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The interaction between light and mechanical vibrations in a cavity is often exploited to produce higher-order
sidebands (HOSs) or combs, which are used in optical communication networks and spectroscopy, among other
things. Although an extensive study of optomechanically induced HOSs has been done, their proper control and
manipulation using only continuous-wave (CW) laser drive are still to be explored. Here, we employ a mechanical
parity-time-(PT ) symmetric structure with optically induced gain and loss. It allows us to manipulate the flow of
mechanical energies between the cavities, which has consequences on the optical response of the cavities. Based
on our numerical investigations, we find that the higher-order optical sidebands start to emerge if PT symmetry
is broken. We precisely control the number of higher-order sideband lines by adjusting the coupling rate between
the cavities with fixed drive power. In addition, we observe that the exceptional point (EP) induces the formation
of two synchronized higher-order optical-sideband spectra, which opens a promising EP-based platform for the
realization of optical readout of various mechanical synchronization phenomena, copies of the optomechanical
frequency comb, sensing, and synchronization of remote clock time, among other things.
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I. INTRODUCTION

.Cavity optomechanics has become the subject of extensive
study lately. The colocalization of the optical and mechani-
cal modes in an optomechanical (OM) cavity has produced
many interesting outcomes ranging from classical to quantum
phenomena [1]. One of them is self-sustained mechanical
oscillations [2,3] in the cavity, provided we drive the cavity
with a blue-detuned cw laser above a certain threshold level
[4]. The increase in driving cw laser power [5] or the large
amplitude of the self-sustained oscillation [6] increases the
optomechanical nonlinearity and creates significant modula-
tion in the intracavity-field-intensity evolution. As a result,
we get higher-order sidebands (HOSs) or combs in the op-
tical spectrum with frequency line spacing decided by the
mechanical resonance frequency. Miri et al. [7] showed that
the formation of such a HOS or comb in an OM cavity is
analogous to cascaded four-wave mixing in microresonator
Kerr frequency combs [8]. A HOS can also be generated if
one drives the cavity with a red-detuned pump laser and an
external probe field because the beating of the cw pump laser
with the probe at mechanical resonance frequency ensures
coherent mechanical oscillations [9,10].

The optical HOS or comb has many exciting applications in
spectroscopy [11], optical clocks [12], and other areas [13]. So
the control and manipulation of an optomechanically induced
HOS or comb are crucial in a low-power integrated structure.
In the existing literature, the sidebands in the OM system
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with pump-probe drive can be manipulated in many ways. For
example, the relative phase and the power of the probe field
can be utilized to manipulate the optical spectrum in the cavity
[9]. The photon tunneling rate in coupled passive optical cav-
ities also provides additional means to control the sidebands
[14]. He [15] showed the use of active-passive coupled optical
cavities in the PT -symmetry structure to enhance the number
of spectral lines. In general, the PT -symmetry structure has
been utilized in the field of optomechanics to show low-power
phonon lasing [16], low-power chaos generation [17], en-
hanced optomechanically induced transparency (OMIT) [18],
and mass sensing [19], among other things. Apart from these,
hybrid atom-optomechanical systems have also been used to
enhance and manipulate the sidebands [20]. But ample scope
to investigate the proper control of sidebands when it comes to
driving the cavity with a cw pump laser exists. Conventionally,
it is done by increasing the cw laser drive power, but Djorwe
et al. [21] utilized the dynamical attractors to manipulate
the optical combs. Quadratic optomechanical coupling [22]
and dissipation optomechanical coupling [23] are also being
exploited in this regard.

The emergence of higher-order optical sidebands depends
on the amplitude of the mechanical oscillation [24] in addition
to driving power, where oscillations with higher amplitude
result in more spectral lines [6]. In our study, we manipulate
the amplitude of the oscillations to control the sidebands using
only a cw pump-laser drive. This is achieved by using a
mechanical PT -symmetric structure with optically induced
gain and loss [25]. In this system, we focus on tuning only
the mechanical coupling rate to achieve control over the
mechanical oscillation amplitude. Therefore, we are able to
demonstrate a different way of invoking and controlling the
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FIG. 1. Generic setup of two OM cavities (modeled by a Fabry-
Pérot cavity where one end of the mirror is allowed to move freely)
coupled mechanically (with coupling rate J), forming a mechanical
gain-loss OM system. The loss and gain of the mechanical resonators
(with dimensionless position x1,2, dimensionless momentum p1,2,
resonance frequency ωm1,2 , and decay rate γm1,2 ) are achieved by driv-
ing the cavity with red-detuned (�1 < 0) and blue-detuned (�2 > 0)
cw lasers, respectively.

sidebands, contrary to the conventional way of adjusting the
driving power. We also study the role of breaking the PT
symmetry to generate a HOS in a deterministic manner. In
addition, we explore how the mechanical resonators with non-
degenerate resonance frequency show collective behavior to
produce synchronized optical HOSs. In the existing literature,
the collective phenomena in OM systems are used for various
classical and quantum synchronization purposes [26–28]. The
synchronization process in our study is understanding the im-
pact of an exceptional point (EP) on producing two wideband
spectra with similar spectral envelopes.

This paper is organized in the following manner. In Sec. II,
we show the mathematical model and the semiclassical dy-
namical equations in our coupled OM system. In Sec. III,
we explore the mechanical PT -symmetry optomechanical
system, discussing the mechanical dynamics and its effect on
intracavity intensity. In Sec. IV, we study the synchronization
between the two optical HOSs in the cavities. Last, we sum-
marize our work in Sec. V.

