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We study modulational instability in a dispersion-managed optical fiber system where the sign of the group-
velocity dispersion is changed at uniformly distributed random distances around a reference length. We find an
instability gain of stochastic origin comparable to the conventional values found in a homogeneous anomalous
dispersion fiber. We develop an accurate analytical technique based on transfer matrices to estimate the instability
gain from the linearized nonlinear Schrödinger equation, which is also solved numerically. The comparison
of numerical and analytical results confirms the validity of our approach. Modulational instability sidebands
of purely stochastic origin appear and the competition between sidebands of periodic and stochastic origin is
also discussed. These results may be of interest in tailoring and controlling modulational instability sidebands
for telecommunications and parametric sources. Our method can also be applied to general linear stochastic
differential equations with multiplicative noise, which broadly occur in Physics.
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I. INTRODUCTION

Modulational instability (MI) is a pervasive phenomenon
in the physics of nonlinear dispersive waves. It manifests itself
as the destabilization of a uniform wave packet by the ex-
ponential growth of small harmonic perturbations around the
carrier frequency of the wave packet [1]. Its study originated
in hydrodynamics [2,3], but analogous phenomena were also
discovered in electromagnetic waves [4] and optical fibers [5].
The main ingredients to observe MI are focusing cubic non-
linearity (such as the Kerr effect in silica optical fibers) and
anomalous (negative) group-velocity dispersion (GVD).

Notwithstanding, MI can also be found in normal (positive)
GVD, if higher-order dispersion [6] or birefringence [7] are
considered. Moreover, in single-mode fibers, the periodic
variation of GVD along the fiber length can also give rise to
MI in the normal GVD regime. This effect is similar to the
destabilization of a parametrically excited harmonic oscillator
and is denoted as parametric MI [8–12]. Several MI sidebands
appear that correspond to different resonance orders. Their
frequency distance from the carrier goes as the square root of
their order. Optical fibers featuring random GVD variations
were also extensively studied. In the late 1990s, the exactly
solvable white noise process was considered [9,13–15]. More
recently, some of the present authors focused on different
processes such as localized GVD kicks [16] and colored pro-
cesses of low-pass and band-pass type [17].

So far, both periodic and random fluctuations have been
mostly assumed to occur around an average GVD different
from zero (and, more often, normal, to avoid competition with
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conventional MI, which exhibits much larger MI gain). The
fluctuations can be large, though.

On the contrary, systems with zero average GVD have
attracted a lot of attention for the suppression of the
dispersion-induced pulse broadening and the optimization of
nonlinear pulse transmission [18,19]. This approach is com-
monly denoted as dispersion management (DM): segments of
positive and negative GVD alternate along the fiber. The study
of MI in periodic DM fiber links [20] shows a behavior that is
different from the parametric MI: a threshold is found for the
segment lengths below which no MI appears. The amplitude
of GVD variations influences the MI spectral range, but has
no effect on this threshold.

Here we consider random fluctuations of the DM segment
lengths. While pulse propagation in a similar system was
analyzed in Ref. [21], we focus here on MI by applying the
technique developed in Refs. [14,16]. After deriving some an-
alytical relations for uniformly distributed fluctuations around
the periodic arrangement, we compare them to numerical
solutions. We find MI bands of purely stochastic origin and
characterize the transition from periodic to stochastic DM.

After stating the model equations and deriving the analyti-
cal approximations in Sec. II, we compare them to numerical
results in Sec. III. The reader will find conclusions in Sec. IV.

II. ANALYTICAL APPROACH

We consider the propagation of optical pulses ruled by the
nonlinear Schrödinger equation (NLSE) [18],

i∂zU − 1
2β2(z)∂ttU + γ |U |2U = 0, (1)

where U (t, z) is the complex envelope of the optical field,
(t, z) are the physical time and propagation distance in a frame
moving at the group velocity of the fiber mode, γ is the
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FIG. 1. Schematic representation of the GVD profile in a typical
fiber realization.

