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Optical rogue-wave patterns in coupled defocusing systems
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We systematically investigate the spatial-temporal patterns of rogue waves in N-component coupled defo-
cusing nonlinear Schrödinger equations where N � 2. The fundamental rogue-wave solutions are given in a
unified form for both focusing and defocusing cases. We establish the quantitative correspondence between
modulation instability and rogue-wave patterns, which develops the previously reported inequality relation into
an equation correspondence. As an example, we demonstrate phase diagrams for rogue-wave patterns in a
two-component coupled system, based on the complete classification of their spatial-temporal structures. The
phase diagrams enable us to predict various rogue-wave patterns, such as the ones with a four-petaled structure
in both components. These results are meaningful for controlling the rogue-wave excitations in two orthogonal
polarization optical fibers.
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I. INTRODUCTION

Optical systems provide a good platform for studying
rogue waves (RWs) [1–3], which could endanger marine nav-
igation and optical communications. Some rational solutions
of N-component nonlinear Schrödinger equations (NLSEs)
have been widely used to describe RW phenomena in non-
linear optics fibers with taking no higher-order effects [3,4],
and other nonlinear systems [5–10]. In most previous studies,
RW solutions were obtained in focusing NLSEs [10–19]. The
fundamental RW for a scalar NLSE (N = 1) is always eye-
shaped (ES) [4]. However, vector RWs (N � 2) can involve an
eye-shaped one [14,15], an anti-eye-shaped (AES) one [16],
and a four-petaled (FP) one [17], since vector systems allow
for energy transfer between the coupled waves. The nonlinear
superposition of these fundamental RWs can produce more
diverse structures, which refer to the higher-order RWs or
multiple RWs [20–24]. So far, modulation instability (MI)
is believed to play an important role in RWs’ excitations
[25–29]. Moreover, the equation correspondence between the
fundamental RW solution and the dispersion relation of MI
was established in the focusing N-component NLSE [30],
which can be used to interpret the RW patterns perfectly. It
predicts that there are mainly three different pattern types for
arbitrary N-component coupled focusing NLSEs in integrable
cases.

In contrast, RWs cannot exist in the scalar defocusing
NLSE, since there is no MI on the plane wave background.
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Several recent pieces of literature have reported the existence
of vector RWs in integrable two-component defocusing sys-
tems [31–35], subject to certain constraints on the two plane
wave backgrounds. Those theoretical results have motivated
experiments to observe AES-AES (i.e., dark-dark) RWs in
nonlinear optical fibers [36,37]. AES-AES RW refers to the
two components admitting the AES RW pattern. However,
the classification of vector RW patterns is still unclear, let
alone the N-component case where N > 2. On the other hand,
an inequality relation between the RW solutions and MI was
suggested [31], which inspired many discussions about the
generation mechanism of RWs [28,30,38]. It is very essential
to establish the equation correspondence between MI and
RWs’ spatial-temporal structures for defocusing cases, which
is also meaningful for controllably exciting various vector
RWs in experiments.

In this paper, we systematically study the patterns of
vector RWs in coupled defocusing nonlinear systems, based
on the general exact RW solutions of N-component defo-
cusing NLSEs where N � 2. Importantly, we successfully
establish the equation correspondence between MI and RW
solutions, which provides the quantitative mechanism of vec-
tor RWs in the defocusing regime. For example, we present
phase diagrams to illustrate the families of two-component
RWs in defocusing and focusing regimes. FP-FP patterns are
predicted based on the phase diagrams, in contrast to the pre-
viously observed AES-AES RW [36,37]. We further discuss
the possibility of experimentally observing them from weakly
localized perturbations in two orthogonal polarization optical
fibers.

