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Tunable Aharonov-Bohm cages through anti-PT -symmetric imaginary couplings
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The Aharonov-Bohm (AB) cage enables localized confinement with nondiffractive propagation for arbitrary
excitation. In this study, we introduce an anti-parity-time (anti-PT ) symmetric imaginary coupling in a general-
ized Creutz ladder to construct a non-Hermitian AB cage with tunable flat-band energy. We investigate compact
localized states and complete localization dynamics, and show that non-Hermiticity affects the localization prob-
ability distributions and increases the oscillation period of the AB cage dynamics. Non-Hermitian engineering
of the decoupled core of the AB cage is the essential point in our proposal. Our approach is widely applicable to
a more general situation and can facilitate the manipulation of localization in physics.
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I. INTRODUCTION

Flat bands are a peculiar category of band structure that
have fixed energies independent of the crystal momentum
[1,2]. They arise from destructive interference in many phys-
ical systems [3–7], and possess the unique property that
the electron group velocity is exactly zero. This property
gives rise to various exotic phenomena in many-body physics
[8–10]. In addition, the eigenstates of the flat bands, known
as compact localized states (CLSs), are completely local-
ized in one or more finite unit cells [11–13]. This prevents
the wave transport and makes it possible to trap and steer
the propagation of light on a given region [14,15]. How-
ever, the perfectly localized modes will be destroyed after
the introduction of nonlinearity [15]. In addition, some of
flat-band systems can exhibit interesting transport [16,17]; in
particular, the direction of transport can be well controlled
according to the excitation site or input phase in a rhom-
bic lattice [18]. In addition, the dispersionless nature of the
flat-band systems make them guarantee a greatly enhanced
density of states, which amplifies the effects of interactions.
As a result, minimal repulsive on-site interactions can lead
to superconductivity [19–21]. Moreover, extensive theoretical
works have demonstrated the topological properties of nearly
flat-band systems supporting unusual fractional topological
phases [22–25]. The intriguing physics associated with flat
bands has motivated their experimental realization in vari-
ous one-dimensional and two-dimensional settings, including
optical waveguides [26–29], cold atomic gases in optical lat-
tices [30–32], and metamaterials [33–37]. Recently, research
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interest in flat bands continuously increased in optics [38],
condensed matters, and material science. In particular, the flat-
band localization in the Creutz ladder can be finely controlled
in the superradiance lattices [39].

Stemming from the competition between geometry and
magnetic fields, the Aharonov-Bohm (AB) cage is a special
flat-band system with its energy bands fully flat. Any excita-
tion in the system is completely confined to a certain region.
In the presence of a magnetic π flux (i.e., half a flux quantum)
per plaquette, the quasi-one-dimensional (quasi-1D) rhombic
lattice [40,41] and the two-dimensional dice lattice [42–46]
are celebrated models that support the AB cages and have
drawn much attention. Advanced fabrication techniques al-
low these models to be realized in the laboratory. A total
flux of π within each plaquette of the rhombic waveguide
lattice was obtained by introducing the effective coupling
between different orbital modes [18], inserting an auxiliary
waveguide in each plaquette [47], or injecting the light beam
with an orbital angular momentum [48]. The importance of
the AB cage is reflected in many aspects [49–51], ranging
from topological edge states [52] to flat-band lasers [53]. The
presence of nonlinearity or interactions in the Creutz ladder
has attracted much attention [54–56]. Disorder on the Creutz
ladder with interparticle interactions induces exotic many-
body localization dynamics [57], while the repulsive Hubbard
interaction causes repulsively bound pairs in the photonic
Creutz-Hubbard ladder [58].

In recent decades, the non-Hermitian systems have been
widely investigated both theoretically and experimentally due
to their intriguing properties [59–62], including exceptional
points (EPs) [63,64], unique light transport and wave prop-
agation [65–67], and exotic topology [68–71]. As interest
in non-Hermitian systems continues to grow, proposals for
flat bands have emerged in a large number of non-Hermitian
systems [72–85] . Non-Hermitian flat bands can exhibit poly-
nomial power increase of flat-band eigenstates [72,76], which
have no counterpart in Hermitian cases. However, most of
these studies focused on the flat bands created at the EPs
[83–85].
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In this study, we propose a mechanism for fabricating
a non-Hermitian AB cage that is not necessarily at the EP
of the non-Hermitian lattice. This is distinct from previous
non-Hermitian AB cages that are formed exactly at the EP
of the non-Hermitian lattice. We introduce an approach to
properly incorporate non-Hermiticity into the Hermitian AB
cage to keep all the bands flat, thus creating the non-Hermitian
AB cage. We demonstrate our proposal using a generalized
cross-stitch lattice. The anti-parity-time (anti-PT ) symmetric
imaginary coupling between two sublattices of the generalized
cross-stitch lattice forms a non-Hermitian Creutz ladder with
a fully flat spectrum. In the time-evolution dynamics, the
excitation is fully confined inside the nearest-neighbor unit
cells, and the intensity of confinement can exhibit constant,
oscillating, and exponential growth at different degrees of
non-Hermiticity. At weak imaginary coupling strength, the
flat-band spectrum is entirely real; at strong imaginary cou-
pling strength, the flat-band spectrum is entirely imaginary.
The non-Hermiticity extends the period of oscillation when
the spectrum is real, and causes the probability distribution
of the confined excitation to pile up when the spectrum is
imaginary.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the generalized cross-stitch lattice,
present the flat bands, and demonstrate the confinement mech-
anism. In Sec. III, we propose the non-Hermitian Creutz
ladder by introducing dissipation-induced imaginary cou-
plings, and demonstrate the CLSs of the non-Hermitian AB
cage not at the EP. In Sec. IV, we analyze the typical lo-
calization dynamics in the non-Hermitian cage. In Sec. V,
we discuss the experimental implementation of the proposed
non-Hermitian AB cage in the coupled resonator optical
waveguides. Our conclusions and discussions are summarized
in Sec. VI.

