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Nonequilibrium thermodynamics and power generation in open quantum optomechanical systems
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Cavity optomechanical systems are a paradigmatic setting for the conversion of electromagnetic energy into
mechanical work. Experiments with atoms coupled to cavity modes are realized in nonequilibrium conditions,
described by phenomenological models encoding nonthermal dissipative dynamics and falling outside the
framework of weak system-bath couplings. This fact makes their interpretation as quantum engines, e.g.,
the derivation of a well-defined efficiency, quite challenging. Here, we present a consistent thermodynamic
description of open quantum cavity-atom systems. Our approach takes advantage of their nonequilibrium nature
and arrives at an energetic balance which is fully interpretable in terms of persistent dissipated heat currents.
The interaction between atoms and cavity modes can further give rise to nonequilibrium phase transitions
and emergent behavior and allows us to assess the impact of collective many-body phenomena on the engine
operation. To enable this, we define two thermodynamic limits, one related to a weak optomechanical coupling
and one related to a strong optomechanical coupling. We illustrate our ideas by focusing on a time-crystal engine
and discuss power generation, energy-conversion efficiency, and the emergence of metastable behavior in these
limits.
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I. INTRODUCTION

The application of thermodynamics to quantum sys-
tems [1–6] allows us to conceive quantum heat engines,
which perform ideal cycles between thermal equilibrium
states [7–9]. In many experiments of interest, however, quan-
tum systems are realized under genuine out-of-equilibrium
conditions, for example, in the case of experiments with cold
atoms in optomechanical cavities [10–20] [see the sketch in
Fig. 1(a)]. These systems absorb energy from an external
source, e.g., a laser, which prevents them from equilibrating
with their surrounding and gives rise to persistent energy
currents. This aspect motivates the development of alter-
native nonequilibrium quantum-engine cycles [21,22], with
driving protocols that are not described by thermal dy-
namics [23,24]. It further poses the problem of devising
theoretical approaches [25–32] providing a consistent thermo-
dynamic understanding of established experimental models
[19,33–35]. These open challenges do not solely concern
quantum systems and are of much broader relevance, as
indicated by recent efforts to characterize work in active mat-
ter [36–43].

In this paper, we focus on paradigmatic open quantum
optomechanical systems which can nowadays be realized and
efficiently controlled in experiments [10–19,44–48]. These
setups are promising for the conversion of electromagnetic
energy into mechanical work in both equilibrium [49,50]
and nonequilibrium conditions [51–54]. For these systems,
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we develop a thermodynamic description which character-
izes the power transferred by the cavity to the mechanical
oscillator [see Fig. 1(b)] as well as the efficiency of this
energy conversion. Our approach allows us to formulate an
energy balance in terms of the persistent nonequilibrium heat
currents [see Fig. 1(b)]. To investigate the impact of phase
transitions and collective behavior on the performance of
nonequilibrium engines, we consider two different thermo-
dynamic limits [55–60] [see Fig. 1(c)]. One features a weak
optomechanical coupling, ensuing from a finite density of
atoms in the cavity [59], and is characterized by finite power
and zero efficiency. The other one features a strong optome-
chanical coupling due to an infinite density of atoms. In this
case, the delivered mechanical power is extensive in the “size”
of the system and the efficiency is finite.

We illustrate our ideas by exploiting a time-crystal [61–65]
engine, which is a manifestation of a nonequilibrium many-
body quantum engine [59,66,67]. Our results also apply to
generic optomechanical settings [19,46] and related spin-
boson models, such as Rydberg-atom systems with interacting
electronic and vibrational degrees of freedom [68,69] and
superconducting-qubit systems [70].

II. THE MODEL

We consider the setup in Fig. 1(a), which shows an ensem-
ble of N atoms loaded into a cavity. The atoms are described
by two-level systems with ground state |g〉, excited state |e〉,
and bare Hamiltonian Hat = h̄ωat

∑N
k=1 n(k), where n = |e〉〈e|.