(constant) nonlinear coefficient, and β2(z) = ±β0
2 (β0

2 > 0) is
the GVD, which takes only two values. As schematically illus-
trated in Fig. 1, the sign changes occur at z1, z2, . . . , zN , where
zn = zn−1 + Ln, n = 1, 2, . . . , N and z0 = 0. The lengths Ln

are independent, identically distributed random variables with
uniform probability distribution function in [L̄(1 − ε), L̄(1 +
ε)], where L̄ is the average length of one fiber segment (half
of the DM period) and ε is the amplitude of the fluctuation.

Equation (1) has a continuous-wave (t-independent) so-
lution U0(z) = √

P exp(iγ Pz). In order to study its stability,
we insert in Eq. (1) the ansatz U (z, t ) = [

√
P + x̌1(z, t ) +

ix̌2(z, t )] exp(iγ Pz), where x̌1,2 are assumed to be small, then
linearize and Fourier transform the resulting equation with
respect to t (ω is used as the associated angular frequency
detuning from the carrier U0). We obtain

dx

dz
=

[
0 −g(z)

h(z) 0

]
x, (2)

where x ≡ (x1, x2)T—x1,2 are the Fourier transforms of x̌1,2,
functions of ω and z, g(z) = β2(z)ω2

2 , and h(z) = g(z) + 2γ P.
Equation (2) is a system of stochastic differential equa-
tions (SDEs) for each value of ω.

The solution of Eq. (2) is obtained by multiplying random
transfer matrices, which depend on the random variables Ln,
and reads

x(zN ) = T−(LN )T+(LN−1) . . . T−(L2)T+(L1)x(z0), (3)

T±(Ln) =
[

cos(k±Ln) −μ± sin(k±Ln)

μ−1
± sin(k±Ln) cos(k±Ln)

]
, (4)

with k2
± = ± β0

2 ω2

2 (± β0
2 ω2

2 + 2γ P), μ± = ± β0
2 ω2

2k±
. The sign ±

is chosen according to the sign of GVD in the corresponding
segment. The wave number k+ is always real and positive,
whereas k− is purely imaginary in the conventional MI band

0 � ω �
√

4γ P
β0

2
. Since we consider a piecewise-constant pro-

cess, the Itô-Stratonovich dilemma [22] does not represent an
issue for the integrals giving the transfer matrix formulation.

If the DM link is periodic, i.e., ε = 0, we can apply Flo-
quet theory [20]. The unit cell of DM to be periodically
replicated is represented by one positive and one negative
GVD trait of length L̄. The MI gain is defined as G1(ω) ≡
1

2L̄ ln max{|λ̃|, 1}, where λ̃ is the eigenvalue of the monodromy

FIG. 2. False-color plot of MI gain for a periodic DM fiber as a
function of dimensionless detuning ω and half period L̄. The color
bar shows the values of G1(ω) (defined in the text). The red dashed
horizontal line identifies L̄ = 1.07 (MI threshold), while the cyan
dotted line denotes the reference value L̄ = 1.15, used in the inset
and below in the random length fluctuation examples.

matrix associated to Eq. (2) of the largest modulus. This
corresponds to T2L̄ ≡ T−(L̄)T+(L̄). For definiteness, we take
γ = P = β0

2 = 1, which amounts to introducing the normal-
ized distance z/znl → z, time t/t0 → t , and field U/

√
P →

U , where znl = (γ P)−1 is the so-called nonlinear length and

t0 =
√

β0
2 znl is a characteristic time. The conventional MI in

anomalous GVD thus reaches the maximum value of G1,max =
1 at ω = √

2; the MI sidelobes are found in |ω| � 2. In [20],
it was observed that a critical value L̄ ≈ 1.07 exists, below
which G1 = 0 identically. The MI gain is represented as a
false-color map in Fig. 2 for ω � 0 (for ω � 0, we obtain its
mirror image) and exhibits several lobes, in general.

For random Ln, in Refs. [14,16], it was shown
that we have to resort to the Lyapunov exponent of
the random linear map: the sample gain GS(ω) ≡
limzN →∞ 1

zN
ln ‖T−(LN )T+(LN−1) . . . T−(L2)T+(L1) x(0, ω)‖2

converges for almost all realizations of the fiber and is a
deterministic quantity.

