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Reconfigurable valley topological QED platform for qubit operation
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Multifarious topological crystals are extensively explored because of their unique advantages in manipulating
wave transport and immunity against local perturbations. Most of them are studied, however, in feature-fixed
systems and therefore, commonly have a challenge in application that requires tunability, such as quantum
switches, tunable quantum routers, and quantum storage and reading. Here, we theoretically suggest a recon-
figurable valley topological quantum electrodynamics (QED) platform scheme based on the honeycomb lattice
of Jaynes-Cummings emitters, which can be implemented by cavity- or circuit-QED cells. Based on such a
reconfigurable platform, this work first designs a tunable topological quantum router and then demonstrates how
to achieve topological quantum storage and reading in theory. They both signify the remarkable potential of the
suggested reconfigurable topological QED platform for qubit operation.
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I. INTRODUCTION

Topology starting from condensed matters [1–5] has
brought about great prosperities in diverse wave systems, for
instance, cold atomic gases [6–8], photonics [9–11], acous-
tics [12], and so on. As one of the most famous topological
systems, topological insulators are immune to local perturba-
tions, exhibiting backscattering-free transport of edge states
[13–15]. Recently, the blossoming of topological photon-
ics benefits from the development of photonic crystals and
metamaterials, since they can provide multifarious optical
structures [16–19]. Electromagnetic waves of two vectors fa-
cilitate richer physics with respect to other classical scalar
ones. In optics, topological photonics has been broadly used
as a versatile platform to investigate not only fundamental
nontrivial bulk and edge physics but also potential quantum
techniques with topological protection, presenting short- or
mid-term technological shocks in applications. The intuitive
straightforward application of topological photonics exists in
utilizing topologically protected edge states as robust optical
waveguides [18–22] or optically isolating elements [23–25].
Though numerous systems are currently suitable for evidenc-
ing robust propagation of edge states, how to apply topology
to practical application is still a trending topic, for example,
topological lasers [26–29] and qubit protection [30].

Practicability and tunability require stringent conditions
for topological systems. Different strategies have been ex-
plored with carefully engineered structures [31–34], involving
magnetic [31,32] or external modulation [33,34]. Regretfully,
most widely explored topological structures are settled after
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fabrication, and so are their corresponding topological proper-
ties, which, generally speaking, are not friendly to tunability
and practicability. The reported tunable schemes are mainly
to tune the refractive index distribution of topological struc-
tures by electric fields with electro-optical materials [35,36],
magnetic fields with magnetoelastic materials [37], light
irradiation with photorefractive materials [38,39], mechani-
cal control [40], and so on [41,42]. Though these schemes
demonstrate extensive potential application in controlling
topological edge states, they face a difficulty in working with
quantum processing, since their structures are classical in
essence. The common solution is to add quantum emitters or
units to them, so that the topology of classical platforms can
protect or influence quantum emitters, similar to topological
lasers [26–29] and topologically protected qubits [30]. These
structures also face a difficulty in turning on or off the system
topology. To overcome the difficulties, this work theoreti-
cally suggests a topological quantum platform by cavity-QED
[43–55] or circuit-QED cells, since these cells have been
achieved in experiments [56–66]. The main advantage of
QED-based platforms relies upon controllable geometry and
interactions. For example, artificial gauge fields and synthetic
magnetic fields can be realized, respectively, in cavity arrays
by trapping single atoms in cavities [67] and in circuit-QED
architectures through passive circulator elements [68,69]. In
addition, researchers are able to break time-reversal symmetry
in lattices of microwave cavities by engineering local wave
functions [70,71]. QED-based platforms are revealed as an
essential landmark for the development of quantum technolo-
gies. Different from introducing artificial fields or breaking
time-reversal symmetry, we here break the parity symme-
try of the honeycomb lattice of Jaynes-Cummings emitters
(JCEs) and suggest a reconfigurable valley topological QED
platform. The potential applications of such a platform,
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FIG. 1. Composition and properties of QED lattice. [(a) and (d)] Honeycomb cavity-QED lattices of the JCEs. The transition energies
of the two-level atoms (dots) in the cativies (cylinder) depend on the external electrostatic fields [72,73]. [(b) and (e)] Corresponding band
structures of the VPI-1 in (a) and the VPI-2 in (d). [(c) and (f)] Berry curvatures in the first Brillouin zone for the bands in (b) and (e). [(g)–(i)]
Dispersions of the edge states on the zigzag, beard, and armchair interfaces constructed by the VPI-1 and VPI-2, see the solid green lines in
the schematics, with A being the B length between the adjacent sites.

namely, topological quantum routers and quantum storage and
reading, are demonstrated.