II. CROSS-STITCH LATTICE

Figure 1(a) schematically illustrates a generalization of the
conventional cross-stitch lattice [86]. Each coupling ±iJ/2
has a nonreciprocal Peierls phase factor e±iπ/2. The sign ± of
the nonreciprocal coupling ±iJ/2 depends on the tunneling
direction of the particles. The particles tunneling along the
black arrow acquire a Peierls phase factor eiπ/2 while the
particles tunneling against the black arrow acquire a Peierls
phase factor e−iπ/2. The cross-stitch lattice can be viewed as
sharing the same geometry as two rhombic chains [58], or
alternatively, as the Creutz ladder without rungs.

In spatial space, the Hamiltonian of the generalized cross-
stitch lattice is written in the form of

H =
∑

n

[(iJ/2)b†
n(an+1 + bn+1)

− (iJ/2)a†
n(an+1 + bn+1)] + H.c., (1)

where a†
n (an) and b†

n (bn) represent the creation (annihilation)
operators of the sublattices A and B, respectively. The lattice
is translationally invariant in the horizontal direction. The jth
unit cell of the generalized cross-stitch lattice includes two
sites Aj and Bj . Notably, the generalized cross-stitch lattice
is Hermitian and does not include any intracell coupling.
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FIG. 1. (a) Schematic of the Hermitian cross-stitch lattice.
(b) Equivalent lattice of decoupled dimers obtained by applying a
similar transformation to (a). The reciprocal coupling strength is J .
(c) Compact localized eigenstate with the positive flat-band energy J .
(d) Compact localized eigenstate with the negative flat-band energy
−J . The site numbers in (a) correspond to those in (b) under a similar
transformation.

In momentum space, the Bloch Hamiltonian under Fourier
transformation is written in the form of

Hk = (J cos k)σy + (J sin k)σz, (2)

where σx,y,z is the Pauli matrix for the spin-1/2. The energy
bands Ek = ±J of Hk are dispersionless and independent
of the momentum k. Therefore, the generalized cross-stitch
lattice possesses an entirely flat spectrum and supports an
AB cage.

Now, we introduce an equivalent lattice as shown in
Fig. 1(b) to illustrate the kernel of the AB cage in the gen-
eralized cross-stitch lattice. The schematic provides a concise
and clear physical picture to depict the essential feature of
the generalized cross-stitch lattice. The Hamiltonian H ′ of the
equivalent lattice is connected to the Hamiltonian H of the
generalized cross-stitch lattice under a similar transformation
H ′ = UHU −1. The most intriguing fact about the equivalent
lattice is the decoupled dimerization. This generally originates
from the distractive interference between the hoppings. Fig-
ure 1(b) illustrates the equivalent lattice H ′ of the generalized
cross-stitch lattice, which is fully constituted by the decoupled
dimers. Each dimer including a reciprocal coupling J and all
the dimers are identical. Thus, the spectrum of the proposed
AB cage is composed of two flat bands ±J and the eigenstates
are definitely localized in each isolated dimer of the equiva-
lent lattice. Notably, the equivalence to a lattice of decoupled
polymers is a feature for any AB cage from the fact that all the
bands are flat. From the equivalent lattice, we easily obtain the
confinement of the original AB cage. This also helps to further
engineering the AB cage and the confinement.

As a result, the corresponding eigenstates of the gener-
alized cross-stitch lattice are also compactly localized. Both
CLSs of the generalized cross-stitch lattice in Fig. 1(a) are
distributed and confined in a four-site plaquette configuration.
These CLSs are obtained from the steady-state Schrödinger
equations. The CLS is [−i, i, 1, 1]T/2 for the flat-band energy
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FIG. 2. (a) Schematic of the non-Hermitian Creutz ladder to con-
struct the AB cage not at the EP. Reciprocal non-Hermitian couplings
i� present in the vertical direction. (b) Schematic of the equivalent
chain. The non-Hermitian dimers are obtained by adding gain +i�
(red) and loss −i� (green) to Fig. 1(b). (c) Compact localized eigen-
state with the flat-band energy

√
J2 − �2. (d) Compact localized

eigenstate with the flat-band energy −√
J2 − �2. The signs in (c) and

(d) are α = (� − √
�2 − J2)/J , β = (� + √

�2 − J2)/J.