The bare-cavity Hamiltonian is Hcav = h̄ωcava†a, with a and
a† being the cavity-mode operators. The atoms and the cavity
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FIG. 1. Nonequilibrium cavity-atom optomechanical engine.
(a) Atoms in a cavity are driven by a laser with Rabi frequency
� and detuning �. One of the cavity mirrors can move, allowing
for oscillations of the cavity length � from its equilibrium position
�0. (b) The laser provides energy which flows through the cavity to
the mirror. Atom and photon losses at rates ν and κ , respectively,
determine energy dissipation. The mechanical power delivered by the
engine equals the power the mirror dissipates due to friction. (c) Two
possible thermodynamic limits for the system. The first features a
finite density of atoms and results in a weak optomechanical cou-
pling. The second features an infinite density of atoms, giving rise to
a strong optomechanical coupling.

mode interact through a Tavis-Cummings term [71–73],

Hint = h̄g√
N

(aS+ + a†S−), (1)

where S− = ∑N
k=1 σ

(k)
− , with σ− = |g〉〈e|, and S+ = S†

−. The
atoms are further driven by a laser which, in combination with
the bare-atom energy, is described by the Hamiltonian (in the
interaction picture)

Hlas = h̄�(S− + S+) − h̄�

N∑
k=1

n(k), (2)

where � is the Rabi frequency and � = ωlas − ωat is the
detuning of the laser frequency from the atom transition fre-
quency [see Fig. 1(a)].

The dynamics of the system state ρt is governed by the
master equation [74] (in the interaction picture)

ρ̇t = L[ρt ] := − i

h̄
[H, ρt ] + Dat[ρt ] + Dcav[ρt ], (3)

with Hamiltonian H = Hlas + Hint − h̄δa†a and δ = ωlas −
ωcav. The dissipators Dat/cav account for irreversible effects
due to a coupling of the atoms and the light field to thermal
reservoirs at inverse temperature β. For the atoms, we have
the dissipator

Dat[ρ] = ν

N∑
k=1

(
σ

(k)
− ρσ

(k)
+ − 1

2
{n(k), ρ}

)

+ νe−β h̄ωat

N∑
k=1

(
σ

(k)
+ ρσ

(k)
− − 1

2
{1 − n(k), ρ}

)
,

while for the light field the dissipator reads

Dcav[ρ] = κ

(
aρa† − 1

2
{a†a, ρ}

)

+ κe−β h̄ωcav

(
a†ρa − 1

2
{aa†, ρ}

)
.

Both encode the spontaneous atom (photon) decay at rate ν

(κ) and atom (photon) excitation at rate νe−βωat (κe−βωcav ).
The latter excitation process is often irrelevant in experiments
since β h̄ωcav/at � 1 [19].

The cavity further features a movable mirror [see Fig. 1(a)],
with mass m, frequency ω, and damping rate γ . For our
purposes, we can consider it to be a classical object whose
deviation xt from its equilibrium position �0 evolves through
the equation [75,76]

mẍt + γ ẋt + mω2xt = ft . (4)

Here, ft = h̄G〈a†a〉t , with G = ω0
cav/�0, is the radiation-

pressure force on the mirror in the linear-coupling regime,
|xt |/�0 � 1, with ωcav ≈ ω0

cav(1 − xt/�0) [46,77].
This system can be interpreted as an engine [see Fig. 1(b)],

or, more precisely, as an optomechanical energy converter.
The atoms and light field represent the engine many-body
working fluid. They absorb electromagnetic energy from the
external driving and convert it into mechanical work which is
delivered to the mirror to sustain its motion. The output power
can be estimated as the heat dissipated by the mirror due to
friction, thereby modeling a “dissipative load” [78].

III. NONEQUILIBRIUM THERMODYNAMICS

The mirror “state” (solely specified by instantaneous po-
sition xt and velocity ẋt ) and the state of the cavity-atom
system ρt are in product form. Equation (3) provides the
reduced quantum-system dynamics, parametrically depend-
ing on xt via the cavity frequency ωcav. Similarly, Eq. (4)
provides the reduced mirror dynamics. This dynamical decou-
pling suggests that, also from a thermodynamic viewpoint,
the cavity-atom system and the mirror can be regarded as
uncorrelated. The mirror dynamics can be accounted for, e.g.,
within the framework of stochastic thermodynamics [76]. The
challenge is, however, to consistently characterize the cavity-
atom quantum engine.

The master equation [see Eq. (3)] is “local” [26] as it is
obtained by a weak coupling of the system with a thermal
bath [74] which, however, solely considers the bare-system
Hamiltonians Hat/cav. This can be seen by the fact that Dat/cav

do not implement transitions between eigenstates of the full
Hamiltonian H but rather of Hat/cav. A thermodynamic ap-
proach considering as the internal energy the expectation
of a total system Hamiltonian would thus run into incon-
sistencies [26,27,33] since it generically predicts negative
entropy production for local master equations [79]. A text-
book approach [1–6] considering the total Hamiltonian H
and deriving a “global” master equation would not show any
inconsistency. However, here, we are interested in providing
a consistent description of the experimentally relevant [16,19]
local master equation (3).
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A. The first laws

Our approach takes inspiration from the separation, done
in the framework of stochastic thermodynamics [75,76], be-
tween conservative forces [see the harmonic force in Eq. (4)]
and nonconservative external ones [see the force ft in Eq. (4)].
This entails the definition of two internal energies, one for the
atoms and one for the light field, through the bare energies and
the identification of the remainder of the Hamiltonian, e.g., the
laser driving, as an external driving contribution.