To describe the reconfigurable valley topological QED lat-
tice, this work is organized as follows. In Sec. II, we first
introduce the theoretical model for the valley QED lattice
and then numerically prove the robustness of the valley edge
states (VESs). Subsequently, the potential applications, i.e.,
topological quantum routers, storage and reading, are demon-
strated in Sec. III. In Sec. IV, we discuss the feasibility of
the experiments based on cavity-QED and circuit-QED unit.
Finally, a brief conclusion is summarized in Sec.V.

II. MODEL

The platform model relies on the honeycomb lattice of
the JCEs. Each JCE consists of a single-mode optical cav-
ity (cylinder) and an embedded two-level system (dot), see
Figs. 1(a) and 1(d). They can be implemented by cavity-
QED [43–55] or circuit-QED [56–66,68,74,75] cells. Though
circuit-QED is also a good choice, we here take the cavity-
QED to show the model. The cylinders denote the cavities in
which the red and blue dots represent the two-level atoms. The
Hamiltonian of the ith JCE reads

Hi = ω̃c
i ĉ†

i ĉi + 1
2 ω̃a

i σ̂
z
i + �i(σ̂

+
i ĉi + ĉiσ̂

−
i ), (1)

where ω̃c
i = ωc

i − iγ c
i (ω̃a

i = ωa
i − iγ a

i ) with cavity eigenfre-
quency ωc

i and loss γ c
i (atomic transition energy ωa

i and loss
γ a

i ), Rabi coupling �i, cavity creation and annihilation op-
erators ĉ†

i and ĉi, Pauli matrix σ̂ z
i , and atomic raising and

lowering operators σ̂±
i . Summarizing Hi and combining the

nearest-neighbor cavity-cavity couplings lead to the whole
lattice Hamiltonian

H =
∑

i

Hi − J
∑
〈i j〉

ĉ†
i ĉ j . (2)

Here, J as the unit of energies measures the photon tun-
neling between the two adjacent cavities and a denotes the
distance between them. The atomic transition energy can be
tuned by an external electric field [72,73], and so can the
detuning between the cavity mode and atomic transition, δi =
ωc

i − ωa
i . The tuning way is demonstrated in Figs. 1(a) and

1(d), where the electrostatic potential applied on each JCE
can be controlled independently. Without loss of generality,
we take the eigenfrequencies of all cavities to be identical
and as the reference point of energies, that is, ωc

i ≡ 0, and
also set �i ≡ � = 2J , γ c

i ≡ γc, and γ a
i ≡ γa. The detunings

in sublattice A (B) of the valley photonic insulator 1 [VPI-1,
Fig. 1(a)] are set to δi = 0.25J (−0.25J), opposite to those in
the valley photonic insulator 2 [VPI-2, Fig. 1(d)].

The energy band of the VPI can be found by transforming
H into the reciprocal space,

H =
∑
k,α

[δασ̂+
k,α

σ̂−
k,α

+ �(ĉ†
k,α

σ̂−
k,α

+ ĉk,ασ̂+
k,α

)]

+
∑

k

[
J
(
1 + eik·a1 + eik·a2

)
ĉ†

k,Bĉk,A + H.c.
]
, (3)

where α denotes the sublattices A and B, k is the wave vector,
and a1 = ( 3a

2 ,
√

3a
2 ) and a2 = ( 3a

2 ,−
√

3a
2 ) are lattice vectors.

On the basis of (ĉ†
k,A, σ̂+

k,A, ĉ†
k,B, σ̂+

k,B), the Hamiltonian at k,
Hk, can be expressed as a 4×4 matrix,

Hk =

⎛
⎜⎜⎝

0 � f (k) 0
� δA 0 0

f ∗(k) 0 0 �

0 0 � δB

⎞
⎟⎟⎠, (4)

with f (k) = J (1 + eik·a1 + eik·a2 ).
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FIG. 2. Variation of the top two bands at the K point with
the detuning between the cavities and atoms. Parameters: � = 2J ,
ωc = 0, and δA = −δB = δ.

Figures 1(b) and 1(e) provide the corresponding band
structures, both of which hold particle-hole symmetry and
gaps at K points, due to the opposite detunings in sublattices A
and B. The top two bands at K points are plotted as functions
of the detuning δ in Fig. 2. In view of the particle-hole symme-
try, the bottom two bands are opposite with the top two. When
δ = 0 the gap is closed. The bands are flipped as δ changes
from the negative value (VPI-2) to the positive (VPI-1). The
bands are named as band 1 to band 4 from the bottom to the
top and their Berry curvatures in the first Brillouin zone are
plotted in Figs. 1(c) and 1(f).