II. MATHEMATICAL MODEL AND DYNAMICAL
EQUATIONS

The system, as shown in Fig. 1, consists of two optome-
chanical cavities with mechanical coupling. The Hamiltonian
of the whole system can be represented as the sum of indi-
vidual optomechanical cavity terms (including the drive term)
and the mechanical coupling term (assuming h̄ = 1):

Hom j = ωc j â
†
j â j + ωmj

2

(
x̂2

j + p̂2
j

) + g0 j â
†
j â j x̂ j

+ (Ejâ
†
j e

−iωLt + H.c.), (1a)

Hcoup = −Jx̂1x̂2, (1b)

Htotal = Hom1 + Hom2 + Hcoup. (1c)

The subscripts j = 1, 2 indicate the two cavities, labeled cav-
ity 1 and cavity 2, respectively. â†

j and â j are the creation
and destruction operators of the photons, respectively. Here,
x̂ j and p̂ j are the dimensionless position and momentum

TABLE I. Parameters in the coupled OM system.

Symbol Meaning

E1,2 Driving strength of the laser
κ1,2 Optical cavity decay rates
γm1,2 Mechanical cavity decay rates
ωL Driving laser frequency
ωm1,2 Mechanical resonance frequencies
ωc1,2 Optical resonance frequencies
�1,2 = ωL − ωc1,2 Detuning of the laser
J Mechanical coupling rate
g01,2 Optomechanical coupling rate

operators of the mechanical resonators, respectively. The de-
tails of the other parameters are given in Table I. Since we
study the dynamics of the mean values of the operators,
we ignore the fluctuations present in the system. Using the
mean-field approximation, i.e., 〈â j x̂ j〉 = 〈â j〉〈x̂ j〉, the dynam-
ical equations of the mean values of operators (x j ≡ 〈x̂ j〉,
p j ≡ 〈p̂ j〉, and a j ≡ 〈â j〉) of the system in the rotating frame
of the driving laser are written as [1,6,29]

da j

dt
= −i

(
� j + g0 j x j

)
a j − κ j

2
a j + Ej, (2a)

dx j

dt
= ωmj p j, (2b)

d p j

dt
= −ωmj x j − γmj

2
p j + Jx3− j + g0 j |a j |2. (2c)

Equations (2) are coupled and nonlinear in nature. We
evaluate the equations through numerical simulations since
exact analytical derivations are difficult. Correspondingly,
the steady-state expressions of the dynamical variables are
written as

ā j = Ej

i
(
� j + g0 j x̄ j

) + κ j

2

, (3a)

p̄ j = 0, (3b)

ωmj x̄ j = Jx̄3− j + g0 j |ā j |2. (3c)

We made certain assumptions in the parameters in
Eqs. (1)–(3). The mechanical cavities are degenerate, i.e.,
ωm1 = ωm2 = ωm. We provide identical driving power E1 =
E2 = E to the cavities. The decay rates and optomechanical
coupling rates are identical, i.e., κ1 = κ2 = κ and g01 = g02 =
g0. The detunings are in resonance with the mechanical reso-
nance frequency, i.e., −�1 = �2 = ωm.

III. FORMATION OF HIGHER-ORDER
OPTICAL SIDEBANDS

In this section, we study the temporal mechanical dynamics
in a mechanical PT -symmetric optomechanical configura-
tion, followed by its effect on the optical response of the
cavities.

A. Mechanical PT -symmetry configuration

The conditions of mechanical PT symmetry are ob-
tained by adiabatically eliminating the optical modes where
the effective optomechanical coupling G1,2 = g0a1,2 and
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intrinsic decay rates γm1,2 are assumed to be weaker than
κ , i.e., {G1,2, γm1,2} � κ . Thus, the effective non-Hermitian
Hamiltonian is written as [30]

Heff = [(
ωm − δωm1

) − iγeff1

]
b̂†

1b̂1

+ [(
ωm + δωm2

) + iγeff2

]
b̂†

2b̂2

− J (b̂1b̂†
2 + b̂†

1b̂2). (4)

Here, the x̂ j and p̂ j operators of the mechanical resonators are
written in terms of phonon creation (b̂†

j) and destruction (b̂ j)

operators, where x̂ j = b̂ j+b̂†
j√

2
and p̂ j = b̂ j−b̂†

j

i
√

2
. After the elimi-

nation of the optical modes, the effective resonance frequency
of mechanical resonators in cavities 1 and 2 becomes ωm ∓
δωm1,2 , while the effective decay (gain) rate becomes γeff1 =
γopt1

+ γm1 (γeff2 = γopt2
− γm2 ) [25,30,31]. The δωm1,2 and

γopt1,2
terms are the optomechanically modified terms [32],

and at |�1,2| ∼ ωm, γopt1,2
is written as [33,34]

γopt1,2
= 64g2

0|ā1,2|2ω2
m

κ
(
κ2 + 16ω2

m

) . (5)

The coupling rate J is assumed to be weaker, i.e., J � ωm,
and the interaction term in Eq. (1b) is written in the form
of −J (b̂1b̂†

2 + b̂†
1b̂2) under the rotating-wave approximation.