By taking the average of Eq. (3) and letting N → ∞, we
can estimate the MI gain as G1(ω) ≡ 1

2L̄ ln max{|λ|, 1}, where
λ is the largest modulus eigenvalue of T ≡ 〈T−〉〈T+〉—the
angle brackets denote the expectation operation over the ran-
dom lengths Ln. We can split the averages because Ln are
all mutually independent. It is useful to derive by elementary
integration,

〈cos(mk±Ln)〉 = cos(mk±L̄)
sin(mk±ε)

mk±ε
,

(5)

〈sin(mk±Ln)〉 = sin(mk±L̄)
sin(mk±ε)

mk±ε
,

with m = 1, 2, . . .. Thus, taking m = 1,

〈T±〉 = sin k±ε

k±ε

[
cos(k±L̄) −μ± sin(k±L̄)

μ−1
± sin(k±L̄) cos(k±L̄)

]
, (6)
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and T can be easily obtained as

T = sin(k−ε)

k−ε

sin(k+ε)

k+ε
T2L̄. (7)

As common in random dynamical systems [22], we may have
G1 = 0 for all ω, implying that x1,2 decay on average. Particu-
larly, it is apparent that for L̄ < 1.07, where both eigenvalues
of T2L̄ are on the unit circle, Eq. (7) implies that G1(ω) = 0
identically because T differs from T2L̄ only by a factor no
larger than one.

Nevertheless, a different kind of instability may occur, to
understand which the study of second moments is required.
We let X1 = x2

1, X2 = x2
2, and X3 = x1x2 and derive, from

Eq. (2),

d

dz
X =

⎡
⎢⎣

0 0 −2g(z)

0 0 2h(z)

h(z) −g(z) 0

⎤
⎥⎦X, (8)

with X ≡ (X1, X2, X3)T. Equation (8) can again be solved by
multiplying transfer matrices X (zn) = M±(Ln)X (zn−1), with

M±(Ln) =

⎡
⎢⎢⎣

cos2(k±Ln) μ2
± sin2(k±Ln) −μ± sin(2k±Ln)

μ−2
± sin2(k±Ln) cos2(k±Ln) μ−1

± sin(2k±Ln)
μ−1

±
2 sin(2k±Ln) −μ±

2 sin(2k±Ln) cos(2k±Ln)

⎤
⎥⎥⎦. (9)

The generic DM unit cell is associated to M−(Ln)M+(Ln−1). After Refs. [14,16], we define G2(ω) ≡ 1
4L̄ ln max{|κ|, 1}, where κ

is the largest modulus eigenvalue of M ≡ 〈M−〉〈M+〉. The two factors are obtained by averaging Eq. (9) and using Eq. (5) with
m = 2, and read

〈M±〉 =

⎡
⎢⎢⎢⎣

1
2 + sin(2k±ε) cos(2k±L̄)

4εk±
μ2

±
2 − μ2

± sin(2k±ε) cos(2k±L̄)
4εk±

−μ± sin(2εk± ) sin(2k±L̄)
2εk±

1
2μ2±

− sin(2k±ε) cos(2k±L̄)
4εk±μ2±

1
2 + sin(2k±ε) cos(2k±L̄)

4εk±
sin(2εk± ) sin(2k±L̄)

2εk±μ±
sin(2εk± ) sin(2k±L̄)

4εk±μ±
−μ± sin(2εk± ) sin(2k±L̄)

4εk±
sin(2εk± ) cos(2k±L̄)

2εk±

⎤
⎥⎥⎥⎦. (10)

In the periodic limit, the monodromy matrix associated to
Eq. (8) is M2L̄ ≡ M−(L̄)M+(L̄) and G2 = G1, for every ω.
In the random case, we can easily find the expression of M
analytically by multiplying the two matrices in Eq. (10), but
the expression is rather lengthy and is not reported here. In
contrast to T , it is apparent that M is not, in general, trivially
proportional to M2L̄ because of the upper-left 2 × 2 blocks in
Eq. (10). It is also easy to verify that det 〈M±〉 = [ sin(2k±ε)

2k±ε
]2.