J [Fig. 1(c)] and the CLS is [i,−i, 1, 1]T for the flat-band en-
ergy −J [Fig. 1(d)]. The localization of the CLSs is attributed
to destructive interference.

The conventional cross-stitch lattice is similar to the gener-
alized configuration in Fig. 1(a), except that the phase factor
e±iπ/2 only sticks to the upper and lower chains. The cross
couplings J/2 between sublattices A and B maintain the two
flat energy bands ±J [87], with both interchain and intrachain
hopping amplitudes set to J/2. The absence or presence of the
phase factor e±iπ/2 in the cross couplings is the only difference
between the conventional and generalized cross-stitch lattices.
Both types of cross-stitch lattices originate from the same
equivalent lattice as shown in Fig. 1(b). However, additional
intracell couplings

∑
n(eiπ/2�a†

nbn + e−iπ/2�b†
nan) between

sublattices in the vertical direction significantly alter the flat
bands. Adding intracell couplings to the conventional cross-
stitch lattice extends it into a four-flat-band Creutz ladder,
with the four flat-band energies being ±J ± � [88]. By con-
trast, adding the vertical coupling � between sublattices to the
generalized cross-stitch lattice results in a two-band Creutz
ladder, with the two flat-band energies being ±√

J2 + �2.
The subtly designed phase factor in the cross couplings ±iJ/2
of the generalized configuration in Fig. 1(a) plays a critical
role in maintaining the two-band structure. Imaginary (real)
vertical couplings decrease (increase) the band gap of the
non-Hermitian (Hermitian) Creutz ladder. In an interacting
system, large repulsive interactions in the Creutz ladder gen-
erate oscillating behavior in the local integrals of motion [57].

III. NON-HERMITIAN CREUTZ LADDER

Figure 2(a) shows the non-Hermitian Creutz ladder with
imaginary couplings introduced between two ladder legs
[89]. The intracell couplings i� are reciprocal, while the
intercell couplings ±iJ/2 are nonreciprocal. The real-space

Hamiltonian of the non-Hermitian Creutz ladder reads

H =
∑

n

− iJ

2
a†

n(an+1 + bn+1) + H.c.

+
∑

n

iJ

2
b†

n(an+1 + bn+1) + H.c.

+
∑

n

i�a†
nbn + i�b†

nan. (3)

The imaginary coupling, satisfying the anti-PT symmetry
[70,90,91], has been experimentally realized in various sys-
tems such as the optical microcavity [92], coupled waveguides
[93], optical fibers [94], heat diffusion systems [95], cav-
ity magnonics [96,97], cold atoms [98,99], electrical circuit
resonators [100–102], and quantum systems [103]. The fly-
ing atoms with ground-state coherence indirectly account
for the imaginary couplings through coherently mixed spin
waves [104]. Two setups, one consisting of a spinning res-
onator driven by a pair of lasers propagating in opposite
directions [105] and the other comprising a series of parallel
cascaded resonators [106], have already induced the imagi-
nary coupling. The auxiliary waveguides can be adiabatically
eliminated to realize the effective imaginary coupling in a
coupled waveguide array with alternately arranged auxiliary
and primary waveguides [107–109]. Additionally, a photonic
system consisting of two microresonators connected with two
common waveguides is accessible to obtain the dissipative
coupling. The effective Hamiltonian of this setup, expressed
as a 2 × 2 matrix, is reduced from the Heisenberg-Langevin
equations of microresonator modes. The indirect coupling
between microresonators indicated by nondiagonal terms of
the effective Hamiltonian is −ieiδ�, with the microresonator-
waveguide coupling � and propagation phase factor of the
probe light eiδ . When considering δ = ±π , the reciprocal
indirect coupling −ie±iπ� is anti-PT symmetric and is free
of the gain-loss match in PT symmetry. Here, we concentrate
on the imaginary coupling i�.

Figure 2(b) shows an equivalent non-Hermitian dimerized
chain. Additional imaginary couplings i� in Fig. 2(a) yield ad-
ditional gain and loss ±i� in each isolated dimer of Fig. 2(b).
The non-Hermitian generalization maintains the AB cage, but
affects the flat-band energy and localization dynamics. We
further elaborate on the non-Hermitian isolation to proceed
with our discussion. The gain and loss i�σz relate to the
imaginary coupling i�σx through a similar transformation(

i i
−1 1

)−1(
i� 0
0 −i�

)(
i i

−1 1

)
=

(
0 i�
i� 0

)
. (4)

The non-Hermitian Creutz ladder in Fig. 2(a) is obtained
by applying the inverse similar transformation to the non-
Hermitian dimerized lattice in Fig. 2(b). In this situation, the
Bloch Hamiltonian of the non-Hermitian Creutz ladder in
momentum space reads

Hk =
(

J sin k i� − iJ cos k

i� + iJ cos k −J sin k

)
. (5)