Applying P transformation (i ↔ i, b̂1 ↔ −b̂2, b̂†
1 ↔ −b̂†

2)
and T transformation (i ↔ −i, b̂ j ↔ b̂ j , b̂†

j ↔ b̂†
j) to Eq. (4),

we can show that [Heff ,PT ] = 0 under the following con-
ditions: δωmj is negligible (δωmj � ωm), and γeff1 = γeff2 .
Equivalently, in terms of x̂ and p̂ operators, P transformation
includes i ↔ i, x̂1 ↔ −x̂2, and p̂1 ↔ −p̂2, and T transforma-
tion includes i ↔ −i, x̂ j ↔ x̂ j , and p̂ j ↔ −p̂ j [35,36]. The
mentioned strict conditions of PT symmetry can be relaxed
and are applicable for cases in which the effective decay rates
are unequal, γeff1 
= γeff2 [30,37]. The matrix representation of
Eq. (4) is written as

Heff = (
b̂†

1 b̂†
2

)(ωm − iγeff1 −J

−J ωm + iγeff2

)(
b̂1

b̂2

)
, (6)

where the eigenfrequencies of the corresponding mechanical
supermodes b̂1 ± b̂2 are calculated as

ω± = ωm − i
γeff1 − γeff2

4
± √

χ, (7)

where χ is given by

χ = J2 −
(

γeff1 + γeff2

4

)2

. (8)

The system respects PT symmetry if χ > 0, in which the
real part of the eigenfrequencies is split by the amount 2

√
χ .

The PT symmetry breaks down if χ < 0; in this regime,
the eigenfrequencies of the two supermodes coalesce onto
each other, and the supermodes experience either gain or loss.
The transition from the PT phase to the broken PT phase
occurs at χ = 0, i.e., J = γeff1 +γeff2

4 , which is known as the
exceptional point.

In our study, we keep the effective rates, i.e., γeff1 and
γeff2 , fixed (or, equivalently, the driving power is kept fixed)
and vary the mechanical coupling rate J . Since the driving

FIG. 2. (a) Real and (b) imaginary parts of the eigenfrequencies
ω+ (solid line) and ω− (dash-dotted line) in which an EP (dashed
vertical line) occurs at J = γeff1

+γeff2
4 = 1.1 × 10−2κ .

strength E is the same for both the cavities, γopt1
≈ γopt2

=
γopt, and we choose γopt = 0.02κ . The intrinsic decay rate γm1

of the resonator in cavity 1 is made higher (more dissipative)
than the other, i.e., γm1 = 5 × 10−3κ and γm2 = 10−4κ , such
that γeff1 = 2.5 × 10−2κ and γeff2 ≈ 2 × 10−2κ . We choose
γeff1 > γeff2 to provide decaying dynamics in the PT phase,
and its further significance is discussed in the next subsection.
The decay rates are chosen to be on the order of 10−2κ ,
and we vary the mechanical coupling rate on the same order.
We choose ωm = 10κ to operate the cavities in the resolved
regime such that δωmj is negligible [33,34] and the optome-
chanical coupling rate is set to g0 = 10−3κ . The values of the
parameters mentioned here can be achieved in experiments
[38,39]. Figures 2(a) and 2(b) show the real and imagi-
nary parts of the eigenfrequencies, respectively, obtained with
Eqs. (7) and (8). The PT -symmetric phase is observed at a
coupling rate larger than

γeff1 +γeff2
4 , i.e., J >

γeff1 +γeff2
4 = 1.1 ×

10−2κ , where Re ω± are split about ωm. Lowering the cou-
pling rate below

γeff1 +γeff2
4 , i.e., J <

γeff1 +γeff2
4 = 1.1 × 10−2κ ,

will break the PT phase, where one supermode experiences
loss while the other experiences gain [see Fig. 2(b)] and
Re ω± overlap each other. The transition between the two
phases occurs through the EP at the critical coupling rate
J = Jcritical = 1.1 × 10−2κ . The analytical treatment to obtain
Jcritical works consistently with numerical simulations (which
will be performed in the next section) by operating γopt1,2

�
0.5κ . For simplicity, we did not consider the effect of mul-
tiple EPs, which would be prevalent in this type of system
if we operate γopt1,2

> 0.5κ . Because fixing γopt1,2
at a high

value requires larger driving power, the combination of strong
optomechanical nonlinearity and a larger mechanical coupling
rate would invoke multiple EPs, as is evident in [40].

B. Temporal mechanical dynamics and stability analysis

We solved Eq. (2) using the Runge-Kutta method to obtain
the mechanical dynamics at various regimes with the initial
conditions of all the dynamical variables set to zero. The
numerical analysis includes the optical modes instead of adi-
abatically eliminating them, as done in Sec. III A. We require
the value of driving amplitude E under steady-state conditions
to perform the numerical analysis. Using the parameters in the
previous section, we extract the steady intracavity intensity
|ā j |2 from Eq. (5), which is substituted in Eq. (3). Consider-
ing weak optomechanical interactions, we can safely ignore
the term g0x̄ j in Eq. (3), and thereby, we obtain the driving

023517-3



SOUVIK MONDAL AND KAPIL DEBNATH PHYSICAL REVIEW A 108, 023517 (2023)

FIG. 3. (a) The dynamics of two mechanical resonators, x1 (orange lines) and x2 (blue lines), with decaying oscillations in the PT phase
at J = 1.5 × 10−2κ (=1.4