The paper is organized as follows. In Sec. II, we first
present the unified RW solutions in arbitrarily N-component
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coupled NLSEs in both defocusing and focusing regimes,
where N � 2. Then, the systematic classification of vector
RWs in the two-component case is demonstrated clearly,
by giving three sets of phase diagrams for RW patterns. In
Sec. III, we obtain the equation correspondence between the
dispersion relation of MI and the existing condition of RW
patterns, which implies that the resonance perturbations in MI
regions can be used to generate RW controllably and directly.
In Sec. IV, we discuss the possibilities of observing vector
RW patterns in defocusing nonlinear fibers. For example,
numerical simulations demonstrate that FP-FP RWs can be
excited perfectly by combining the phase diagrams and using
the resonance perturbations. Finally, we summarize our results
in Sec. V.

II. ROGUE-WAVE PATTERNS IN COUPLED
NONLINEAR SCHRÖDINGER SYSTEMS

A. The unified vector rogue-wave solutions

The propagation of nonlinear waves through optical fiber
arrays has been found to be governed by a set of equations that
are related to the coupled NLSEs [39–43]:

i�ξ + 1
2�ττ + σ��†� = 0, (1)

where � = (φ1, φ2, . . . , φN )T. The symbols T and † represent
transpose and Hermite conjugation of a matrix, respectively.
For arbitrary N , Eq. (1) can govern the propagation of N
self-trapped mutually incoherent wave packets in Kerr-like
photorefractive media [39,41,43], and ξ and τ represent the
normalized distance along the fiber and the retarded time,
respectively. φi(τ, ξ ) represents the complex slowly varying
envelope of the ith component. Here, σ = 1 and σ = −1
correspond to focusing and defocusing nonlinearities, re-
spectively. In the case of focusing, RW solutions have been
systematically obtained for arbitrary N [30]. However, in the
defocusing case, the analytical vector RW solution has re-
cently been derived for N = 2, giving AES-AES RWs and
AES-ES (i.e., dark-bright) RWs [31,32]. In this section, we
intend to present exact RW solutions that, as will be demon-
strated, can be derived for a general value of N (where N � 2)
in Eq. (1) with σ = −1.

To obtain the RW solution of an N-component coupled
NLSE model, a crucial step is to find multiple roots of a
high-order polynomial [an (N + 1)th order algebraic equa-
tion] with respect to the spectral parameter. This aspect makes
it challenging to solve the polynomial directly, and it is hard
to obtain the analytical solution for RWs. In this paper, we
propose an innovative idea to solve the problems. Technically,
we expand the Lax pair spectrum curve at branch points to
derive the determining equation for obtaining double roots of
the RW solutions, instead of directly solving the high-order
polynomial. By following the Darboux transformation method
[21,23] with the aid of the expanding technique, we obtain a
concise and unified expression for the vector RW solution of
the N-component NLSE in the defocusing regime

φi = ai

{
1 + 2i(χR + bi )(τ + χRξ ) − 2iχ2

I ξ − 1

�i
[
(τ + χRξ )2 + χ2

I ξ 2 + 1
/(

4χ2
I

)]
}

eiθi . (2)

Surprisingly, the form of this solution is identical to that of the
well-known focusing regime [30]. Here, �i = (χR + bi )2 +
χ2

I , θi = biτ + (σ
∑N

i=1 a2
i − b2

i
2 )ξ , and i = 1, 2, . . . , N . The

parameters ai and bi represent the amplitude and frequency
of the background, respectively, in the ith component. The
velocity of the vector RW can be obtained directly and exactly
from this solution as v = −χR. In Eq. (2), χR = Re(χ ), χI =
Im(χ ), and χ is a complex root of the following algebraic
equation:

1 + σ

N∑
i=1

a2
i

(χ + bi )2
= 0, (3)

which is the determining equation for RW solutions. For the
focusing case (σ = 1), the above algebraic equation is positive
definite and always admits N pairs of complex conjugate roots
[30]. In contrast, this polynomial is non-positive-definite in
the defocusing regime (σ = −1), which confirms the exis-
tence of at least two real roots; namely, Eq. (3) admits N − 1
pairs of complex conjugate roots at most. Naturally, RW solu-
tions cannot be allowed in scalar-defocusing cases. Therefore,
to obtain RW solutions in the defocusing case, the amplitudes
and frequencies of the vector background must be strictly and
adequately designed to get a complex root of χ , instead of
being free parameters in the focusing cases.