The Berry curvature for the band n is defined as [76] �
(n)
k =

∇k × A(n)
k , where the Berry connection A(n)

k = i〈u(n)
k |∇k|u(n)

k 〉
and |u(n)

k 〉 denotes the nth normalized eigenstate with the
Bloch wave vector k. The Berry curvatures near K and K′
have nonzero values, see Figs. 1(c) and 1(f), implying that
the bands in Figs. 1(b) and 1(e) are nontrivial. Because the
detunings in VPI-1 are opposite with those in VPI-2, the
Berry curvatures in them are opposite too [see Figs. 1(c)
and Fig. 1(f)], which brings about valley edge states (VESs)
on their edges. The zigzag, beard, and armchair edges are
demonstrated, see the right of Figs. 1(g)–1(i), where L de-
notes the lattice period along the edges. For all the VESs in
Figs. 1(g)–1(i), only the positive energy range is focused on
due to the particle-hole symmetry. The gap at the crossing
point between the two branch VESs is much smaller in the
zigzag and beard interfaces than in the armchair one [77].
This suggests us to use the zigzag or beard edges to oper-
ate quantum qubits, such as quantum routers and quantum
storage and reading. Without loss of generality, we use the
zigzag edge in this work, after all it is more familiar to
researchers.

The potential application of the zigzag edge relies on the
robustness of the corresponding edge states, which, how-
ever, can be influenced by losses, disorders, and noises [79].
To measure these influences, we plot the transmission of
the VESs after they take the time of 0.7τ0 (τ0 = 2π/J) to
transmit the distance of 10

√
3a along the zigzag interface

in Fig. 3. In order to calculate the transmission, the fourth-
order Runge-Kutta method is applied to solve the following

FIG. 3. Robustness of the VESs. (a) Probability distribution of
the VES with the energy ε = 1.91J . Detuning distributions (b) for
disorder strength χ = 0.5 and (c) for noise strength η = 0.5. In
(a)–(c), the green lines denote the zigzag edges. (d) Transmission
of the VES in (a) under different cavity and atom losses (γc and γa).
Transmission spectra (e) under different χ and (g) under different η

without cavity or atom loss. Transmission spectra (f) under different
χ and (h) under different η with cavity and atom loss γc = γa =
10−3J . In (d)–(h), the VESs transmit the distance of 10

√
3a along the

zigzag edge and take about the time of 0.7τ0. The other parameters
are the same as Figs. 1(a) and 1(d).

Schrödinger equation:

ih̄
∂

∂t
|ψ (t )〉 = H |ψ (t )〉, (5)

in the real space. The initial wave function is taken as the
Gaussian wave of the VESs whose width and center energy,
respectively, are 24

√
3a and 1.91J . After a certain time, the

initial wave will move from the incident port to the output
one. The total probability received by the output port is the
transmission. The probability distribution of the considered
VES with the energy ε = 1.91J concentrates on the zigzag
interface, i.e., the transmission path, guided by the solid green
line in Fig. 3(a). The transmission decreases as the atom
and cavity losses increase, see Fig. 3(d). When γa = γc takes
10−2J and 10−3J , the transmissions are about 57.6% and
94.6%. For the cavity-QED experiment in Ref. [46] (circuit-
QED experiment in Ref. [57]), the above losses require the
cavity quality factor Q ≡ ωc/γc approaches to 109 and 1010

(104 and 105), respectively. These values of Q satisfy the
experiments, see Tables I and II.

Figures 3(e)–3(h) show the influences of disorders and
noises whose relative strengths are measured by χ and η,
respectively. They are introduced by changing the detunings
of the JCEs,

δi → δi × [1 + Rand(χ )], δi → δi × [1 + Rand(η)], (6)

where Rand(χ ) [Rand(η)] represents a random number,
evenly distributed in (−χ, χ ) [(−η, η)]. Rand(χ ) does not
change with time, while Rand(η) does, that is, all δi do not
change with time for disorders, while do change for noises.
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TABLE I. Experimental parameters for cavity-QED systems.