γeff1
+γeff2
4 ). (b) The mechanical dynamics with steady amplitude of oscillations A1,2 at the EP for J = 1.1 × 10−2κ

(= γeff1
+γeff2
4 ). (c) The mechanical trajectories of resonator 1 (orange lines) and resonator 2 (blue lines) in the phase space, showing limit cycles

at the EP. (d) The mechanical dynamics in the broken PT phase at J = 0.2 × 10−2κ (= 0.18
γeff1

+γeff2
4 ). (e) The mechanical trajectories in the

phase space in the broken PT regime. (f) The stability analysis showing the transition between stable and unstable regions close to the EP.

strength E ≈ 709κ . Therefore, the parameters ωm, |�1,2|, g0,
γm1 , γm2 , and E of the numerical simulation are set as 10κ ,
10κ , 10−3κ , 5 × 10−3κ , 10−4κ , and 709κ . Figure 3(a) shows
the mechanical dynamics in the PT phase for the chosen
coupling rate of J = 1.5 × 10−2κ (=1.4 × γeff1 +γeff2

4 ). Here,
the choice of coupling rate J is for representational purposes,
and J can be any value greater than

γeff1 +γeff2
4 , which would

show the same dynamics. We observe periodic amplitude vari-
ation dynamics in both resonators, which indicates a strong
exchange of mechanical energy between the resonators, and
the hybridized mechanical modes b̂1 ± b̂2 with energy levels
decided by Re ω+ and Re ω− exhibit a gap. In this regime,
the effective loss of the mechanical resonator in cavity 1
overcompensates the effective gain of the resonator in cavity
2, and thereby, the mechanical dynamics decays at the rate
(γeff1 − γeff2 )/4 ≈ 1.3 × 10−3κ . Lowering the coupling rate
towards the EP at J = 1.1 × 10−2κ (= γeff1 +γeff2

4 ) gives rise
to self-sustained oscillation with steady amplitude Aj in both
mechanical resonators, as shown in Fig. 3(b). Here, the en-
ergy levels of the hybridized mode given by Re ω± coalesce
onto each other (i.e., Re ω± = ωm), triggering spontaneous
localization of the mechanical energies in the resonators. In
other words, the mechanical coupling reduces to the critical
value where there is no longer an exchange of mechanical
energies, and the effective loss in one mechanical resonator
cannot compensate for the effective gain in another. As a
result, the mechanical oscillation in the second resonator is

amplified. The first resonator with effective loss also experi-
ences amplification since coupling with the second resonator
is finite. As the driving strength E induces strong optomechan-
ical nonlinearity in both cavities, the growth of oscillations in
the resonators is stabilized and forms limit cycles, as shown
in Fig. 3(c). The value of the amplitude Aj depends on how
the incident optical power balances the mechanical dissipation
in cavity 2 [21,24] and the amount of mechanical coupling
to cavity 1. Intuitively, one would expect the limit cycles in
both resonators to have the same amplitude, but the first res-
onator has a slightly lower amplitude [see Fig. 3(c)] because
a fraction of the local mechanical energy (∼A2

1) is lost in
the environment through the higher effective decay rate γeff1 .
Figure 3(d) shows the dynamics in the broken PT phase at
a lower coupling rate of J = 0.2 × 10−2κ (= 0.18

γeff1 +γeff2
4 ),

where the oscillations quickly grow to settle into steady am-
plitude. From the mechanical phase portrait in Fig. 3(e), we
observe that A2 has a significantly higher value than A1 the
other since a lower amount of coupling would result in more
confinement of mechanical energy in the second resonator.

We performed a linear stability analysis to relate the insta-
bility in the system to the growth of mechanical oscillation
in the resonators after breaking the symmetry conditions. The
nonlinear coupled dynamical equation (2) can be linearized
by considering the perturbation of the dynamical variables
around a strong average value, i.e., o = ō + δo (where o =
aj, x j, p j). Therefore, the linearized form of the dynamical
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FIG. 4. Possible realization of the system with a balanced effec-
tive gain-loss condition. Lower decay rates of the order of 10−4κ give
rise to instability in the PT phase.

equations without noise is written as

d�

dt
= M�, (9)

where � = (δa1, δa∗
1, δa2, δa∗

2, δx1, δp1, δx2, δp2)T and the
8 × 8 matrix M is given in Appendix A. The stability con-
dition of the system can be explicitly obtained through the
Routh-Hurwitz criterion [41], but it would be cumbersome
to show here. So we numerically obtained the stability con-
ditions of the system by observing the real parts of the
eigenvalues (λ j/κ , j = 1, 2, . . . , 8) of M. The system loses
its stability if any of the real parts of λ j become posi-
tive. Figure 3(f) shows the maximum of the eigenvalues
λ j/κ of M with the variation of the mechanical coupling
rate, where the system becomes unstable in the regime J �
1.1 × 10−2κ = γeff1 +γeff2

4 . Thus, by breaking the PT symme-
try through the EP, the system loses its stability. The instability
caused by breaking the symmetry will result in the growth of
mechanical oscillations (ultimately towards limit cycles), as
confirmed by the mechanical dynamics obtained numerically.
Consequently, the limit cycles will result in optical-sideband
formation, as we will discuss in the next section.