We thus start by defining the atom internal energy as uat
t :=

〈Hat〉t . Then, considering the generator L∗, which is the dual
of the generator L acting on observables, we find

u̇at
t = Tr(HatL[ρt ]) = 〈L∗[Hat]〉t

= i

h̄
〈[H, Hat]〉t + 〈D∗

at[Hat]〉t + 〈D∗
cav[Hat]〉t

= i

h̄
〈[Hlas, Hat]〉t + i

h̄
〈[Hint, Hat]〉t + 〈D∗

at[Hat]〉t , (5)

where the dissipators D∗
at/cav are the dual dissipators for Dat/cav

in the Heisenberg picture. For the last equality, we used the
fact that D∗

cav acts nontrivially only on light-field operators.
From the last line in Eq. (5), we can already identify the phys-
ical meaning of the different terms. The first term describes
how the internal energy of the atoms varies due to the laser
driving. The second describes the energy flows from the atoms
to the light field, while the last term, which comes from the
dissipator, describes the heat power exchanged by the atoms
with their environment.

Instead of looking at the instantaneous currents, we want
to take an average over a time window τ . The latter could be
a period of the engine cycle or, in general, just a long time
window. Time averaging Eq. (5), we find

1

τ

∫ τ

0
dt u̇at

t = uat
τ − uat

0

τ
= Ilas − Iat − Jat. (6)

Here, we have defined

Ilas = i

h̄τ

∫ τ

0
dt 〈[Hlas, Hat]〉t ,

Iat = − i

h̄τ

∫ τ

0
dt 〈[Hint, Hat]〉t ,

Jat = − 1

τ

∫ τ

0
dt 〈D∗

at[Hat]〉t . (7)

The term Ilas represents the time-averaged input power that
the atoms receive from the laser, and the term Iat is, instead,
the average power exchanged between the atoms and the light
field (in this convention it is positive when flowing from the
atoms to the light field). The third term, Jat, is the average
heat power dissipated by the atoms into the environment (this
quantity is also positive when energy is leaving the atoms).
Assuming that the integration time τ is large and the inter-
nal energy does not grow indefinitely with time, we have
uat

τ −uat
0

τ
→ 0, so from the above relation we can write

Ilas = Iat + Jat. (8)

The internal energy of the light field is defined as ucav
t :=

〈Hcav〉t . By taking the time derivative and following a proce-

dure analogous to the one exploited in Eq. (5), we find

u̇cav
t = i

h̄
〈[Hint, Hcav]〉t − ftvt + 〈D∗

cav[Hcav]〉t , (9)

with vt := ẋt being the mirror velocity. Taking the time aver-
age over τ , the power absorbed by the light field due to the
coupling with the atoms, Icav = i/(h̄τ )

∫ τ

0 dt〈[Hint, Hcav]〉t , is

Icav = Pmir + Jcav, (10)

where

Pmir = 1

τ

∫ τ

0
dt ftvt , Jcav = − 1

τ

∫ τ

0
dt〈D∗

cav[Hcav]〉t .

(11)
The first term above is the average heat power exchanged by
the light field and the environment, while Pmir is the power
delivered by the cavity-atom system to the mirror. Exploiting
the mirror internal energy umir

t = (mv2
t + mω2x2

t )/2 [75,76]
and Eq. (4), we also find the relation

Pmir = γ /τ

∫ τ

0
dtv2

t , (12)

i.e., the power delivered by the cavity-atom system to the mir-
ror is equal, over a long time window, to the power dissipated
by the mirror due to friction [see Figs. 1(a) and 1(b)].

In order to find the total input power, we observe that the
quantity Icav − Iat can be written as

Icav − Iat = 1

τ

∫ τ

0
dt

i

h̄
〈[Hint, Hat + Hcav]〉t .