ωc/2π γc/2π Q ωa/2π γa/2π τa �/2π

Ref. [46] 352 THz 4 MHz 8.8×109 352 THz 2.6 MHz 61ns 32 MHz
Ref. [48] 385 THz 1.25 MHz 3×108 385 THz 6 MHz 27ns 4.5 MHz
Ref. [50] 346 THz 1.2 MHz 2×108 346 THz 1.69 MHz 94ns 0.92 MHz
Ref. [51] 330 THz 4.1 MHz 8×107 352 THz 2.6 MHz 61ns 34 MHz
Ref. [54] 384 THz 1.25 MHz 3×108 384 THz – – 11.2 MHz
Ref. [55] 384 THz 1.3 MHz 2.95×108 384 THz 3 MHz 53ns 11.5 MHz
Ref. [43] 21.456 GHz 0.08 KHz 2.7×108 21.456 GHz – – –
Ref. [44] 51 GHz 0.73 KHz 7×107 51 GHz 5 KHz 30ms 25 KHz
Ref. [45] 51 GHz 63.8 KHz 8×105 51 GHz – – 25 KHz
Ref. [47] 21.456 GHz 0.00636 KHz 3.4×109 21.456 GHz – – –
Ref. [53] 51 GHz 0.00123 KHz 4.15 ×1010 51 GHz – – 51 KHz

Figures 3(b) and 3(c) show an example for them, respectively,
with χ = η = 0.5. The largest absolute detuning, accordingly,
takes the value of 0.25J × (1 + 0.5) = 0.375J . To calculate
the transmission of the VESs, the incident state is taken as
the Gaussian pulse with the width of 24

√
3a and the central

energy of 1.91J . Figures 3(e) and 3(g) show the transmission
spectra without any losses. They show that the transmission
approximates to 1 when no disorder or noise is introduced, see
the lines with square dots in them. The transmission is larger
than 98% even for χ = 0.2 and η = 0.2. When the disorder
and noise are further increased to 0.5, the transmission will
drop to about 0.9. As a result, the influences of disorders and
noises on the system are negligible as their relative strengths
are less than 20%. Figures 3(f) and 3(h) show the transmission
spectra when cavity and atom losses take γa = γc = 10−3J .
They demonstrate that disorder and noise show a very weak
influence on the transport of the VESs, since the transmission
approaches 94%, even if the strength of noise or disorder
reaches 0.5. These tests tell that such a QED VPI can be
used to design topologically protected quantum devices that
are immune to disorders and noises. In addition, another
important advantage of topological edge states compared to
trivial waveguides is their immunity to local bendings [18].
Hereafter, we will take quantum routers and quantum storage
and reading as examples. They may boost the application of
reconfigurable topology in quantum information processing,
based on the reconfigurability of the topology in cavity-QED
or circuit-QED structures.

III. POTENTIAL APPLICATIONS

A. Topological quantum routers

Figure 4 demonstrates how to utilize reconfigurable topol-
ogy to protect the signal routing, based on the VPIs in
Figs. 1(a) and 1(d). In comparison with the reported routers
[80–83], the key advantage of the scheme in Fig. 4 rests on the
arbitrariness of the output-terminal position. The examined
structure has 33750 sites or ideal JCEs totally, forming a
hexagon, see Fig. 4.

The zigzag interfaces (see the solid green lines), whose
two sides are the VPI-1 and VPI-2, can vary with time by
tuning the detunings of the JCEs through the applied fields.
Five cases in Fig. 4 demonstrate the time evolution of the
zigzag interface from Figs. 4(a) to 4(e). Each case sustains
18τ0 with τ0 = 2π/J . To see the routing, a series of the pulsed
Gaussian waves (with the central frequency ε = 1.91J , the
width 24

√
3a, and the pulse interval 6τ0) are incident from

the input terminal which, denoted by “In” in Fig. 4(a), remains
unchanged. The state probability distributions at the five mo-
ments of 6τ0, 24.1τ0, 42.2τ0, 60.3τ0, and 78.4τ0 are shown,
corresponding to the five zigzag interfaces, respectively. In the
first case, see Fig. 4(a), the output terminal is along the bottom
left direction and thus the signal is routed to the bottom left
corner. With time elapsing the output terminal successively
changes from the bottom left to the top left. During this
process the signal is routed to the corresponding corner. The
valley topology is responsible for the routing efficiency of

TABLE II. Experimental parameters for circuit-QED systems.