The use of MATHEMATICA® [23] allows us to obtain that the
eigenvalues of 〈M±〉 are (1, λ±, λ∗

±), with

λ± = sin(2k±ε) cos(2k±L) + i|sin(2k±ε) sin(2k±L)|
2k±ε

. (11)

This, though, does not imply anything on the eigenvalues
of M. This simple algebraic consideration implies that we
may have G2 > 0, even when G1 = 0. Therefore, new MI
sidebands of purely stochastic origin exist. The eigenvalues κ

of M may be found analytically too. Their expression is very
involved, though; we thus rely on a numerical routine.

III. RESULTS

In order to assess the accuracy of our estimates, we also
solve Eq. (2) numerically by taking a fixed number, N = 20,
of fiber segments. We take [x1(0), x2(0)]T = (1, 0) [equiva-
lently, X (0)T = (1, 0, 0)] and multiply by the transfer matrix
given by Eq. (4) N times, alternating the GVD sign according
to Eq. (3). We compute Pout = x2

1 (zN ) + x2
2 (zN ) [obviously,

Pin = x2
1 (0) + x2

2 (0) = 1]. We repeat this calculation taking
Niter different fiber realizations, i.e., the sample size. The mean

gain is defined as either [16,17,24]

G1(ω; N ) ≡ 1

NL̄
ln [|〈x1(zN )〉| + |〈x2(zN )〉|] (12)

or

G2(ω; N ) ≡ 1

2NL̄
ln

〈
Pout

Pin

〉
, (13)

where the averages are performed on the sample and which
are compared to either G1 or G2, respectively.

We show, in Fig. 3, four illustrative examples of MI side-
lobes. We notice that in general, G2 converges to G2 for Niter =
1 × 106, whereas a much larger Niter = 1 × 107–1 × 108 is re-
quired to achieve a stable and reliable estimate of G1. This can
be explained by the fact that x1,2 can be positive or negative,
while Pout � 0. The realizations of x1,2(zN ) can be imagined
as a set of vectors in a plane. A single realization can be a
vector of extremely large norm pointing to any direction. A
good estimate of G1 thus requires a larger sample size because
the plane must be exhaustively explored to not overestimate
extreme values. Increasing N makes this problem worse be-
cause the accumulated growth is larger in longer domains.

We notice that G1 = G2 = 0 is expected at ω = 0. G1

exhibits a single lobe (dash-dotted red lines), while G2 grows
monotonically to reach a maximum value at around ω ≈
2, then decays in an oscillatory way (solid yellow lines).
This is not the case in numerical results (blue crosses and
purple circles), which are affected by the limited size of
the numerical domain and present a finite G1,2 at ω = 0.
This can be quantified by deriving alternative semianalytical
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FIG. 3. MI gain curves for different values of L̄ and ε, for ω �
0. (a) L̄ = 1, ε = 0.2; (b) L̄ = 1, ε = 0.5; (c) L̄ = 1.15, ε = 0.2;
(d) L̄ = 1.15, ε = 0.5. Blue crosses (purple circles) represent G2

(G1) from numerical data, solid yellow (dash-dotted red) lines rep-
resent the theoretical estimates G2 (G1), dashed blue (dotted purple)
lines represent the semianalytical estimates G̃2 (G̃1). In (c) and (d),
we include the MI gain in the periodic case ε = 0 as a thin green
dashed line.

estimates of gain. We notice that T−(LN ) . . . T+(L1) ≈ T
N/2

[M−(LN ) . . . M+(L1) ≈ M
N/2

] and define

G̃1 ≡ 1

NL̄
ln

[(
T

N
2

)
11

+
(

T
N
2

)
21

]
, (14)

G̃2 ≡ 1

2NL̄
ln

[(
M

N
2

)
11

+
(

M
N
2

)
21

]
, (15)

where the matrix power is computed numerically and the
subscripts refer to the corresponding numerically computed
matrix elements. We notice in Fig. 3 that in every case, this
estimate performs very well not only for ω ≈ 0, but in the
whole domain.