This quantity can be different from zero whenever the atoms
and the light field are not on resonance, in which case it
represents an “imbalance” between the power delivered by
the atoms and the power absorbed by the light field. We
consider this imbalance, which comes from the interaction
Hamiltonian and is due to energy gain or energy loss asso-
ciated with the exchange of excitations, to be an additional
input-power contribution. The rationale is that, in typical
cavity-atom experiments, interactions between the atoms and
the cavity field need to be “facilitated” by means of an addi-
tional laser driving, for instance, through stimulated Raman
emissions [80]. In this sense, the imbalance term Icav − Iat is
analogous, in spirit, to the term Ilas. The total input is thus
Iin = Ilas + Icav − Iat, which combining Eqs. (8)–(10), can
be written as

Iin = Jcav + Jat + Pmir. (13)

For the sake of simplicity, we have considered here a non-
fluctuating mirror dynamics, which effectively accounts for
a zero-temperature bath for the mirror. Similar results could
be obtained for finite temperatures for the mirror. For the
regimes investigated here, the power delivered by the engine
would still be proportional to the square of the average mirror
velocity (see, e.g., considerations in Ref. [59]).

B. The second law

In order to formulate a consistent efficiency for the op-
tomechanical engine, we first need to show that the heat
powers obey the inequality Jat + Jcav � 0. This is achieved
by proving a suitable second law of thermodynamics through
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a modification of Spohn’s theorem [31,79,81]. To this end,
we define the map D = Dat + Dcav, whose stationary state
is the thermal state ρβ ∝ e−β(Hat+Hcav ). Next, we consider
the von Neumann entropy of the quantum state ρt , S(ρt ) =
−Tr[ρt ln ρt ] and define the entropy production as

σt = Ṡ(ρt ) − βTr{D[ρt ](Hat + Hcav)}. (14)

In the above equation, the first and second terms are the
entropy and heat variations, respectively, and we further
note that Ṡ(ρt ) = −Tr{D[ρt ] ln ρt }. The task is now to show
that the entropy production is always positive. We proceed
by defining the relative entropy S(ρt ||ρβ ) = Tr[ρt (ln ρt −
ln ρβ )], which can only decrease under the action of a com-
pletely positive trace-preserving map [82]. Thus,

d

du
S(euD[ρt ]||euD[ρβ])|u=0 � 0. (15)

Since euD[ρβ] = ρβ , the derivative of the relative entropy
evaluated in u = 0 becomes

d

du
S(euD[ρt ]||euD[ρβ])|u=0

= −Ṡ(ρt ) + βTr{D[ρt ](Hat + Hcav)}. (16)

The nonpositivity of the above quantity then implies the non-
negativity of the entropy production.

Averaging the entropy production over a long time window
τ , we find

1

τ

∫ τ

0
dt σt = S(ρτ ) − S(ρ0)

τ
+ β(Jat + Jcav) � 0. (17)

Now, assuming that S(ρt ) does not grow indefinitely with
time, the above implies Jat + Jcav � 0, which is the inequal-
ity that we need. Before using this inequality to discuss the
efficiency of the engine, we make an important remark on
the above derivation. The main ingredient that we have ex-
ploited is that the reduced dynamics of the quantum state
obeys the Lindblad equation (3), which only parametrically
depends on the instantaneous position of the mirror xt . The
reduced dynamics of the quantum system assumes this form
since the state of the mirror, fully specified by xt and ẋt , and
the quantum state are in product form. The product structure
of the quantum-classical state also remains generically when
considering single trajectories of stochastic dynamical equa-
tions for the mirror. However, when the mirror is promoted to
a quantum degree of freedom, the derivation above requires
appropriate modifications, given the emergence of intrinsic
quantum correlations among all subsystems.

C. Efficiency

We are now able to obtain a thermodynamically consistent
efficiency η of the energy conversion occurring in our optome-
chanical setup. The input power is equal, at long times, to
the total power dissipated by the optomechanical system, i.e.,
Iin = Pmir + Jcav + Jat. Thus,

η = Pmir

Pmir + Jcav + Jat
� 1. (18)

The efficiency is bounded by 1 since both Pmir and Jat + Jcav

are positive, as shown in the previous section. Considering

the total input power, Eq. (13), we can express Iin as in the
denominator of Eq. (18) and identify a well-defined efficiency
formulated in terms of the persistent heat currents.

IV. TIME-CRYSTAL ENGINE

As an application of the general theory that we have de-
veloped, we analyze power and efficiency for the recently
introduced time-crystal engine [59].