ωc/2π γc/2π Q ωa/2π γa/2π γ /2π γφ/2π T1 T2 T ∗
2 �/2π

Units GHz MHz 1 GHz MHz MHz MHz µs µs µs MHz

Ref. [57] 5.7 0.25 2.28 × 104 6.9 1.9 1.95 1 0.08 0.08 – 105
Ref. [59] 7.064 43 160 7.089 0.48 0.49 0.25 0.33 0.32 – 3.5
Ref. [60] 7.804 0.769 1 × 104 5.622 0.0138 0.0179 0.002 11.5 8.9 – –
Ref. [61] 4.25 0.12 3.5 × 107 7.9 0.01 0.016 0.011 15 10 – 4.5
Ref. [62] 7.6316 6.9 8.48 × 103 4.662 0.00187 – – 85 – – –
Ref. [62] 7.6314 1.2 6.36 × 103 4.6968 0.00113 – – 140 – – –
Ref. [63] 6.135 19 323 6.135 0.05 – – 3 – – 40
Ref. [64] 10.63 3.57 2.98 × 103 7.8693 0.005 0.006 0.0035 32 26.5 26 –
Ref. [65] 5.495 0.89 5.66 × 103 4.532 0.018 – – 9 10 10 1.02
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FIG. 4. Schematics for the tunable topological quantum router.
The input terminal is always on the left side, while the output
terminal changes with time from (a) bottom left, (b) bottom right,
(c) right, (d) top right, to (e) top left, connected by the zigzag edges,
see the green lines. The contour colors demonstrate the probability
distributions of the incident single-photon pulse at different given
times. Total 33 750 JCEs are considered and the band parameters are
the same as Figs. 1(a) and 1(d).

∼100% for all cases, because of the robustness against local
defects (such as waveguide bending), while the transmission
for the trivial waveguide strongly depends on local defects
[18,76].

When the losses γa = γc = 10−3J are introduced, the
transmission loss and traveling time are about 10.5% and
1.4τ0, respectively, when the path length is set to 20

√
3a.

Once the path length decreases to 10
√

3a, the transmission
loss is about 5.4%, and the corresponding traveling time is
about 0.7τ0. This traveling time is far less than the dephas-
ing time T1 ≡ 1

γa
≈ 160τ0, satisfying the cavity-QED unit in

Ref. [46] and the circuit-QED unit in Ref. [57] (see Sec. IV
for details). This indicates that such a reconfigurable VPI
can serve as a topological quantum router (see video I in
Ref. [78]).

The transport of the VESs can be adjusted by the path
control in any direction with the topological path bent multiple
times. Such an example in Fig. 5(a) shows the probability
distribution of the directed VES on the curved path. Its trans-
port is topologically protected and immune to the waveguide
bending. Figures 5(b) and 5(c) show the path adjustability.
One can arbitrarily adjust the position of the output terminal
at will. In addition, different interfaces in this designed struc-
ture can be mixed, see Fig. 5(d), where mixing the zigzag
and beard edges does not disturb the VES transport. These
adjustabilities together with the valley topology are beneficial
for the application of the suggested topological QED platform.

In Figs. 4 and 5, 33 500 sites are used for demonstrating
the quantum router, which does not mean that one must use
so many lattices. The size of lattice is mainly determined by
the VES width normal to the topological path. Our numeri-
cal calculations indicate that such a width is about 16 sites,
namely, 11a, see Fig. 6, where the zigzag interface is used. As
a result, the path width had better contain more than 40 sites

FIG. 5. Topological routers with arbitrary adjustable path. The
green lines in all panels denote the zigzag edges. The beard edges in
(d) are denoted by two arrows. Parameters are the same as those in
the Fig. 4.

to form a perfect VES, namely, 29a, see Fig. 6. Therefore,
the total number of the required sites is proportional to the
path length, that is, the minimum number of cavities is about
40L/

√
3a, where L denotes the path length. In Fig. 6, the

minimum number of sites is about 400, if the path length takes
10

√
3a.

Pr
ob
ab
ili
ty

29a

VPI-1

Max

0

VPI-2
(b)

11a 29a

29a
11a

(c)

VPI-1

VPI-2

11a

11a
29a

(a)

VPI-1

VPI-2

11a29a

FIG. 6. Probability distribution of the VESs on zigzag interfaces
with different bending angles: (a) 0◦, (b) 120◦, and (c) 60◦. The green
lines present the zigzag edges. The orange lines are the broadening
width of the VES normal to the edge. The purple lines demonstrate
the path width that required for a perfect VES. Total 3120 JCEs are
used and the band parameters are the same as Figs. 1(a) and 1(d) in
the main text.
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FIG. 7. Schematic for topological quantum storage and reading.
(a) Writing the quantum state into the opened topological edges when
τ ∈ (0τ0, 6τ0 ). [(b)–(d)] Storage of the quantum state within the
closed topological edge when τ ∈ [6τ0, 36τ0]. (e) Reading the quan-
tum state with the opened topological edge when τ ∈ (36τ0, 48τ0 ).
The green lines represent the transmission paths and the arrows
denote the input and output ports. The contour colors show the
probability distributions of the VES at different given moments.
The maximum values of probabilities are denoted by “Max” in each
panel. Total 14 400 JCEs are considered as L = 150

√
3a, N = 71a,

L1 = 16
√

3a, L2 = 94
√

3a, N1 = 23a, and the band parameters are
the same as Figs. 1(a) and 1(d).