The band energies Ek = ±√
J2 − �2 of Hk are independent

of the momentum k, and the imaginary coupling � narrows
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FIG. 3. Spectra of the real-space non-Hermitian Creutz ladder under periodic boundary condition [(a), (b), (e), (f)] and open boundary
condition [(c), (d), (g), (h)]. The phase 	2 = π/2 is set in (e) and (g), causing a large number of energy levels coalesce to two real energies
indicated by yellow circles, where the AB cage forms. In (f), 	1 = π/2, both bands are flat as 	2 changes. The real (imaginary) part in the
four lower panels is depicted in black (red). The Creutz ladder has N = 7 unit cells, with J = 1 and � = 1/2.

the band gap. We notice that the non-Hermitian AB cage
is not at the EP except for J = �. This is a prominent dif-
ference from the non-Hermitian AB cages proposed exactly
at the EP, where the isolated dimers are unidirectionally
coupled [73,79,85]. However, all the energy levels of the non-
Hermitian Creutz ladder are two-state coalesced at J = �.

Next, we discuss the eigenenergies and eigenstates of the
non-Hermitian Creutz ladder. We plot the eigenenergies of a
14-site Creutz ladder in Fig. 3, where the nonreciprocal cou-
plings ±iJ/2 are substituted by e±i	1 J/2 and the reciprocal
couplings i� are substituted by ei	2�. The AB cage forms at
	1 = π/2 and is clearly exhibited in Fig. 3(e). We also show
the wave-function amplitudes of CLSs in Figs. 2(c) and 2(d).
The discrete Schrödinger equations for the non-Hermitian
Creutz ladder are

iψ̇Aj = i�ψBj − iJ/2ψAj+1 − iJ/2ψBj+1

+ iJ/2ψAj−1 − iJ/2ψBj−1 , (6)

iψ̇Bj = i�ψAj + iJ/2ψAj+1 + iJ/2ψBj+1

+ iJ/2ψAj−1 − iJ/2ψBj−1 , (7)

where ψAj and ψBj are the wave functions at the jth unit cell
of the Creutz ladder. It is straightforward to verify that the two
CLSs shown in Figs. 2(c) and 2(d) are the steady-state solu-
tions, and the wave functions outside the square plaquettes are
zero.

IV. NON-HERMITIAN LOCALIZATION DYNAMICS

The most significant and intriguing property of the non-
Hermitian Creutz ladder is the excitation confinement. The
non-Hermitian localization dynamics is solely induced by the
intracell imaginary coupling, including constant, oscillating,
and increasing excitation intensities. Both bounded and un-
bounded excitation intensities are compactly localized in finite

sites as a consequence of the localization of the CLSs. In this
section, we concentrate on the localization dynamics of the
non-Hermitian Creutz ladder for different excitations under
open boundary condition.

We analyze the localization dynamics of a single-site
excitation from an analytical perspective. The excitation at
sublattice A and the excitation at sublattice B are two types
of single-site excitations in the non-Hermitian Creutz ladder.
The localization dynamics is inevitable for any excitation due
to the fully flat spectrum. Any single-site excitation is com-
pletely confined within six sites, as the initial state labeled
ψ1(0) = [0, 0, 1, 0, 0, 0]T can be expressed as a superposition
of four CLSs

ψ1(0) = − β

2α − 2β
[−α, α, 1, 1, 0, 0]T

+ α

2α − 2β
[−β, β, 1, 1, 0, 0]T

− 1

2α − 2β
[0, 0,−α, α, 1, 1]T

+ 1

2α − 2β
[0, 0,−β, β, 1, 1]T. (8)

Similarly, the superposition coefficients of the initial state
ψ2(0) = [0, 0, 0, 1, 0, 0]T are given in the form of

ψ2(0) = − β

2α − 2β
[−α, α, 1, 1, 0, 0]T

+ α

2α − 2β
[−β, β, 1, 1, 0, 0]T

+ 1

2α − 2β
[0, 0,−α, α, 1, 1]T

− 1

2α − 2β
[0, 0,−β, β, 1, 1]T. (9)
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FIG. 4. (a), (b) Localization dynamics with normalized intensity
for single-site excitations. The non-Hermitian Creutz ladder has
N = 7 unit cells with 14 sites. (c) Intensity of the time-evolution
dynamics. The initial excitation is at a single site shaded in yellow
at t = 0. The parameters are fixed and being (a) J = 1, � = 1/5
and (b) J = 1, � = 9/10. The colored curves (marks) correspond
to analytical (numerical) results of intensities. (d) Periodicity T
with respect to the non-Hermiticity �, where T = π/

√
J2 − �2 and

� ∈ [0, 1).