Some RW solutions have been presented in two-component
defocusing nonlinear systems [31–35], such as AES-ES RW
and AES-AES RW. However, in the defocusing case, the
classification of RW patterns has yet to be thoroughly investi-
gated, and the parameter domains for different vector RWs
have not been analyzed. The fundamental RW patterns in
the focusing case had been studied clearly, mainly including
the ES, AES, and FP ones [30]. As such, we will further
explore the distinction and connection between vector RWs
in the focusing and defocusing cases. Then, we will conduct a
systematic investigation of the pattern classification of funda-
mental vector RWs in the two-component case as an example.

B. The pattern classification of fundamental vector rogue waves

In the defocusing regime with N = 2, we get that the dis-
criminant to the existence of RW is [a2

1 + a2
2 − (b1 − b2)2]

3 +
27a2

1a2
2(b1 − b2)2 > 0, which ensures the presence of a pair of

complex conjugate roots of Eq. (3). Without loss of generality,
we present the phase diagrams of vector RW solutions in
Fig. 1(a) setting a2 = 1 and b2 = −b1. We denote the paired
complex conjugate roots that satisfy the discriminant as χ1.
The RW cannot be excited in the parameter space marked by
the white regions and white lines in the (b1, a1) plane. The
critical condition for RW nonexcitation, depicted by the black
dashed curves, is calculated as a1 = [3(4b2

1)
1
3 − 3(4b2

1)
2
3 +

4b2
1 − 1]1/2. The critical lines mean the disappearance of a

pair of conjugate complex roots of the branch equation (3),
which results in two identical real roots. By analyzing the
extreme points of RW solutions, we get that the solutions
(2) with (χR+bi )2

χ2
I

� 1
3 , 1

3 <
(χR+bi )2

χ2
I

< 3, and (χR+bi )2

χ2
I

� 3 can
form the ES RW (pink areas), FP RW (green areas), and
AES RW (blue areas), respectively. The boundaries of various
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FIG. 1. The phase diagrams for patterns of two-component vec-
tor RWs in the (b1, a1) plane. The pink, green, and blue regions
denote the RW solutions with ES, FP, and AES patterns. (a) Defo-
cusing case. The white regions and white lines (b1 = 0) denote RW
nonexistence. Black dashed curves depict the critical conditions of
RW nonexcitations. Examples of the family of vector RWs are shown
in Figs. 2(a)–2(d). The parameters for each type of RW are denoted
by a specific symbol: a hexagon (b1 = √

3/2, a1 = 1), a diamond
(b1 = −1.25799, a1 = 3.2983), an inverted triangle (b1 = 1.6, a1 =
2.8), and a star (b1 = −0.4, a1 = 1). (b) and (c) Two sets of phase di-
agrams depicting the patterns of vector RWs in the focusing regime.
As examples, three sets of intensity profiles for vector RWs are
shown in Fig. 3. The parameters for each set of profiles in Figs. 3(a1)
and 3(a2), 3(b1) and 3(b2), and 3(c1) and 3(c2) are indicated by
triangle (b1 = 3/2, a1 = 3), square (b1 = 1/4, a1 = 5/2), and cir-
cle (b1 = −1/4, a1 = 1) symbols, respectively. Other parameters are
a2 = 1 and b2 = −b1.