B. Topological quantum storage and reading

As two key techniques in quantum informatics, quantum
storage and reading always intrigue researchers, for which
numerous schemes have been proposed [84–89]. Without
topology, conventional methods commonly suffer disturbance
of system disorder and imperfection. Here, we use the VESs
to realize the writing, storage and reading of quantum states,
which are immune to system disorders and path bending, see
Figs. 3(e) and 4.

The suggested architecture is shown in Fig. 7, varying
with time. It holds the open zigzag interface as time τ ∈
(0, 6τ0) ∪ (36τ0, 48τ0), see Figs. 7(a) and 7(e) and the
closed one as τ ∈ [6τ0, 36τ0], see Figs. 7(b)–7(d). During
the time interval of (0, 6τ0), the Gaussian state (with the
width 24

√
3a and the central frequency ε = 1.91J) is incident

from the lower left terminal, see the green arrow in Fig. 7(a),

behaving as the writing of the quantum qubit. When the time
arrives at τ = 6τ0, the quantum state moves to the position
demonstrated in Fig. 7(b) and simultaneously, the open zigzag
interface is changed to the closed one. As a result, the quantum
state is stored into the closed topological interface during the
time interval of [6τ0, 36τ0], see Fig. 7(c) with τ = 15τ0.
If this storage interval increases one can expect a long-time
storage of the quantum state. During the storage interval
of [6τ0, 36τ0], the quantum state roughly runs two loops
along the closed topological interface. The closed interface is
opened at τ = 36τ0 and the corresponding spatial probability
distribution of the quantum state is shown in Fig. 7(d). With
time elapsing the quantum state moves to the output terminal,
behaving as the reading of the quantum state, see Fig. 7(e).
The procedures of writing, storage, and reading are demon-
strated in videos II and III in Ref. [78].

Here, we discuss the possibility of experimental imple-
mentation. We consider a case with the circumference of the
closed path being 40

√
3a. The corresponding storage time

is about 2.8τ0 as the VES travels around the closed path
once, corresponding to the storage loss of 20.0% where γa =
γc = 10−3J are adopted. When the VES travels around the
closed path twice, the above storage time are doubled, but
with a higher loss of 36%. These values of loss are acceptable
in experiments and the operation time is far less than T1.
Such a storage time measured by the oscillation period of the
cavity mode τc = 2π/ωc would be 6.2×107τc ≈ 176 ns for
cavity-QED experiment in Ref. [46] and be 305τc ≈ 61 ns for
circuit-QED experiment in Ref. [57], see Sec. IV for details.

IV. FEASIBILITY ANALYSIS OF EXPERIMENTS

In this section, we will discuss the experimental imple-
mentation of the scheme using the cavity- and circuit-QED
platforms, respectively. In view of theoretical study, we favor
them equally. However, experimentalists may have a different
favor in state-of-the-art laboratories, after all the two plat-
forms have their own advantages. The cavity-QED platform
is the most basic implementation method. The cavity-QED
system can suppress the decoherence between the system and
surrounding environment to a large extent as long as the cavity
has a sufficiently high quality factor. For the circuit-QED
platform, not only the energy level, but also other parameters
of the artificial atom can be controlled easily, since the qubit
can be regarded as an artificial atom. The circuit-QED system
has been comprehensively researched and greatly promoted
the cavity-QED.

A. Cavity-QED platforms

The present section discusses the possible cavity-QED
platforms in experiments and the key parameter values of
some typical schemes, referred to the reported experimental
parameters in Table I. The meanings of the parameters are
ωc is the cavity frequency, γc is the cavity loss, Q = ωc/γc

is the cavity quality factor, ωa represents the atom transition
frequency, γa is the loss of atom, τa is the atom lifetime,
and � is the Rabi coupling between the atom and cavity.
According to Fig. 3(d), the transmission loss of the VESs
is about 42.4% when γa = γc = 0.01J , as they transmit the
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FIG. 8. (a) Honeycomb cavity-QED lattice of the JCEs. (b) Concerned energy levels for 87Rb in the electrostatic field, refer to Ref. [72] for
details. As an example, we assume ωc ≈ 2π×37 GHz, the two atom transition energies ω1 = ωc + δ and ω2 = ωc − δ with δ ≈ 2π×1.3 GHz,
the hopping J ≈ 25.5 KHz, the Rabi coupling � ≈ 51 KHz [53], the cavity loss γc = 2π×0.025 KHz, leading the corresponding cavity
quantity factor Q = 1.48×109. These values of parameters satisfy the experimental conditions in Ref. [53], see the last row of Table I. ω1 and
ω2 correspond to the electrostatic fields of 521 and 523 V/cm, respectively.