For a single-site excitation at the upper leg of the Creutz
ladder, the initial state is ψ1(0). Thus, the time-evolution
state is

ψ1(t ) = e−iHtψ1(0)

=
[

iJ

2ω
sin ωt,− iJ

2ω
sin ωt, cos ωt,

− i�

ω
sin ωt,− iJ

2ω
sin ωt,− iJ

2ω
sin ωt

]T

, (10)

where we set ω = √
J2 − �2 for simplicity. For a single-site

excitation at the lower leg of the Creutz ladder, the initial state
is ψ2(0), and the time-evolution state is

ψ2(t ) = e−iHtψ2(0)

=
[

iJ

2ω
sin ωt,− iJ

2ω
sin ωt,− i�

ω
sin ωt,

cos ωt,
iJ

2ω
sin ωt,

iJ

2ω
sin ωt

]T

. (11)

Figures 4 and 5 depict the bounded intensity for the real
spectrum at J > �. In contrast, in Fig. 6, the intensity is

u
n
it

s

FIG. 5. The excitation confinement in the non-Hermitian Creutz
ladder for the real spectrum at J > �. (a) The initial state is [0, 0,

0, 0, 1, 0, 0, −1, 0, 0, 0, 0, 0, 0]T/
√

2. (b) The initial state is
[0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]T/

√
2. (c) The initial state is

[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]T/
√

2. The system parameters
are J = 1, � = 1/2, and N = 7.

unbounded and increases with time for the imaginary spec-
trum at J < �. Moreover, the time-evolution dynamics for any
initial excitation can be analytically obtained from the super-
position of these two types of single-site excitation dynamics.

In the following, we discuss the localization dynamics in
two different phases in detail. In the case of J > � with a
fully real flat spectrum, the remarkable feature of the non-
Hermitian Creutz ladder is the oscillation period affected by
� in the time-evolution process. Figure 4 performs numeri-
cal simulations of two types of single-site excitations, where
the dynamics for the non-Hermitian Creutz ladder with the
oscillation period π/

√
J2 − �2 can be observed. The non-

Hermiticity plays a key role in extending the dynamic cycle.
Moreover, the peculiar fusion phenomenon is depicted in
Fig. 5 by changing the initial states, and the localization area
ranges from sites 3 to 10 in all three panels.

In the case of J < � with a fully imaginary spectrum, the
non-Hermitian Creutz ladder exhibits a prominently surging
intensity in the time-evolution dynamics. The confinement
still remains because of the flatness of energy bands although
the spectrum is not real. In Fig. 6, the normalized intensity is
skillfully depicted to demonstrate the amplitudes, which elim-
inates the effect of sharply increased intensity and helps to
clearly observe the dynamic change of wave-function ampli-
tudes. Figure 6 shows the exotic phenomena of convergence,
splitting and transfer during the evolution. The analytical
time-evolution dynamics in Eqs. (10) and (11) helps to

u
n
it

s 
o
f

FIG. 6. The excitation confinement in the non-Hermitian
Creutz ladder for the imaginary spectrum at J < �. The total
intensity is normalized to unity. (a) The initial state is [0, 0,

0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]T/
√

2. (b) The initial state is
[0, 0, 0, 0, 0, 1, −1, 0, 0, 0, 0, 0, 0, 0]T/

√
2. (c) The initial state is

[0, 0, 0, 0, 1, −1, 0, 0, 0, 0, 0, 0, 0, 0]T/
√

2. The system parameters
are J = 1, � = 3/2, and N = 7.
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obtain the results in Fig. 6. Since the time-evolution processes
only involve several middle sites, the boundary condition has
no influence on the localization behaviors. However, when
considering an initial state excited at the lattice boundary, an
intriguing phenomenon appears in the Creutz ladder under an
open boundary condition.

Under the open boundary condition, the dynamic behavior
concerning the edge state of the non-Hermitian Creutz ladder
is also noteworthy, where the intensity may exponentially
decay with time. This image, resulting from the boundary con-
dition, breaks the inherent cognition that intensity increases
with time in the time-evolution process. The normalized right
edge state is |ψR〉 = [0, 0, . . . , 1,−1]T/

√
2 with the energy

−i� under open boundary condition, which is topologically
protected due to the topological equivalence of the two lat-
tices in Fig. 2. The time-evolution state |ψ (t )〉 for the initial
state |ψR〉 is directly obtained, and expressed as |ψ (t )〉 =
e−iHt |ψR〉 = e−�t [0, 0, . . . , 1,−1]T/

√
2. The time-evolution

dynamics indicates that wave-function amplitudes only dis-
tribute on the right boundary. The corresponding intensity of
the |ψ (t )〉 is I (t ) = e−2�t , which decreases sharply with time
due to its exponential form. Moreover, the nonzero wave-
function amplitudes only distribute for a short time, and the
light propagation is interrupted under the open boundary con-
dition. As for the left edge state |ψL〉 = [1, 1, . . . , 0, 0]T/

√
2

with energy i�, the exponentially increasing intensity of the
time-evolution state is I ′(t ) = e2�t . As a comparison, inten-
sities for two edge states at the dissipative coupling −i�
have opposite results under the open boundary condition. The
decaying intensity e−2�t corresponds to the left edge state
|ψL〉 with energy −i�, while the increasing intensity e2�t

corresponds to the right edge state |ψR〉 with energy i�.

V. EXPERIMENTAL REALIZATION

The coupled resonator optical waveguides is a promi-
nent platform for the realization of discrete lattice models
and many intriguing phenomena in physics [110,111]. The
coupled resonator optical waveguides are comprised of a
sequence of ring resonators, where the high-precision modula-
tion and manipulation of the light field are possible. Here, we
propose the non-Hermitian Creutz ladder using the coupled
resonator optical waveguides.