For Markovian open quantum systems described by a time-
independent Lindblad generator L, one generically expects
the density matrix of the system to converge for long times
to a stationary state ρ∞ such that L[ρ∞] = 0. The generator
L is time translation invariant due to its time independence
and further commutes with the “time-translation operator”
(propagator) etL. Whenever the system approaches a steady
state, one has etL[ρ∞] = ρ∞, showing that ρ∞ is time trans-
lation symmetric and thus obeys the same symmetry as the
generator (see also, e.g., the discussion in Ref. [65]). The
emergence of time-translation symmetry breaking, and thus of
the so-called time-crystal phase, occurs when the state of the
system approaches a limit cycle rather than a stationary state.
By denoting with ρ lc

t the state inside such an asymptotic limit
cycle and assuming that the latter has period T , we find that
ρ lc

t+T = ρ lc
t . In such a case, we have et ′L[ρ lc

t ] = ρ lc
t+t ′ 
= ρ lc

t
whenever t, t ′ 
= T . This shows that, despite the fact that the
generator L is time translation symmetric, the asymptotic
state of the system breaks such symmetry. In this case, the
system features persistent oscillations and is said to enter a
time-crystal phase. We note that signatures of the emergence
of a time-crystal phase can be seen in the spectrum of the
(finite-system) generator L [63].

We now proceed by discussing how time-translation sym-
metry breaking can be used as a power-generation mechanism
in our setup [59]. In the regime in which the system ap-
proaches a stationary state, we find that the radiation-pressure
force ft becomes time independent for long times since it
approaches its stationary value associated with the stationary
state. In this case, the mirror is subject to a static force, and
thus, its velocity converges to zero, leading to zero power
production. On the other hand, in the time-crystal phase of the
model, the state of the system features persistent oscillations
so that the radiation-pressure force ft remains asymptotically
time dependent. As a consequence, the mirror is subject to a
time-dependent force and thus never comes to rest and always
sustains a finite velocity [16,19,63,80,83,84]. In the time-
crystal regime, the mirror thus continuously dissipates power
which must be provided by the time-crystal quantum engine.
We note that, in the regime in which the Lindblad generator is
time independent, the engine is clearly in contact with a single
bath at fixed temperature. As such, the optomechanical engine
in this setup does not function as a heat engine but rather as a
nonequilibrium isothermal one [76].

A. Mean-field treatment

Since time-crystalline phases emerge only in the thermo-
dynamic limit, we consider the system in the thermodynamic
large-N limit, in which the quantum dynamics is exactly
captured by a mean-field treatment [65]. That is, the rescaled
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FIG. 2. Mechanical power output of the time-crystal quantum
engine. (a) Power as a function of � and g, given in units of γ (�ω)2,
with � = h̄GN/(mω2). Note that, in our scaling limits, � remains
finite for all N . The parameter γ is instead proportional to N in
the infinite-density limit in which the optomechanical engine thus
delivers extensive power output. The stationary phase (zero power)
and the time-crystal phase (finite power) are separated by a critical
line. (b) Three sections across (a) for different values of g. The solid
line refers to g/ω = 1/3, the dashed line refers to g/ω = 2/3, and
the dot-dashed line is associated with g/ω = 1. The atoms are all
initialized in the ground state and the light field in the vacuum. The
parameters used are κ = γ /m = ω.

operators α = a/
√

N , s± = S±/N , and sz = Sz/N , with Sz =∑N
k=1(2n(k) − 1), converge, with N → ∞, to scalar quantities

evolving through nonlinear equations [65,85,86]. For con-
creteness, we consider the case ωat − ω0

cav = � = ν = 0 and
β → ∞, for which the equations are given by

ṡz = −2[i�s+ + igαs+ + c.c.],

ṡ+ = −i
(
� + gα†

)
sz,

α̇ = −κ

2
α + i[Gxα − gs−]. (19)

As shown below (see also Figs. 2 and 3), for large �/g ratios
the system state approaches indeed long-lived limit-cycle so-
lutions [62,63,87]. In these cases, the radiation-pressure force
is time dependent, and the mirror thus moves against friction,
so that the cavity-atom engine delivers power [see Pmir in
Eq. (11)] even without a time-dependent driving protocol [59].
In order to characterize the performance of the engine, we
need to analyze the time evolution of the mirror and the
dissipated power Pmir in the thermodynamic limit. However,
the force ft is extensive in N , ft ≈ h̄GN |αt |2, and this can give
rise to an unphysical diverging displacement of the mirror.
To arrive at a well-defined mirror dynamics [see Eq. (4)], in
the thermodynamic limit, we identify below two suitable scal-
ing regimes which are associated with two different physical
scenarios.