regions are obtained by parameters that satisfy (χR+bi )2

χ2
I

= 1
3 or

(χR+bi )2

χ2
I

= 3.
The phase diagrams in Fig. 1(a) demonstrate that the family

of vector RWs in the defocusing cases includes AES-ES RW,
AES-FP RW, AES-AES RW, and FP-FP RW. Here, AES-ES
RW and ES-AES RW are considered to be the same vector
RW, and the definitions of the other vector RWs are similar to
this case. In Ref. [31], only the AES-AES RW and AES-ES
RW were obtained in the defocusing regime. Figure 1(a) also

FIG. 2. The intensity profiles of four fundamental types of vector
RWs in the two-component defocusing regime, normalized to their
respective backgrounds. The top (bottom) row corresponds to the
intensity profiles of the first (second) component. The parameters
associated with each type of vector RWs correspond to the symbols
shown in Fig. 1(a), namely, a hexagon, a diamond, an inverted trian-
gle, and a star for (a), (b), (c), and (d), respectively.

indicates that ES-ES RW and ES-FP RW are not allowed
in the defocusing regime. Examples of solution profiles for
the RW family are shown in Fig. 2. The symbols shown in
Fig. 1(a), namely, a hexagon, a diamond, an inverted triangle,
and a star, correspond to the parameters associated with each
type of vector RWs in Figs. 2(a), 2(b), 2(c), and 2(d), respec-
tively. The parameters for the diamond ( (χR+b2 )2

χ2
I

= 1
3 ) and the

hexagon ( (χR+b1 )2

χ2
I

= 3 and (χR+b2 )2

χ2
I

= 3) are set at the bound-
aries of the pink and blue regions, respectively, among these
symbols. There is no difference in the dynamical behavior of
RWs at the boundaries or within the different regions. The
phase diagram Fig. 1(a) also demonstrates that the probability
of forming AES RW far outweighs that of ES RW and FP
RW in the component φ1. When the amplitude a1 > 1.73, the
component φ1 only allows the AES RW. In contrast, the prob-
ability of exciting ES RW and FP RW in the component φ2 is
much greater than that of exciting AES RW. Remarkably, the
FP-FP RW can be produced in a small parameter domain in
regions with amplitude a1 ∈ [0.58, 1.73]. This phase diagram
clearly demonstrates the existence conditions of vector RW
solutions and the classification of RW patterns in defocusing
two-component systems, which has never been determined in
previous works. Similar phase diagrams can be obtained by
taking other parameters.

In contrast, in the focusing regime, there are no restrictions
on the amplitudes and frequencies of the vector background
for the excitations of vector RWs. In this case, Eq. (3) always
produces two pairs of complex conjugate roots, denoted as
χ1 and χ2, resulting in two distinct sets of phase diagrams, as
depicted in Figs. 1(b) and 1(c). As illustrated, the RW patterns
can be always excited in the (b1, a1) plane, and these RW
patterns comprise ES-ES RW, ES-FP RW, ES-AES RW, and
FP-FP RW. Therefore both ES-AES RW and FP-FP RW can
exist in both the focusing and defocusing regimes. Strikingly,
the FP-FP RW only can be generated in a small parameter
space characterized by the two small green fan-shaped areas.
More interestingly, in most cases, the types of vector RWs in
the case of χ1 are distinct from those in χ2 for identical values
of ai and bi, rather than a mere exchange of RW types between
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FIG. 3. Examples of three sets of vector RWs in the focusing regime, with each set containing two different types of vector RWs on
the same vector background. In (a1) and (a2), (b1) and (b2), and (c1) and (c2), the parameters correspond to the triangle, square, and circle
symbols, respectively, depicted in Figs. 1(b) and 1(c).