The intrinsic decay rates of the mechanical resonators
can be chosen to be equal, γm1 = γm2 = γm, at lower val-
ues (γm � 0.1γopt), such that we can have balanced effective
gain and loss, i.e., γeff1 = γeff2 ≈ γopt. But the transition point
between the stable and unstable regimes does not happen
close to the EP. As shown in Fig. 4, the unstable region
persists in the PT phase for lower values of decay rates,
which may give rise to finite oscillations. So operating under
balanced gain-loss conditions suffers from stability issues in
the PT phase. Increasing γm makes the transition point move
towards the EP, and γeff1 (= γopt + γm) starts to dominate
over γeff2 (= γopt − γm). We choose γm1 > γm2 (γeff1 > γeff2 )
from a practical realization point of view because engineering
perfectly balanced γm can be difficult.

C. Intensity dynamics and Fourier spectra

The limit cycles of the mechanical resonator in an
optomechanical cavity will lead to the formation of optical

0.4 0.8 1.2 1.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1,
2

PTBroken
PT

(b)

(c)

(a)

(d)

×10−2

J (units of κ)

FIG. 5. (a) Normalized oscillation amplitudes ε1 (orange line
with dots) and ε2 (blue line with dots) with the variation of the
mechanical coupling rate J . (b)–(d) The steady evolution of the
intracavity photon number |a2|2 for the PT phase (J = 1.4

γeff1
+γeff2
4 ),

EP (J = γeff1
+γeff2
4 ), and broken PT phase (J = 0.18

γeff1
+γeff2
4 ),

respectively.

higher-order sidebands with sufficient drive power and
a high amplitude of the mechanical oscillations [6,7].
The phenomenon is related to the cascaded interaction
of scattered light (photons) in the cavity with sustained
mechanical motions (phonons). The analytical solution
of the intracavity light field is written as an infinite sum
of frequency components spaced by integer multiples of
mechanical resonance frequency ±kωm (k = 0, 1, 2, . . . )
if we assume x j (t ) = ε j cos(ωmt ) (where ε j = g0Aj

ωm
is the

normalized amplitude) [24]:

a j (t ) = eiε j sin(ωmt )
∞∑

k=−∞
ak

je
ikωmt . (10)

In terms of ε j , ak
j ∝ Jk (−ε j ), where Jk is the kth-order Bessel

function of the first kind. We are able to achieve continuous
control of the amplitude of oscillation Aj (or ε j) by tuning J as
shown in Fig. 5(a), which directly impacts the strength of the
intracavity field at different sidebands. In Eq. (10), the change
in normalized amplitude ε j with the coupling J is implicitly
present, i.e., ε j = ε j (J ). We have a finite and varying ε j if
we break the PT phase. We observe a continuous increase
of ε2 towards the value of 3.2 (i.e., for the case of J = 0)
as we reduce the coupling, while ε1 decreases towards zero.
As mentioned in Sec. III B, this happens because of stronger
confinement of mechanical energy in the second mechanical
resonator with lower coupling strength. For the remainder
of this section, we focus on only the effect of mechanical
oscillations on the optical response of cavity 2. Figures 5(b)–
5(d) show the evolution of the intracavity photon number
|a2|2 for different conditions. In the PT phase, |a2|2 decays
to a steady value of around 5 × 103. Once the EP is reached,
the dynamical back-action of the finite mechanical oscillation
modulates the intracavity optical intensity. The intensity is
further modulated in the broken PT phase due to high ε2.
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(b) (c)(a)

ω (units of ωm) ω (units of ωm)

(u
ni

ts 
of

 κ
)

ω (units of ωm)

FIG. 6. The output optical spectrum |Sout2 | of cavity 2 corresponding to the (a) PT phase (J = 1.4
γeff1

+γeff2
4 ), (b) exceptional point

(J = γeff1
+γeff2
4 ), and (c) broken PT phase (J = 0.18

γeff1
+γeff2
4 ).

The output light field from the cavities is obtained
from input-output formalism [42], i.e., aout j (t ) = E (t ) −
κaj (t ). We obtained the output optical spectrum by taking
the Fourier transform of the output field, i.e., Sout j (ω) ∝∫ ∞
−∞ aout j (t )e−iωt dt . Figure 6 shows the output optical spec-

trum from cavity 2 under different conditions. We did Fourier
transform the steady response of aout2 (t ) numerically to show
the spectrum of cavity 2. As our study is in the rotating frame
of the driving laser, the actual spectrum is shifted by ωL. In the
PT phase shown in Fig. 6(a), the spectrum has no sidebands
because the system is in a steady state with damped oscilla-
tions. We see a sudden transition in the nature of the output
spectrum at the EP in Fig. 6(b) because the sidebands appear
with a frequency spacing of ωm. This happens because of the
emergence of the limit cycle, as discussed earlier. Figure 6(c)
shows a significant increase in the spectral lines in the broken
PT phase because the increased confinement of mechanical
energy leads to limit cycles with higher amplitude. In our
analysis, we did not consider any source of noise or fluctu-
ations in the system that contributes to the linewidth of the
sidebands because we are interested in the center line of the
sidebands. Since the intracavity field acquires strengthened
higher-order frequency components when the symmetry is
broken (as is evident from the intensity dynamics in Fig. 5),
we can write the output field in the form of Eq. (10) as
aout j (t ) = ∑∞

k=−∞ rk
j e

ikωmt (k = 0,±1,±2, . . .). So the spec-
trum obtained in Fig. 6 is equivalent to taking the Fourier
transform of aout j (t ) = ∑∞

k=−∞ rk
j e

ikωmt . Hence, we are able to
invoke higher-order sidebands by breaking the PT symmetry.