B. Finite-density (weak-coupling) limit

First, we consider the regime in which, ideally, all atoms
are located in the minima of an optical lattice inside the
cavity [see sketch in Fig. 1(c)]. The cavity length is thus
proportional to the number of atoms [16,59], i.e., �0 = N/D0,
with D0 being the linear density. The optomechanical cou-
pling constant is here G = ω0

cavD0/N and thus vanishes in the
large-N limit. This scenario is associated with a weak optome-

chanical coupling [see Fig. 1(c)]. Looking at Eq. (19), this
implies that the quantum-system dynamics does not depend
on any of the mirror parameters. Still, the mirror dynamics
is driven by the light-field intensity through the force ft =
h̄ω0

cavD0|αt |2, which, in this regime, becomes independent
of N .

In Fig. 2(a), we show the power delivered by the engine
to the mirror. We observe a parameter region in which the
delivered power Pmir is zero. This occurs when the quantum
system approaches a stationary state, the radiation-pressure
force is a stationary value, and the mirror comes to rest, as
is expected for static driving. Nonetheless, even with static
driving, for certain parameters the quantum system can spon-
taneously enter a state of sustained oscillations, determining
a time-dependent force on the mirror and thus a finite power
Pmir [see Fig. 2(b)]. In this regime the optomechanical setup
operates as a time-crystal quantum engine [59]. However, in
the finite-density limit Pmir is intensive in N , while Jcav ∝ N ,
so that the engine efficiency is zero.

C. Infinite-density (strong-coupling) limit

We now introduce a regime in which the cavity-atom en-
gine operates with finite efficiency. We consider the limit
N → ∞ while keeping �0 finite, which leads to an infinite
density of atoms in the cavity [see the sketch in Fig. 1(c)] and
to a finite G. We dub this limit the “strong” optomechanical
coupling regime since the force ft remains proportional to
N . To have a physically meaningful mirror dynamics [see
Eq. (4)], we rescale the mass and the friction parameter as
m = Nm̃ and γ = N γ̃ , respectively. This means relating the
size of the mirror to the number of atoms, which is natural
when the “mirror” is a vibrational degree of freedom of the
atom ensemble [11–13,20] or when the cavity hosts a cloud
of atoms, as illustrated in Fig. 1(c). In this way, the mirror
velocity remains finite, while the power is extensive in N ,
since γ ∝ N . This gives the efficiency (at lowest order in
�/�0)

η ≈ γ

κm

�

�0

∫ ωτ

0 d[ωt]V 2
ωt∫ ωτ

0 d[ωt]|αωt |2
. (20)

Here, � = h̄GN/(mω2) is the characteristic length scale of x,
while Vωt is the dimensionless velocity at the dimensionless
time ωt , such that vt = �ωVωt . The complete expression of
the efficiency, including finite temperature and finite atom
decay, is given in Appendix A.

In this infinite-density limit, the dynamics of the quantum
system is influenced by the motion of the mirror [see Eq. (19)].
For a timescale of the order of (G�)−1, this back-action is
irrelevant, and the cavity-atom system can host a (metastable)
time-crystal phase [see Figs. 3(a) and 3(b) and Appendixes B
and C]. Thereafter, back-action effects become non-negligible
and drive the system towards a stationary state, where no
power can be generated anymore.

Even if it appears as a metastable phase, we can character-
ize the time-crystal engine in the long prestationary regime.
The average power is the same as that shown in Fig. 2, albeit
now being extensive with N . The efficiency is reported in
Figs. 3(c) and 3(d). It also signals the transition from the
stationary to the (metastable) time-crystal phase, where the
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FIG. 3. Metastable time-crystal engine and efficiency in the infinite-density limit. (a) Mirror position x in units of � as a function of time
for � = g = ω. The plot shows an emergent metastable regime in which the mirror features oscillations (see inset), unveiling that the quantum
system is in a time-crystal phase. The smaller G�/ω (see arrows in the plot) is, the longer the metastable regime lasts before the system ends
up in the stationary state. (b) Growth of the fluctuation δα, associated with the light-field expectation α, due to the back-action of the dynamics
of the mirror on the time evolution of the quantum system. The different lines refer to different values of G�/ω, as indicated by the arrows
in the plot. (c) Efficiency (in the metastable regime) in units of γ�/(κm�0 ), obtained from Eq. (20). (d)–(f) Normalized power, light-field
dissipation, and efficiency as a function of � for different values of g. The unspecified parameters are κ = γ /m = ω.

system generates mechanical power. In Fig. 3(d), we see that
for large g/ω the maximal power delivered by the engine
occurs close to the transition line, where a maximal efficiency
is also reached.