Figure 7(a) shows the schematic of a quasi-1D cou-
pled ring resonator array, where the blue rings are the
primary resonators, the cyan ellipses are the connecting
waveguides, and the gray rings are the linking resonators.
The primary resonators are indirectly coupled through the
connecting waveguides and the linking resonators and the
primary resonators on the upper and lower rows represent
the sublattices A and B, respectively. The ring resonators sup-
port two degenerate clockwise and counterclockwise modes.
The clockwise mode and the counterclockwise mode are
decoupled. Notably, the mode chirality in the primary res-
onators and the mode chirality in the linking resonators are
opposite.

Each connecting waveguide induces a nonreciprocal cou-
pling ±iJ/2 as shown in Fig. 7(b). The coupling is Hermitian
and has a direction-dependent phase factor. The total length
of the connecting waveguide is designed to allow the

(a)

(b) (c)(2m+1)π

2mπ

FIG. 7. (a) Schematic diagram of the coupled resonator optical
waveguide. The primary resonators (blue rings) are coupled to each
other via the connecting waveguides (cyan ellipses) and linking res-
onators (gray rings). (b) The realization of nonreciprocal Hermitian
coupling ±iJ/2, where photons tunneling between the resonators
through the upper and lower paths along the connecting waveguide
cumulate a phase factor of ei(2m+1)π and e2mπ , respectively. (c) The
realization of reciprocal non-Hermitian coupling i�. Two primary
resonators have the gain i�, the linking resonator has the loss iγ ,
the primary resonators and the linking resonator are coupled at the
coupling strength κ .

accumulation of a phase shift of ei(4m+1)π when light prop-
agates through it after a circle, where m is an integer. Such
a design enables the constructive (destructive) interference
of photons within the primary resonators (connecting waveg-
uide). Consequently, the photons are confined in the primary
resonators rather than the waveguides [112]. Furthermore, the
lengths of the upper and lower branches of the connecting
waveguide are different. The length difference causes a non-
reciprocal phase. We consider all the primary resonators in
the system are coupled to the connecting waveguides with
identical coupling strength J . When a photon hops from the
left resonator to the right resonator, it accumulates a different
phase π than when the photon hops in the opposite direc-
tion. Thus, the nonreciprocal hopping phase factor is eiπ/2 for
photons tunneling from left to right and is e−iπ/2 for photons
tunneling from right to left. Thus, the primary resonators
indirectly coupled through the connecting waveguides have
the left to right coupling +iJ/2 and the right to left −iJ/2
according to coupled mode theory. The dynamics in the pro-
posed coupled resonator optical waveguides are governed by
the Hamiltonian of the Hermitian cross-stitch lattice.

To introduce the reciprocal non-Hermitian coupling i�, we
use the linking resonator illustrated in Fig. 7(c) [82]. The
linking resonators are designed to be on resonant with the pri-
mary resonators; and the linking resonators are evanescently
coupled to the primary resonators with identical coupling
strength κ . In the situation that the linking resonator is lossy
with an attenuation rate γ � κ , the large dissipation enables
the adiabatical elimination of the linking resonator light field
and results in an effective coupling i� between the primary
resonators at the strength � = κ2/γ . However, the common
loss −i� also appear on the two primary resonators after
the adiabatic elimination process. Therefore, the extra gain
i� on the two primary resonators are required to balance
the common loss −i� induced by the linking resonator. The
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dynamics in the proposed coupled resonator optical waveg-
uides are governed by the Hamiltonian of the non-Hermitian
Creutz ladder.

VI. CONCLUSION AND DISCUSSION

In this work, we propose an approach to construct the non-
Hermitian AB cage through destructive interference, with the
essential point being the formation of isolated non-Hermitian
unit cells. We exemplify this approach by constructing a non-
Hermitian Creutz ladder with dissipation-induced imaginary
couplings introduced to the generalized cross-stitch lat-
tice. The interplay between Hermiticity and non-Hermiticity
affects the flat-band gap, compact localized states, and excita-
tion confinement. The proposed non-Hermitian AB cage, not
necessarily at the EP, enriches the dynamics of non-Hermitian
localization. We offer an alternative solution and make a step
forward in modulating the flat-band energy, manipulating the

light confinement, and steering the period of localization. Our
approach to construct the non-Hermitian AB cage could be ap-
plicable for some other quasi-1D systems such as the rhombic
lattice [18,47,48]. The non-Hermitian AB cage with desirable
localization properties can be directly constructed by design-
ing the decoupled non-Hermitian unit cells. Although the
construction of non-Hermitian AB cages in two-dimensional
and three-dimensional systems remains an open question, it is
possible to generalize our idea to higher-dimensional systems.
Alternatively, it is interesting to further consider the influence
of the skin effect [113–116] and the nonlinear effect [16,17].
Our results may have potential applications for optical device
design in the future.

ACKNOWLEDGMENT

We acknowledge the support of National Natural Science
Foundation of China (Grant No. 11975128).