Thus, in our study, we do not require any combination
of pump-probe lasers or any adjustment of the cw driving
power to achieve control of the sidebands, but rather, we
tune only the coupling rate. In the current literature, proper
control and enhanced generation of HOSs are explored in
active-passive and passive-passive coupled optical cavities or
hybrid optomechanical systems. However, our investigation
focuses on the generation of HOSs in the mechanical gain-loss
optomechanical system, a previously unexplored aspect. This
system presents a deterministic approach to generating and
controlling HOSs by breaking PT symmetry through the EP
using a cw laser drive. One could also consider a mechanical
gain-gain or loss-loss optomechanical system, but they do not
provide proper control of HOSs (see Appendix B).

IV. SYNCHRONIZATION BETWEEN TWO SPECTRA

To this point, we have observed the output optical spec-
trum from cavity 2, but the sidebands will also emerge in the
red-detuned cavity 1 since a finite oscillation amplitude ε1

exists in the broken-symmetry phase. We show, in this section,
the output HOS exists in both the optical cavities in a “syn-
chronized” manner. Here, we define synchronization subject
to the fulfillment of the following conditions: (i) locking of
the spectral peaks to a common frequency if any frequency
mismatch exists and (ii) similarity of the spectral envelopes.
Since the nature of the spectral envelopes is determined by ε j

[see Eq. (10)], the difference |ε2 − ε1| plays a deciding role
in the synchronization process, as we will see later in this
section.

We set the resonance frequencies in the mechanical res-
onators to be nondegenerate, i.e., ωm1 
= ωm2 , and substitute
them in the matrix [see Eq. (6)] to obtain the new eigenvalues
of the supermodes as

ω± = ωm1 + ωm2

2
− i

γeff1 − γeff2

4

±
√

J2 +
(

�ω

2
+ i

γeff1 + γeff2

4

)2

, (11)

where �ω = ωm2 − ωm1 .
Due to the presence of �ω, the system no longer respects

PT symmetry, and the degeneracy of the two supermodes is
lifted near the EP. Employing nondegenerate resonators with
a minor frequency mismatch presents a more practical sce-
nario, as it can be challenging to engineer perfectly matched
frequencies. We provide a map of the synchronized HOS
regime in Fig. 7 in the parametric space of frequency deviation
�ω and coupling rate J . We identify four regimes: (i) In the
steady state, there are no sidebands in the regime because
the mechanical oscillations in the cavity remain absent, and
this regime exists in the higher mechanical coupling region.
(ii) In the intermediate state, the mechanical oscillations start
to grow, but it takes many time cycles to reach the stable
limit cycle. (iii) In the synchronized state, the mechanical
oscillations reach the limit cycles to produce synchronized
HOSs with similar spectral envelopes. (iv) In the asynchro-
nized state, the optical spectra in the cavities no longer remain
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FIG. 7. Possible regimes in our system in the parameter space
of resonance-frequency deviation �ω = ωm2 − ωm1 and mechanical
coupling rate J . The synchronized regime moves away from the EP
line as �ω increases.

synchronized because the spectral envelopes are vastly dif-
ferent, and this regime exists in the lower mechanical
coupling region. The boundary between the steady-state and
intermediate-state regimes is obtained with the linear stability
analysis. The system goes into the intermediate state from the
steady-state regime when one of the eigenvalues of the matrix
M in Eq. (9) becomes positive, such that the mechanical os-
cillations start to grow, and the system becomes unstable. But
the oscillations do not acquire limit cycles right away since
the system goes into a sort of intermediate-state regime [43]
before the two resonators with finite �ω oscillate with locked
frequency. The higher-order sidebands are not fully formed in
this regime. In the synchronized regime, the two resonators
mutually synchronize themselves to oscillate with a locked
frequency [40]. The amplitudes of the limit cycles are close
enough to produce HOSs with similar spectral envelopes in
both cavities. The boundary between the intermediate state
and the synchronized regime can be described by analyzing
the imaginary part of Eq. (11). We find that near the boundary
Im ω+ ≈ 0 and in the synchronized regime Im ω+ > 0. The
positive growth rate of one of the supermodes indicates that
the oscillation in the resonators grows quickly to form limit
cycles. Figure 8(a) shows Im ω± with the variation of the
mechanical coupling rate where the higher-frequency devia-
tion �ω results in higher separation between Im ω+ and Im
ω− near the EP. The plot of Im ω± is obtained by using the
following expression:

Im ω± = −γeff1 − γeff2

4
±

√√√√√
η2 + (

�ω
γeff1 +γeff2

4

)2 − η

2
,

(12)

where η = J2 − (
γeff1 +γeff2

4 )2 + ( �ω
2 )2. The expression is ob-

tained explicitly by taking the imaginary part of Eq. (11). The
plot of Im ω+ in Fig. 8(b) determines at what mechanical
coupling strength the growth rate of the supermode becomes
positive. We observe that the critical mechanical coupling
where Im ω+ = 0 increases for higher �ω. Intuitively, we

FIG. 8. Im ω± with the variation of mechanical coupling J ,
where the dotted lines are for the PT -symmetric configuration when
�ω = 0. (a) The degeneracy near the EP is lifted for �ω 
= 0, where
the gap between Im ω+ (violet solid curve) and Im ω− (orange solid
curve) increases for larger �ω. (b) The critical coupling strength
where Im ω+ = 0 increases with increasing �ω.