V. DISCUSSION

We characterized the nonequilibrium thermodynamics of
phenomenological cavity-atom models. Contrary to other
thermodynamic frameworks, our approach does not require
the introduction of a repeated-interaction scheme [27–29].
It also does not consider as internal energy the expectation
value of the total Hamiltonian [4,31,79]. We note that this is
also what one would expected in the case of weak cavity-
atom coupling, i.e., ωat/cav � |�|, |g|. Instead, it relies on
separating, within the system Hamiltonian, the bare-energy
contributions from those related to external driving. This al-
lows us to interpret dynamical contributions such as the laser
driving as external power sources, which is closer, in spirit,
to the physics of experiments with driven-dissipative quan-
tum systems. Importantly, our identification of the different
thermodynamic contributions leads to heat currents which
are supported by the second law of thermodynamics. This
leads to a well-defined energy-conversion efficiency. For con-
creteness, we illustrated our ideas considering a time-crystal
engine [59]. However, our approach may also be applied
more generally to cavity-only open quantum systems and
to different manifestations of collective behavior hosted by
them [12,60,88–93].
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APPENDIX A: DETAILS OF THE TWO
THERMODYNAMIC LIMITS

We provide here details of the discussion reported in the
main text concerning the two thermodynamic limits. We
start deriving the quantities of interest, considering a finite
number of atoms N . However, we already introduce the mean-
field approximation since the latter becomes exact in the
limit N → ∞.

The time evolution of the relevant quantum operators is
thus described by the mean-field equations reported in the
main text. Through these operators we can write the heat
currents as (derived for finite temperature)

Jcav = h̄κ

τ

∫ τ

0
dtωcav〈a†a − e−β h̄ωcav (1 + a†a)〉,

Jat = h̄ωatν

τ

∫ τ

0
dt

N∑
k=1

[(1 + e−β h̄ωat )〈n(k)〉 − e−β h̄ωat ].

(A1)

To derive the mechanical output power, we need to look
at the dynamics of the mirror, described by the second-order
differential equation reported in the main text. The solution to
this equation is given by xt = �Xωt , with � = h̄GN

mω2 and

Xωt =
∫ ωt

0
d[ωs] |αωs|2e− γ0

ω
(ωt−ωs) ω

�
sin

[
�

ω
(ωt − ωs)

]
.

(A2)

Here, γ0 = γ /(2m), and we consider the dimensionless time
ωt . Moreover, with a slight abuse of notation, we denote
by αωt the light-field operator at the dimensionless time ωt .
Furthermore, by taking the derivative, we find the velocity of
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the mirror as vt = �ωVωt , with

Vωt =
∫ ωt

0
d[ωs] |αωs|2e− γ0

ω
(ωt−ωs)

×
(

cos

[
�

ω
(ωt − ωs)

]
− γ0

�
sin

[
�

ω
(ωt − ωs)

])
.

(A3)

Here, Vωt is the dimensionless velocity at the dimension-
less time ωt . We note that Ẋωt = Vωt and V̇ωt = −Xωt −
2γ0/ωVωt + |αωt |2, which is a dimensionless system of equa-
tions. Solving this combined with the mean-field equations, it
is possible to compute the average mechanical output power
as

Pmirr = γ

τ

∫ τ

0
dt v2

t = γ (�ω)2

[
1

ωτ

∫ ωτ

0
d[ωt]V 2

ωt

]
.

1. Finite-density limit

We start by considering the finite-density limit. In this
situation we have G = ω0

cavD0/N , which thus tends to zero in
the large-N limit. This means that the mean-field equations be-
come independent of xt and that the quantum system does not
feel the back-action due to the motion of the mirror.

In the finite-density limit, we find that � =
h̄ω0

cavD0/(mω2) and that the power Pmirr remains finite.
However, as shown by Eqs. (A1), the heat fluxes are extensive
with N , so the efficiency in this regime vanishes.

2. Infinite-density limit

In the infinite-density limit, the length of the cavity �0

remains independent of N . This means that G is finite in the
thermodynamic limit. To have a well-defined dynamics for
xt we thus rescale the mass of the mirror, m = Nm̃, as well
as the friction parameter, γ = N γ̃ . We note that Eqs. (A2)
and (A3) remain valid and also that � = h̄G/(m̃ω2) does
depend on N . The average mechanical power delivered by the
optomechanical engine is now extensive since

Pmirr = N γ̃ (�ω)2

[
1

ωτ

∫ ωτ

0
d[ωt]V 2

ωt

]
.

