
be enough. Sub-Rayleigh statistics can thus be obtained for
strongly interacting particles in a weak disordered media.

V. CONCLUSION

In summary, we have seen that fluctuations associated to
local intensity measurements can disclose subtle quantum cor-
relations. Non-Rayleigh speckles can be extracted from the
time evolution of two quantum particles. They range from
low contrast forms obeying compound Rician distributions
to K-distributed speckles that display higher-than-exponential
fluctuations. The two-particle dynamics can be promptly
adapted to a square photonic waveguide array loaded with
classical light [6,7,9,11,20]. The different speckle patterns is
then obtained upon setting the desired input phase relationship
(so as to activate bosonic and/or fermionic behavior) and
controlling the detuning between the diagonal waveguides and
the others [20].

Besides having immediate applications is optics, our re-
sults apply to the characterization of quantum systems in
general. We showed that local measurements in the compu-
tational basis is able to capture subtle quantum correlations
involving identical particles. Even when both particles are
distinguishable their resulting speckle distribution display a
contrast C > 1, a property that can be traced back to fermionic
correlations. The speckle corresponding to two bosonic parti-
cles also feature a higher contrast in both weak and strong U
limits. It takes a transient time before their intrinsic correla-
tions are washed out and we get a fully developed speckle.
This is an interesting feature that allows one to manipulate
the speckle statistics while maintaining the overall dynamical
pattern [21]. This is yet another manifestation of entanglement
due to particle identity that meets practical applications [33].

We mention that related studies involving two-photon
speckle statistics as a probe of entanglement can be found
in Refs. [22,34]. Future works may delve into the speckle
response at the multiparticle level [35,36] and its relationship
with other forms of entanglement.
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