distance of 10
√

3a along the zigzag edge and takes the time
of about 0.7τ0. Once we adopt γa = γc = 0.001J , the loss of
the VESs decreases to about 5.4%.

Next, we will compare these values of parameters in our
model with those in the current cavity-QED experiments. In
the optical frequency, the first row in Table I is taken as
an example [46], that is, the cavity frequency ωc = 2π×352
THz and the Rabi coupling � = 2π×32 MHz between the
cavity and the atom, leading to J = 2π×16 MHz and ωc =
2.2×107J . Thus, the cavity quality factor Q is about 2.2×109

or 2.2×1010, both close to the experimental value of 8.8×109,
when we set γc to be 0.01J or 0.001J in our model. If consid-
ering the experimental conditions in the microwave frequency
in the last row of Table I [53], one will also find that our model
is available for the cavity-QED experiments. Most of these
atoms are circular Rydberg atoms and have a long radiative
lifetime (about 30 ms) [90], which makes atomic relaxation
negligible during the atom transit time across the apparatus.

We here give a cavity-QED experimental scheme for our
proposals. It relies on the honeycomb lattice of the JCEs. Each
JCE consists of a cavity and an embedded Rydberg atom,
for example, a 87Rb is placed at the center of the cavity. A
pair of parallel plates with an imposed voltage difference of
U is applied to generate an electrostatic field at the position
of atom, inducing the dc Stark shifts of Rydberg levels, see
Fig. 8(a). The variations of the two concerned Rydberg levels
of 87Rb with the external electrostatic field are plotted in
Fig. 8(b). In such a case, the parameters can be adopted as
following: δ ≈ 2π×1.3 GHz, J ≈ 2π×25.2 KHz, and � =
2π×51 KHz, the corresponding eigenfrequency of cavities
ωc ≈ 2π×(32–41) GHz. The cavity can tolerance the loss
of γc = 2π×0.025 KHz, leading to the corresponding cavity
quantity factor Q = (1.28–1.64)×109. The applied electric
fields are about 520–550 V/cm. These experimental param-
eters are possible in the cavity-QED platform [46].

B. Circuit-QED platforms

Circuit-QED is another practical implementation for such
a reconfigurable topological platform. Instead, the typical
circuit QED experiments work with resonators in the range

of 5–15 GHz. In Table II, γa is the energy decay for the
qubit, γ = γa/2 + γφ is the decoherence rate with the pure
dephasing rate γφ , T1 = 1/γa is the relaxation time, T2 = 1/γ

is the dephasing time corresponding to the intrinsic dephasing
of the qubit (homogeneous broadening), and T ∗

2 is the dephas-
ing time corresponding to the inhomogeneous broadening.
The meanings of other parameters are the same as those in Ta-
ble I. For the transmon qubit, it is immune to 1/f charge noise
and is nearly homogeneously broadened, implying T2 ≈ T ∗

2
[84].

In the following, these values of parameters in our model
will be compared with those in the current circuit-QED exper-
iments. As an example, we take the experimental parameters
in the first row of Table II [57]. Correspondingly, the cavity
frequency ωc = 2π×5.7 GHz and the Rabi coupling between
the cavity and the artificial atom � = 2π×105 MHz, leading
to J = 2π×52.5 MHz and ωc = 109J in our model. Con-
sequently, the quality factor required is about 104 or 105,
when we adopt γc = 0.01J or γc = 0.001J . In the first row of
Table II, the Q in experiments can reach 104. Especially, the
fourth row of Table II indicates that the Q in experiments can
be larger than 107. In Fig. 3(d), the VESs take the time of 0.7τ0

to transmit the distance of 10
√

3a, in which the transmis-
sion is about 94.6% as γa = γc = 0.001J . These parameters
lead to 0.7τ0 � T1 ≈ 160τ0 (we hereafter will always use
T1 for comparison since T1 < T2 ≈ T ∗

2 ), which indicates that
the quantum operation can commonly be completed during
the time of T1. These discussions are also available for the
experimental values in the rest cases of Table II.