explain this by saying that higher critical mechanical coupling
strength is required to synchronize the resonators with a large
resonance-frequency deviation. The asynchronized regime oc-
curs at a lower mechanical coupling rate with a significant
difference in the amplitude of oscillations, and the bound-
ary line with the synchronized regime can be best described
by comparing the intracavity intensity phase portraits. We
choose a certain frequency shift, say, �ω = 1.2 × 10−3ωm,
to observe the frequency spectrum in the synchronized and
asynchronized regimes and explain in the later part of this
section how we decided the boundary between synchronized
and asynchronized regimes. The demarcation between the
regimes determined through analytical methods closely aligns
with the boundaries obtained by observing the dynamics and
spectra numerically. We also observe from Fig. 7 that the
synchronized regime deviates away from the EP towards a
higher coupling region as �ω increases. Thus, the success of
the deterministic method of synchronizing the two spectra by
tuning the system towards the EP decreases.

We took points (shown by the yellow dots in Fig. 7) in the
synchronized and asynchronized regimes at J = 4.5 × 10−2κ

and J = 1 × 10−2κ , respectively, to observe the spectrum.
Figure 9(a) shows the nature of the two output spectra in
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FIG. 9. Spectral profile and intracavity intensity of cavity 1 (orange) and cavity 2 (blue) in the synchronized and asynchronized regimes
for �ω = 1.2 × 10−3ωm. (a) Similar spectral envelopes of the two output optical spectra in the synchronized regime (J = 4.5 × 10−2κ), with
the inset showing the first-order spectral component, coincide with each other at a frequency slightly offset from ω = ωm. (b) The dynamics of
the intracavity intensity of the two cavities in the synchronized regime, with the corresponding interpretation in phase space given in (c) and
(d), where Ij = |aj |2. (e) Different spectral envelopes of the two output optical spectra in the asynchronized regime (J = 1 × 10−2κ), with the
inset showing the first-order frequency component. (f) The intracavity intensity dynamics in the asynchronized regime, with the corresponding
interpretation in phase space given in (g) and (h).

the synchronized regime. We observe that the spectra have
similar spectral envelopes, as the difference |ε2 − ε1| is not
significant. Even though the spectral envelopes are similar, the
lines for cavity 1 are more concentrated towards ω > 0 since
the density of states of cavity 1 is concentrated at frequencies
higher than the driving laser frequency ωL. On the other hand,
cavity 2 has lines concentrated towards ω < 0 because the
density of states is concentrated at frequencies lower than the
driving laser frequency ωL. In addition, both the HOS spectra
have the same uniform frequency spacing, with the inset in
Fig. 9(a) showing a zoomed-out version of the first-order
component around ω = ωm. The amount of spacing is decided
by the locked frequency at which the resonators oscillate.
The locked frequency takes the value of the eigenfrequency
of the upper supermode, i.e., Re ω+ (see Appendix C). It is
interesting to see the nature of the evolution of the intracavity
field intensity corresponding to it. We observe in Fig. 9(b)
that the intensity in cavity 1 follows that of cavity 2 with the
corresponding visualization in phase space given in Figs. 9(c)
and 9(d). In the asynchronized regime, the nature of the spec-
trum envelope in both cavities becomes vastly different, as
shown in Fig. 9(e). Even though the sidebands in both the
spectra are locked at a common frequency, as shown in the
inset in Fig. 9(e), cavity 2 has more spectral lines than cavity
1 since the difference |ε2 − ε1| become significant. As a result,
the spectral envelope of cavity 2 becomes wider than that of
cavity 1. These are also reflected in the intracavity intensity
dynamics in Fig. 9(f), where the evolution of |a2|2 becomes
significantly different. The corresponding visualization in
phase space is given in Figs. 9(g)–9(h), which provide us with
a perfect way to determine the boundary between the synchro-
nized and asynchronized regimes. The boundary is decided by
the similarity between the two intracavity trajectories of the

cavities in phase space. The occurrence of HOSs in both the
synchronized and asynchronized spectral regimes is attributed
to the presence of limit cycles in the mechanical resonators,
which oscillate with a certain locked frequency [40]. So the
sidebands of the two cavities always coincide for both syn-
chronized and asynchronized spectra, as shown in the insets
in Figs. 9(a) and 9(e). Thus, for the asynchronized spectrum,
only condition (i) for defining synchronization is satisfied. So,
in our study, the amplitude of mechanical oscillations plays
the deciding role in the synchronization process in which
two spectra with similar envelopes are generated, and the
impact of EP dominates for a very weak resonance-frequency
shift. Hence, in addition to enabling control and deterministic
generation of HOSs, the mechanical gain-loss optomechanical
setup has the benefit of achieving synchronization of spectral
envelopes by tuning the system near the EP.