two components. This is not possible in the defocusing case.
In Ref. [44], only a phase diagram similar to Fig. 1(c) was
presented, where the parameter regions for FP-FP RW had
been lost. For instance, in Fig. 3, we present three sets of vec-
tor RWs corresponding to three distinct vector backgrounds.
Each set includes two different types of vector RWs excited on
the same vector background. Figures 3(a1) and 3(a2) present
AES-ES RW for χ1 and ES-FP RW for χ2, with parameters
corresponding to the triangle symbol in Figs. 1(b) and 1(c).
AES-ES RW and ES-ES RW are observed in Figs. 3(b1) and
3(b2), with the parameters matching the square symbol in
Figs. 1(b) and 1(c). In each of these two sets, the evolution
velocities of these two types have equal values but opposite
directions. Additionally, Figs. 3(c1) and 3(c2) present the
existence of FP-FP RW for χ1 and ES-ES RW for χ2, with
parameters corresponding to the circle symbol in Figs. 1(b)
and 1(c). By directly calculating χR (i.e., χ1,R and χ2,R) from
Eq. (3), we have determined that their velocities remain static,
which cannot be observed from the intensity profiles. The
succinct RW solution (2) and determinant equation (3) help us
understand the dynamical characteristics of vector RWs much
more directly and accurately.

III. THE EQUATION CORRESPONDENCE
BETWEEN MODULATION INSTABILITY

AND ROGUE-WAVE PATTERNS

Previous studies suggested that baseband MI can be seen
as the origin for RW formations in the defocusing nonlin-
ear regime [31,38]. However, the correspondence relation
between the RW existence condition and baseband MI was
an inequality form, which was also obtained in the two-
component case. In the defocusing case, the quantitative
correspondence between the MI and the existing condition of
RW solutions is still lacking. The equation correspondence for
the focusing N-component NLSE [30] motivates us to look
further for similar results for defocusing cases.

We revisit the standard MI analysis. The linearized stability
of perturbations on the plane wave solution can be obtained
by adding weak perturbations with Fourier modes. Then, a

perturbed vector background is written as

φi = φ
[0]
i [1 + pi(τ, ξ )], i = 1, 2, . . . , N. (4)

Here, φ
[0]
i = aiexp(iθi ) are vector background solutions, and

pi(τ, ξ ) are small perturbations which satisfy the linear
equation

i(pi,ξ + bi pi,τ ) + 1

2
pi,ττ + σ

N∑
l=1

[
a2

l (pl + p∗
l )

] = 0. (5)

The asterisk means complex conjugate. We suppose the per-
turbations pi(τ, ξ ) have the form

pi(τ, ξ ) = p∗
i,−ke−iμk (τ+	∗

kξ ) + pi,keiμk (τ+	kξ ). (6)

Substituting pi(τ, ξ ) into the linearized equation (5), we get
following linear homogeneous equations:

KP = 0. (7)

Here, coefficient matrix K is

K = diag
[(−	k −b1− 1

2μk
)
μk,

(
	k +b1− 1

2μk
)
μk, · · · ,(−	k −bN − 1

2μk
)
μk,

(
	k +bN − 1

2μk
)
μk

]+ σA,

A =

⎛
⎜⎝a2

1 a2
1 · · · a2

N a2
N

...
...

...
...

...

a2
1 a2

1 · · · a2
N a2

N

⎞
⎟⎠.

A is a 2N × 2N matrix. The determinant of matrix K is

det(K) = μ2N
k

N∏
l=1

[
1

4
μ2

k − (	k + bl )
2

]

×
[

1 + σ

N∑
l=1

a2
l

(	k + bl )2 − 1
4μ2

k

]
. (8)

To get the nonzero solution of vector P , the determinant
det(K) must be equal to zero, which is the dispersion relation

for linearized disturbance, i.e., 1 + σ
∑N

l=1
a2

l

(	k+bl )2− 1
4 μ2

k
= 0.