[1] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phys. X 3,
1473052 (2018).

[2] D. Leykam and S. Flach, Perspective: Photonic flatbands, APL
Photonics 3, 070901 (2018).

[3] L. Morales-Inostroza and R. A. Vicencio, Simple method to
construct flat-band lattices, Phys. Rev. A 94, 043831 (2016).

[4] A. Ramachandran, A. Andreanov, and S. Flach, Chiral flat
bands: Existence, engineering, and stability, Phys. Rev. B 96,
161104(R) (2017).

[5] W. Maimaiti, S. Flach, and A. Andreanov, Universal d = 1
flatband generator from compact localized states, Phys. Rev.
B 99, 125129 (2019).

[6] D. Yu, L. Yuan, and X. Chen, Isolated photonic flatband with
the effective magnetic flux in a synthetic space including
the frequency dimension, Laser Photonics Rev. 14, 2000041
(2020).

[7] W. Maimaiti, A. Andreanov, and S. Flach, Flat-band generator
in two dimensions, Phys. Rev. B 103, 165116 (2021).

[8] H. Tasaki, Ferromagnetism in the Hubbard Models with De-
generate Single-Electron Ground States, Phys. Rev. Lett. 69,
1608 (1992).

[9] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Flat Bands
and Wigner Crystallization in the Honeycomb Optical Lattice,
Phys. Rev. Lett. 99, 070401 (2007).

[10] R. Mondaini, G. G. Batrouni, and B. Gremaud, Pairing and
superconductivity in the flat band: Creutz lattice, Phys. Rev. B
98, 155142 (2018).

[11] S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and
A. S. Desyatnikov, Detangling flat bands into Fano lattices,
Europhys. Lett. 105, 30001 (2014).

[12] Y.-X. Xiao, G. Ma, Z.-Q. Zhang, and C. T. Chan, Topological
Subspace-Induced Bound State in the Continuum, Phys. Rev.
Lett. 118, 166803 (2017).

[13] C. Gneiting, Z. Li, and F. Nori, Lifetime of flatband states,
Phys. Rev. B 98, 134203 (2018).

[14] L. Tang, D. Song, S. Xia, S. Xia, J. Ma, W. Yan, Y. Hu,
J. Xu, D. Leykam, and Z. Chen, Photonic flat-band lattices

and unconventional light localization, Nanophotonics 9, 1161
(2020).

[15] R. A. V. Poblete, Photonic flat band dynamics, Adv. Phys.: X
6, 1878057 (2021).

[16] D. Leykam, O. Bahat-Treidel, and A. S. Desyatnikov, Pseu-
dospin and nonlinear conical diffraction in Lieb lattices, Phys.
Rev. A 86, 031805(R) (2012).

[17] D. Leykam, S. Flach, O. Bahat-Treidel, and A. S. Desyatnikov,
Flat band states: Disorder and nonlinearity, Phys. Rev. B 88,
224203 (2013).

[18] G. Cáceres-Aravena, D. Guzmán-Silva, I. Salinas, and
R. A. Vicencio, Controlled Transport Based on Multior-
bital Aharonov-Bohm Photonic Caging, Phys. Rev. Lett. 128,
256602 (2022).

[19] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[20] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe,
T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning
superconductivity in twisted bilayer graphene, Science 363,
1059 (2019).

[21] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Super-
conductivity and strong correlations in moiré flat bands, Nat.
Phys. 16, 725 (2020).

[22] A. Bermudez, D. Patanè, L. Amico, and M. A. Martin-
Delgado, Topology-Induced Anomalous Defect Production by
Crossing a Quantum Critical Point, Phys. Rev. Lett. 102,
135702 (2009).

[23] K. Sun, Z. Gu, H. Katsura, and S. D. Sarma, Nearly Flat-
bands with Nontrivial Topology, Phys. Rev. Lett. 106, 236803
(2011).

[24] E. Tang, J.-W. Mei, and X.-G. Wen, High-Temperature Frac-
tional Quantum Hall States, Phys. Rev. Lett. 106, 236802
(2011).

[25] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional
Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett.
106, 236804 (2011).

023518-7

https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1063/1.5034365
https://doi.org/10.1103/PhysRevA.94.043831
https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1103/PhysRevB.99.125129
https://doi.org/10.1002/lpor.202000041
https://doi.org/10.1103/PhysRevB.103.165116
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1103/PhysRevLett.99.070401
https://doi.org/10.1103/PhysRevB.98.155142
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevB.98.134203
https://doi.org/10.1515/nanoph-2020-0043
https://doi.org/10.1080/23746149.2021.1878057
https://doi.org/10.1103/PhysRevA.86.031805
https://doi.org/10.1103/PhysRevB.88.224203
https://doi.org/10.1103/PhysRevLett.128.256602
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1103/PhysRevLett.102.135702
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.106.236804


S. M. ZHANG, H. S. XU, AND L. JIN PHYSICAL REVIEW A 108, 023518 (2023)

[26] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
Öhberg, E. Andersson, and R. R. Thomson, Observation of a
Localized Flat-Band State in a Photonic Lieb Lattice, Phys.
Rev. Lett. 114, 245504 (2015).