Based on these analyses, we here propose the following
experimental circuit-QED platform. For the circuit-QED plat-
form, the key element is the cavity resonator coupled to a
superconducting qubit [68,74,75]. In Fig. 9(a), the cylinders
denote the cavity resonators and the red and blue dots repre-
sent the superconducting transmon qubits. The model of the
transmon qubit is shown in Fig. 9(b), whose frequency can
be tuned by the external magnetic flux �, see Fig. 9(c). The
transmon consists of two superconducting islands connected
by two Josephson junctions in parallel, which allows the ef-
fective Josephson energy to be tuned by an external magnetic
field, EJ = Emax

J | cos(π�/�0)|, where Emax
J is the maximum
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FIG. 9. (a) Honeycomb circuit-QED lattice of the JCEs. The cylinders denote the cavity resonators. The red and blue dots represent the
superconducting transmon qubits, whose frequencies can be tuned by the external magnetic field. (b) Model of the transmon qubit that consists
of two superconducting islands connected by a Josephson tunnel junction and a large capacitance. The tunneling of Cooper pairs between the
two islands is governed by the charging energy EC , the Josephson energy EJ , and the conjugate phase ϕ. (c) Concerned energy spectra for the
transmon qubits as a function of magnetic flux �, referred to Ref. [74] for details. As an example, we choose the cavity resonator frequency
to be ωc ≈ 2π×6.84 GHz, and the frequency for ω1 = 2π×6.8459 GHz and ω2 = 2π×6.8341 GHz with the magnetic flux of 0.0815�0 and
0.0774�0 (�0 is the flux quantum), the hopping strength between the adjacent cavities to be J = 2π×23.5 MHz, and the Rabi coupling to be
2π×47 MHz. And the cavity and qubit loss γc and γa can be 2π×0.0235 MHz, which lead to the cavity quantity factor Q is about 3×105.

Josephson energies, � is the magnetic flux and �0 is the
flux quantum. In the limit of high EJ/EC , the qubit frequency
follows the asymptotic form ωa = √

8EJEC − EC . Changing
the magnetic field allows one to change EJ , and so does the
atom frequency ωa, see Fig. 9(c). The tunneling of Cooper
pairs between two islands is governed by the charging energy
EC , the Josephson energy EJ , and the conjugate phase ϕ. The
coupling strength between the adjacent cavity resonators can
be tuned by mutual capacitance between their ends [68].

In such a case, according to Ref. [74], the parameters
can be adopted as following: the interaction strength � be-
tween the superconducting qubit and cavity resonator is about
� ≈ 2π×47 MHz and the superconducting qubit frequency
is about in the range of 2π×(4.5, 7) GHz. These experi-
mental data suggest us to take the cavity resonator frequency
to be ωc ≈ 2π×6.84 GHz [74] and the detuning between
the cavity resonators and superconducting qubits to be δ ≈
2π×5.9 MHz. The superconducting qubits corresponding to
the red and blue dots have the frequencies of 2π×6.8459 GHz
and 2π×6.8341 GHz with the magnetic flux � = 0.0774�0

and � = 0.0815�0, respectively, see Fig. 9(c). The corre-
sponding value of the hopping strength between the adjacent
cavity resonators can be taken as about 2π×23.5 MHz. The
cavity and qubit can tolerate the loss of 2π×0.0235 MHz,
which lead to the cavity quantity factor Q is about 3×105.

We also point out that the scheme still has a challenge
in how to effectively group hundreds or thousands of cavity-
or circuit-QED cells into a honeycomb lattice, though single
cavity- and circuit-QED cell have been achieved in the state-
of-art experiments with high quality. With the development

of advanced micro/nanofabrication techniques, we hope that
such a controllable valley topological QED lattice can be
achieved in the future.

V. CONCLUSION

In summary, this work theoretically suggests a reconfig-
urable valley topological QED platform for qubit operation
based on either cavity- or circuit-QED cell. With it, we
demonstrate a tunable topological quantum router and a
topological quantum storage and reading. The numerical ver-
ification confirms that they have excellent performance, so
that the suggested reconfigurable valley topological quantum
platform may have wide application in quantum informatics.

Though the required conditions of the platform are satisfied
by the current cavity- and circuit-QED techniques, it also
faces a challenge in how to integrate many QED cells to form
a lattice. We expect this challenge can be overcome in future,
after all it is not a fundamental barrier in principle. Addition-
ally, how to accurately analyze the transport of multi-particle
quantum states in such a topological platform is still an open
question and the related phenomena brought by the system
nonlinearity may open the door to new applications [51,91].
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