The roots 	k with a nonzero imaginary part correspond
to linearly unstable modes, with growth rate |Im(μk	k )|.
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The corresponding nonzero eigenvector P associated with an
eigenvalue 	 is given by

P =

⎛
⎜⎜⎜⎜⎝

p1,k

p1,−k
...

pN,k

pN,−k

⎞
⎟⎟⎟⎟⎠ = c

⎛
⎜⎜⎜⎜⎝

(μk + 2b1 + 2	)−1

(μk − 2b1 − 2	)−1

· · ·
(μk + 2bN + 2	)−1

(μk − 2bN − 2	)−1

⎞
⎟⎟⎟⎟⎠,

where c is a nonzero complex number. It was suggested that
RWs came from the resonance perturbations in MI regions
[28,29], which refers to the fact that both the dominant fre-
quency and the propagation constant of perturbation are equal
to those of the background. Inspired by this, we take the
limit μk → 0 to address the dispersion relation of MI in the
defocusing case, which can be expressed as

1 + σ

N∑
l=1

a2
l

(	k + bl )2
= 0. (9)

Surprisingly, this MI dispersion relation form is consistent
with the determining equation (3) of RW solutions, which
means the equation correspondence between the two (i.e.,
χ = 	k). Re(	k ) stands for the evolution energy of the
perturbation, and Im(	k ) denotes the growth rate of a per-
turbation responsible for the formation of RWs. The above
dispersion relation with σ = −1 is non-positive-definite,
which leads to two types of dispersion relations. One is
Im(	k ) ≡ 0, which stands for the linearly stable mode [de-
noted as the modulational stability (MS) branch]. However,
the other can admit Im(	k ) �= 0 under some special con-
straints on the amplitudes and frequencies of the background,
which corresponds to the linearly unstable mode (denoted as
the MI branch). Therefore only if the weak perturbations are
set in the MI branch can the RWs be excited, as in the phase
diagram shown in Fig. 1(a). Then, based on the equation cor-
respondence between the MI and RW solution, i.e., χ = 	k ,
the RW patterns evolved from the MI branch can be predicted.
However, when the weak perturbations choose the MS branch,
the dynamical evolutions could produce vector dark solitons
on the plane wave background [45,46]. For example, when
N = 1 with σ = −1, it is easy to get 	k = ±a1 − b1. There-
fore only the MS branch exists in scalar defocusing nonlinear
systems, which admit dark solitons rather than RWs [46,47].
For two-component defocusing systems, both the MS and MI
branches can exist, so dark solitons can coexist with RWs or
breathers [34].

For the focusing case, i.e., σ = 1, the above dispersion
relation equation (9) is positive definite, which leads to the
roots 	k with a nonzero imaginary part. Therefore there
are always N MI branches in the N-component cases. By
choosing any one of the MI branches, the RW patterns can
be generated from the localized perturbation in the back-
ground. Meanwhile, different RW patterns can be excited on
the same background for vector cases, because of the exis-
tence of multiple MI branches, as in the example shown in
Figs. 1(b), 1(c), and 3. The N-component focusing system
can possess N different patterns in each component at most.
In contrast, in the defocusing case, each component can ad-
mit N − 1 different RW patterns at most in an N-component
system.

Equations (3) and (9) have confirmed that the quantitative
correspondence between the MI and RW solutions exists in
both the defocusing and focusing nonlinear systems, which
develops the previously reported inequality relation [31] into
an equation correspondence. It indicates that the RW patterns
can be excited conveniently and controllably by using the
weak resonance perturbations in MI regions.

IV. THE POSSIBILITIES OF OBSERVING VECTOR
ROGUE-WAVE PATTERNS IN DEFOCUSING

NONLINEAR FIBERS

The above theoretical results can be used to excite vector
RWs in a controllable way. The phase diagram in Fig. 1(a)
guides one to design the amplitudes and frequencies of the two
plane wave backgrounds for generating a certain RW pattern.
The equation correspondence between MI and RWs indicates
that the resonance perturbations in the MI regions can be
used to generate RWs conveniently. Namely, we can excite
RWs by adding an arbitrary localized perturbation instead
of approaching the ideal initial condition given by the exact
solution.