V. SUMMARY

In summary, we theoretically investigated the formation,
control, and synchronization of optical-sideband spectra in
weak mechanically coupled optomechanical cavities. The re-
search yielded valuable insights into the intricate relationship
between the mechanical gain-loss structure, optomechanical
nonlinearity, and the generation of HOSs. This work was
done with fixed cw driving laser power (i.e., the effective
mechanical gain and loss rates were kept fixed) with varying
mechanical coupling rate. We obtained the mechanical dy-
namics along with the corresponding effect on the evolution
of intracavity intensity in different circumstances. Conse-
quently, we found an abrupt emergence of HOSs in the optical
spectrum by breaking the mechanical PT symmetry. This
happens because the breaking of the symmetry allows the
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system to become unstable and accumulate mechanical en-
ergies in the resonators. Optomechanical nonlinearity comes
into play to produce steady mechanical oscillations to
generate HOSs. Therefore, our approach enables accurate ma-
nipulation of optical spectral lines through the manipulation of
the mechanical coupling rate, paving the way for its utilization
in a compact, low-power integrated chip-scale device. Fur-
thermore, we presented evidence of synchronization near EP
under the condition of weak mechanical resonance frequency
differences, in which two optical spectra are generated with
similar envelopes. Therefore, the generation of synchronized
wideband spectra with equidistant lines based on the EP
offers a highly promising platform for various applications,
including optical communication technology, optical read-
out of mechanical synchronization processes [27], memory
applications, and remote clock-timing synchronization [44].

Currently, our system of study can be experimentally real-
ized by using an optical-fiber-based optomechanical cavity
or using a nanomechanical beam inside a superconducting
transmission-line microwave cavity as mentioned in [25].
The mechanical resonators in the system may be coupled
using coupling overhang [45,46]. Since our study relies on
the variation of the mechanical coupling rate, this variation
can be achieved by utilizing the piezoelectric effect [47],
photothermal effect [48], or electrostatic force [49] on the
overhang.

APPENDIX A: LINEAR STABILITY ANALYSIS

As mentioned in the main text, the nonlinear dynamical
equation (2) is linearized to a form given by d�

dt = M�. The
8 × 8 matrix M is given as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(
i�1 + κ

2

)
0 0 0 −ig0ā1 0 0 0

0 −(−i�1 + κ
2

)
0 0 −ig0ā∗

1 0 0 0
0 0 −(

i�2 + κ
2

)
0 0 0 −ig0ā2 0

0 0 0 −(−i�2 + κ
2

)
0 0 −ig0ā∗

2 0
0 0 0 0 0 ωm1 0 0

g0ā∗
1 g0ā1 0 0 −ωm1 − γm1

2 J 0
0 0 0 0 0 0 0 ωm2

0 0 g0ā∗
2 g0ā2 J 0 −ωm2 − γm2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

APPENDIX B: OTHER POSSIBLE COUPLED-CAVITY
CONFIGURATIONS

We may have mechanical gain-gain and loss-loss cou-
pled optomechanical cavities, and to implement the gain-gain
(loss-loss) configuration, both cavities are driven by blue-
detuned (red-detuned) cw lasers. Through linear stability anal-
ysis, we show how these configurations offer less flexibility in
controlling sidebands using cw lasers than the gain-loss con-
figuration. From Fig. 10, we see that the mechanical loss-loss
configuration does not invoke any finite mechanical oscilla-
tions for a large range of coupling rate (1 × 10−2κ � J �

FIG. 10. Stability regions for the case of effective mechanical
gain-gain and loss-loss configurations. The parameters are the same
as in Sec. III. However, for the gain-gain (loss-loss) configuration we
fixed �1 = �2 = ωm (�1 = �2 = −ωm).

10 × 10−2κ) because the system falls in a stable state and,
therefore, HOS is absent. On the other hand, the mechanical
gain-gain system may have finite oscillations because the sys-
tem falls in the unstable region. But a transition between the
stable and unstable regimes is absent, which would ultimately
cause deterministic generation and control of the HOS to fail.

APPENDIX C: FREQUENCY SPACING OF THE HOS

We want to analytically verify the amount of frequency
spacing for the spectra in Figs. 9(a) and 9(e). Numerically,

FIG. 11. The dotted lines are for the PT -symmetric case when
�ω = 0. The solid lines show the splitting of Re ω+ (violet) and
Re ω− (orange) for �ω = 1.2 × 10−3ωm. The left and right vertical
lines correspond to the asynchronized and synchronized spectra at
J = 1 × 10−2κ and J = 4.5 × 10−2κ , respectively. The stars show
the dominance of the upper supermode in deciding the frequency
spacing of the HOS.
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the spacings in Figs. 9(a) and 9(e) are about 1.003ωm and
1.001ωm, respectively. The real part of ω± from Eq. (11) is
written in the form

Re ω± = ωm1 + ωm2

2

±

√√√√√
η2 + (

�ω
γeff1 +γeff2

4

)2 + η

2
(C1)

and plotted with varying coupling rate J for fixed �ω =
1.2 × 10−3ωm in Fig. 11. We observe that because of the

finite frequency mismatch, the degeneracy of the supermodes
is absent near the EP. The left dash-dotted vertical line is the
demonstration point (see the lower yellow dot in Fig. 7) of our
asynchronized spectrum, and Re ω+ at this line takes the value
of 1.0008ωm. Similarly, Re ω+ at the right dash-dotted vertical
line where our synchronized spectrum (upper yellow dot in
Fig. 7) is shown takes the value of 1.004ωm. So the frequency
spacings obtained numerically are similar to the ones ob-
tained analytically. Therefore, once the mechanical resonators
acquire limit cycles, the locked frequency will follow the
upper mode with eigenfrequency Re ω+, and the frequency
spacing in the optical spectrum will be decided based on
that.
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