[27] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real,
C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina,
Observation of Localized States in Lieb Photonic Lattices,
Phys. Rev. Lett. 114, 245503 (2015).

[28] S. Mukherjee and R. R. Thomson, Observation of robust flat
band localization in driven photonic rhombic lattices, Opt.
Lett. 42, 2243 (2017).

[29] S. Mukherjee, M. D. Liberto, P. Öhberg, R. R. Thomson, and
N. Goldman, Experimental Observation of Aharonov-Bohm
Cages in Photonic Lattices, Phys. Rev. Lett. 121, 075502
(2018).

[30] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,
and D. M. Stamper-Kurn, Ultracold Atoms in a Tunable
Optical Kagome Lattice, Phys. Rev. Lett. 108, 045305
(2012).

[31] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and
Y. Takahashi, Coherent driving and freezing of bosonic mat-
terwave in an optical Lieb lattice, Sci. Adv. 1, e1500854
(2015).

[32] R. Drost, T. Ojanen, A. Harju, and P. Liljeroth, Topological
states in engineered atomic lattices, Nat. Phys. 13, 668 (2017).

[33] N. Masumoto, N. Y. Kim, T. Byrnes, K. Kusudo, A. Löffler,
S. Höfling, A. Forchel, and Y. Yamamoto, Exciton-pololariton
condensates with flat bands in a two-dimensional kagome
lattice, New J. Phys. 14, 065002 (2012).

[34] Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, Observa-
tion of flat band for terahertz spoof plasmons in a metallic
kagomé lattice, Phys. Rev. B 85, 205128 (2012).

[35] S. Kajiwara, Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano,
Observation of a nonradiative flat band for spoof surface plas-
mons in a metallic Lieb lattice, Phys. Rev. B 93, 075126
(2016).

[36] M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van
Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith, D.
Vanmaekelbergh, and I. Swart, Experimental realization and
characterization of an electronic Lieb lattice, Nat. Phys. 13,
672 (2017).

[37] C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R. Gulevich,
H. Schomerus, D. Vaitiekus, B. Royall, D. M. Whittaker,
E. Clarke, I. V. Iorsh, I. A. Shelykh, M. S. Skolnick, and
D. N. Krizhanovskii, Exciton Polaritons in a Two-Dimensional
Lieb Lattice with Spin-Orbit Coupling, Phys. Rev. Lett. 120,
097401 (2018).

[38] B. C. Xu, B. Y. Xie, L. H. Xu, M. Deng, W. J. Chen, H. Wei,
F. L. Dong, J. Wang, C. W. Qiu, S. Zhang, and L. Chen, Topo-
logical Landau-Zener nanophotonic circuits, Adv. Photon. 5,
036005 (2023).

[39] Y. He, R. Mao, H. Cai, J.-X. Zhang, Y. Li, L. Yuan, S.-Y. Zhu,
and D.-W. Wang, Flat-Band Localization in Creutz Superradi-
ance Lattices, Phys. Rev. Lett. 126, 103601 (2021).

[40] S. Longhi, Aharonov-Bohm photonic cages in waveguide and
coupled resonator lattices by synthetic magnetic fields, Opt.
Lett. 39, 5892 (2014).

[41] S. Mukherjee and R. R. Thomson, Observation of localized
flat-band modes in a quasi-one-dimensional photonic rhombic
lattice, Opt. Lett. 40, 5443 (2015).

[42] J. Vidal, R. Mosseri, and B. Douçot, Aharonov-Bohm Cages
in Two-Dimensional Structures, Phys. Rev. Lett. 81, 5888
(1998).

[43] C. Naud, G. Faini, and D. Mailly, Aharonov-Bohm Cages in
2D Normal Metal Networks, Phys. Rev. Lett. 86, 5104 (2001).

[44] D. Bercioux, D. F. Urban, H. Grabert, and W. Häusler, Mass-
less Dirac-Weyl fermions in a T3 optical lattice, Phys. Rev. A
80, 063603 (2009).

[45] D. Bercioux, N. Goldman, and D. F. Urban, Topology-induced
phase transitions in quantum spin Hall lattices, Phys. Rev. A
83, 023609 (2011).

[46] S. M. Zhang and L. Jin, Compact localized states and local-
ization dynamics in the dice lattice, Phys. Rev. B 102, 054301
(2020).

[47] M. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilberberg,
and A. Szameit, A square-root topological insulator with
non-quantized indices realized with photonic Aharonov-Bohm
cages, Nat. Commun. 11, 907 (2020).

[48] C. Jörg, G. Queraltó, M. Kremer, G. Pelegrí, J. Schulz, A.
Szameit, G. V. Freymann, J. Mompart, and V. Ahufinger,
Artificial gauge field switching using orbital angular momen-
tum modes in optical waveguides, Light Sci. Appl. 9, 150
(2020).

[49] M. Di Liberto, S. Mukherjee, and N. Goldman, Nonlinear dy-
namics of Aharonov-Bohm cages, Phys. Rev. A 100, 043829
(2019).
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