Recently, optical dark-dark RWs have been observed
experimentally [36,37] in two orthogonally polarized optical
fibers [48]. We set the parameter settings to be identical
to Ref. [36] to discuss the possibilities of experimentally
exciting other types of vector RWs in the two-component
defocusing case. The propagation of two orthogonally
polarized optical pump waves at a relative frequency
offset 
 in a random weakly birefringent telecom fiber
is described by the dimensional Manakov equations,
i�1,z + iδ/2�1,t − β2/2�1,tt + γ (|�1|2 + |�2|2)�1 = 0
and i�2,z − iδ/2�2,t − β2/2�2,tt + γ (|�1|2 + |�2|2)�2 = 0.
Here, z and t denote the dimensional propagation distance
and retarded time coordinates, respectively. �1 (�2) is a slow
(fast) wave. δ = β2
 is associated with their group-velocity
mismatch owing to normal group-velocity dispersion. β2 and
γ are the group-velocity dispersion and the effective Kerr
nonlinear coefficient, respectively. There is a transformation
between the dimensional and dimensionless models,
i.e., �1(t, z) = √

P0φ1 exp (i δ
2β2 t − i δ2

8β2 z), �2(t, z) =√
P0φ2 exp (−i δ

2β2 t − i δ2

8β2 z), t = −τ t0, z = ξz0, with

z0 = (γ P0)−1, and t0 = √
β2z0. Referring to the experiments

[36,37,48], the optical fiber can be a reverse-TrueWave
fiber with a chromatic dispersion of −14 ps nm−1 km−1

(equivalent to β2 = 18 ps2/km), a nonlinear coefficient
γ = 2.4 W−1 km−1, and an attenuation of 0.25 dB/km at the
central wavelength λ0 = 1554.7 nm. P0 = 9π2
2β2

8γ
denotes

the power for which the low cutoff frequency vanishes. The
frequency detuning 
 can range from 50 to 500 GHz at λ0.
In the following discussion, we choose 
 = 300 GHz. Then,
P0 = 7.4947 W, the nonlinear length is z0 = 0.0556 km, and
the timescale is t0 = 1 ps.

The phase diagram in Fig. 1(a) reveals that the FP-FP
RW is predominantly observed in regions with ampli-
tudes a1 ∈ [0.58, 1.73] and a2 = 1 and frequencies b1 ∈
[−0.76, 0.76] and b2 = −b1 for the vector background. For
example, we select the parameters indicated by star symbol
shown in Fig. 1 to create FP-FP RW expectantly. We first
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FIG. 4. Optical intensities in two orthogonal polarization waves
[|�1(t, z)| (left) and |�2(t, z)| (right)], describing the numerical
excitation of optical FP-FP RW. (a1) and (a2) The initial condi-
tions given by an exact solution with Gaussian white noise and
parameter deviation of χ . (b1) and (b2) Numerical evolution from
a plane wave background perturbed by a weak Gaussian pulse per-
turbation. (c1) and (c2) Numerical evolution from a plane wave
background perturbed by a weak Gaussian pulse perturbation, taking
into account the effects of third-order dispersion and fiber loss. The
parameters of the vector background correspond to the star symbol
in Fig. 1.

consider the numerical evolutions from the initial condition
given by the exact solution (2) with the parameter devia-
tion and adding Gaussian white noise. We set � j,noise(t, 0) =
� j (t,−9; χ )[1 + rand(1)/10 × exp(−t2/4)] ( j = 1, 2) and
χ = χ1 + rand(1)/20, where rand(1) is random complex
numbers with norm less than 1, and χ1 = 0.3473i is de-
termined by Eq. (3). The simulation results presented in
Figs. 4(a1) and 4(a2) display the typical FP-FP RW patterns,
which are consistent with the exact results shown in Fig. 2(d).
However, it is inconvenient to prepare such ideal initial states
in real experiments.