The efficiency can be computed as

η = Pmirr

Jcav + Jat + Pmirr
=

(
1 + Jcav + Jat

Pmirr

)−1

,

and substituting for the relevant quantities, we find

η=
(

1 + h̄ωatν

γ̃ (�ω)2

∫ ωτ

0 d[ωt][(1 + e−β h̄ωat )nωt − e−βωat ]∫ ωτ

0 d[ωt]V 2
ωt

+ h̄ω0
cavκ

γ̃ (�ω)2

∫ ωτ

0 d[ωt](1− �
�0

Xωt )|αωt |2(1− e−β h̄ωcav )∫ ωτ

0 d[ωt]V 2
ωt

)−1

,

(A4)

where nωt is here the expectation value of the operator n at the
dimensionless time ωt .

Specializing to the case with ν = 0 and β → ∞, we find,
after manipulating the parameters, that

η ≈ γ

κm

�

�0

∫ ωτ

0 d[ωt]V 2
ωt∫ ωτ

0 d[ωt]|αωt |2
, (A5)

where we consider only the lowest order in �/�0.

APPENDIX B: METASTABLE TIME-CRYSTAL REGIME

We provide here details of the emergence of a metastable
timescale where the optomechanical system works as a time-
crystal engine with finite efficiency in the infinite-density
limit. This timescale emerges when we consider the parameter
G�/ω to be small, as we now show.

The evolution equation for αωt is given by

α̇ωt = − κ

2ω
αωt + i

G�

ω
αωt − i

g

ω
s−ωt .

Considering G�/ω to be small, we can apply perturbation
theory to the mean-field equations. By doing this, we can show
that (see Appendix C for details)

αωt = α0
ωt + G�

ω
δα1

ωt , (B1)

where α0
ωt is obtained through the unperturbed system of

mean-field equations, while the term δαωt is the perturbation
around this solution because we consider a small G�/ω. In
Fig. 3 in the main text, we provide the value δα = G�/ωδα1.

Now we proceed by rewriting the second-order differential
equation for the mirror oscillations in terms of the dimension-
less quantity ε = Gx/ω. We readily obtain

ε̈ωt + γ

mω
ε̇ωt + εωt = G�

ω
|αωt |2.

By recalling Eq. (B1), we see that up to first order in G�/ω

the above equation is fully determined solely by the term α0
ωt ,

which is given by the same system of equations solved for the
finite-density limit and which can show persistent oscillations.
However, the correction δαωt increases linearly with time and
thus eventually plays an important role in the dynamics of the
mirror. Our exact numerical results show that the perturbation
is such that the system will asymptotically approach a station-
ary state.

APPENDIX C: PERTURBATION THEORY
ON THE MEAN-FIELD EQUATIONS

We give here a brief discussion of how we performed the
perturbation theory to first order in G�/ω.

In the dimensionless time, the mean-field equations be-
come (we omit the explicit time dependence)

ṡz = −2

[
i
�

ω
s+ + i

g

ω
αs+ + c.c.

]
,

ṡ+ = −i

(
�

ω
+ g

ω
α†

)
sz,

α̇ = − κ

2ω
α + i

[
G�

ω
Xα − g

ω
s−

]
, (C1)
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where we used x = �X . This equation is coupled to the
second-order differential [see discussion below Eq. (A3)]

Ẍ + 2
γ0

ω
Ẋ + X = |α|2.

To zeroth order, we simply solve the above system by setting
G�/ω ≡ 0, which gives us the solutions s0

z , s0
+, and α0.

To first order, we expect the solutions to be given by

sz = s0
z + G�

ω
δs1

z , s+ = s0
++ G�

ω
δs1

+, α = α0+ G�

ω
δα1.

Substituting into the above system of equations, we find

˙δs1
z = −2

[
i
�

ω
δs1

+ + i
g

ω
(α0δs1

+ + s0
+δα1) + c.c.

]
,

˙δs1+ = −i
�

ω
δs1

z − i
g

ω

(
α0 †δs1

z + s0
z δα

1 †),
˙δα1 = − κ

2ω
δα1 + iX 0α0 − i

g

ω
δs1

−. (C2)

Solving these equations and combining them with the mean-
field ones for the unperturbed variables s0

z , s0
+, and α0 give the

behavior of δα = (G�/ω)δα1 reported in the main text.
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