Importantly, the equation correspondence between MI and
RWs indicates that the resonance perturbations in the MI re-
gions can be conveniently used to generate RWs. This means
that we can excite RWs by adding an arbitrary localized per-
turbation, instead of approaching the ideal initial condition
provided by the exact solution. Therefore, for example, we
conduct numerical simulations to generate FP-FP patterns,
by adding a weak Gaussian pulse perturbation on the vector
background [24,28]. Namely, � j (t, 0) = a j exp(iθ j )

√
P0{1 +

ε j exp[− (t−δ j )2

w2
j

]} ( j = 1, 2), where ε j , δ j , and w j denote

the amplitude, offset, and width of perturbation in the ith
mode, respectively. We illustrate the numerical evolutions
in Figs. 4(b1) and 4(b2) by choosing ε1 = −ε2 = −0.1,
w1 = w2 = 5, and δ1 = δ2 = −6 and using the same vector

background as in Figs. 4(a1) and 4(a2). As predicted in the
phase diagrams in Fig. 1(a), the FP-FP RW emerges quickly
and successfully at a propagation distance of approximately
z ≈ 1.2 km, which is in contrast to the previously observed
dark-dark RWs reported in the literature [36,37]. As observed
in Figs. 4(b1) and 4(b2), the temporal-spatial structures ex-
cited by the localized perturbation in the MI region exhibit
good agreement with the patterns shown in Fig. 2(d), provided
by the exact analytical solution, and Figs. 4(a1) and 4(a2),
which evolves from the ideal initial states.

Considering that the input pulse width t0 = 1 ps is
relatively narrow, higher-order effects may exist during
propagation. Additionally, fiber loss is inevitable. To ac-
count for these factors, we conducted further numer-
ical testing by considering third-order dispersion and
fiber attenuation [49]. The physical model used for
this testing is given by i�1,z − β2/2�1,tt − iβ3/6�1,ttt +
γ (|�1|2 + |�2|2)�1 + iα/2�1 = 0 and i�2,z − β2/2�2,tt −
iβ3/6�1,ttt + γ (|�1|2 + |�2|2)�2 + iα/2�2 = 0. β3 and α

represent the coefficients of third-order dispersion and at-
tenuation, respectively. We have experimental parameters
α = 0.25 dB/km and β3 ≈ 0.12 ps3/km [49]. Utilizing the
dimensions defined above, the dimensionless coefficient of
third-order dispersion is β ′

3 = β3/(6β2t0) ≈ 0.001, and the
dimensionless fiber loss is α′ = αz0/2 ≈ 0.0016. The initial
condition remains identical to that set in Figs. 4(b1) and 4(b2).
The corresponding simulation results have been exhibited in
Figs. 4(c1) and 4(c2), which almost align with the observa-
tions described in Figs. 4(a1) and 4(a2), 4(b1) and 4(b2),
and 2(d). By utilizing the experimental setup described in
Refs. [36,37], there is a high possibility of observing these
RW excitations in real experiments. Therefore, by combining
the phase diagrams and the resonance MI theory, there exist
many more possibilities for observing various vector RWs in
practical experiments.

V. CONCLUSION

In summary, the patterns of optical vector RWs in the
defocusing regime have been systematically classified. We
establish the equation correspondence between MI and ex-
act RW solutions, which provides an important supplement
for the results in the focusing regime [28,30]. We present
the phase diagrams to illustrate the families of vector RW
patterns in a two-component case, which can guide one to
design appropriate resonance perturbations to observe them
controllably in actual experiments. For example, we numeri-
cally demonstrate that the FP-FP patterns can be excited from
a weak localized perturbation in two orthogonal polarization
optical fibers. The results could be used to realize controllable
RW pattern excitations in nonlinear coupled systems.

Note added. Recently, the authors became aware that the
one-to-one correspondence between the baseband MI and the
RW solutions was suggested in a different model [50].
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