In Figs. 3(a) and 3(b), L̄ = 1 < 1.07 and ε increases from
0.2 to 0.5. The MI is of purely stochastic origin. The lo-
cal maximum value achieved by G2 at ω = ω2,max > 0, say
G2,max, increases with ε and becomes of the same order of
magnitude as the conventional MI (i.e., for constant anoma-
lous GVD). The width of the sidelobes increases significantly
as well.

In Figs. 3(c) and 3(d), L̄ = 1.15 > 1.07. There is thus a
competition between the periodic and the stochastic effects.
We also include the periodic-DM MI sidelobe for comparison
(thin green dashed line).

For ε = 0.2 [Fig. 3(c)], the random fluctuations yield a
broadened MI sidelobe. In contrast to the case of constant
anomalous GVD perturbed by white noise, where the broad-
ening is accompanied by a reduction of G2,max [9], here this
value is slightly enhanced. We also notice that G1 is always
less than its periodic counterpart, consistently with Eq. (7).
Comparison of Figs. 3(a) and 3(c) shows that the main side-
lobe appearing in the former is located in the same region of
the periodic sidelobe. The random fluctuations facilitate the

FIG. 4. (a) Maximum gain values and (b) their corresponding
ω as a function of ε. The plus (cross) markers correspond to the
maxima G2,max for L̄ = 1 (L̄ = 1.15). The dashed (solid) blue lines
correspond to the maxima of G2 for L̄ = 1 (L̄ = 1.15). The green
dash-dotted lines report, for reference, the constant values found in
the periodic limit, i.e., the maxima of G1 = G2 for ε = 0. The red
circles show the values of G1,max and ω1,max for L̄ = 1.15, for which
red dotted lines illustrate the corresponding maxima of G1. In (b), the
line stops at ε ≈ 0.54 (cutoff for G1).

emergence of the MI sidelobes in a range that coincides with
the periodic DM.

For a larger fluctuation (ε = 0.5), shown in Fig. 3(d), the
residual effect of periodicity is completely erased and we
obtain a single wide lobe similar to the corresponding below-
threshold example of Fig. 3(b), but with a larger G2,max.

In order to summarize our findings, we show, in Figs. 4(a)
and 4(b), respectively, Gj,max and the corresponding ω value,
ω j,max, with j = 1, 2, as a function of ε. Obviously, G1,max

is the local maximum value of G1 at ω = ω1,max > 0. We
compare them to their corresponding theoretical estimates,
i.e., the maxima of G1 (G2). Solid blue lines, crosses, red
lines, and circles correspond to L̄ = 1.15, while dashed lines
and pluses correspond to L̄ = 1. In Fig. 4(a), we notice that
G2,max increases monotonically with ε. As expected, for ε →
0, the gain vanishes for L̄ = 1 and converges to the periodic
G1,max = 0.31 (for ε = 0, dash-dotted green line) for L̄ =
1.15. For large ε, they converge to two very similar values,
which is around 30% smaller than the conventional MI value.
The dotted red line in Fig. 4(a) shows the maxima of G1 ob-
tained from Eq. (7). For ε > 0.54, G1 = 0 for every ω. For this
value of the fluctuation amplitudes, randomness completely
overrules the effects of periodicity. This is corroborated by
the values G1,max (red circles), which match very well with
the theoretical estimates (provided that a large enough Niter

is chosen). In Fig. 4(b), we observe that for both L̄, ω2,max

decreases with ε and converges to a value larger than the
conventional MI value. Apart from numerical fluctuations,
for L̄ = 1.15, ω2,max < ω1,max < 2.18, i.e., slightly below the
ε = 0 value. For L̄ = 1, ω2,max is above its periodic counter-
part and crosses it for ε ≈ 0.3. The theoretical estimates work
very well for every considered value of ε.
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IV. CONCLUSIONS

To conclude, we investigated the effect of uniformly dis-
tributed random fluctuations of the length of the opposite
GVD segments in DM fiber links. We considered the MI
problem and developed an analytical technique to estimate
the instability gain. The MI gain attains values comparable
to the conventional ones in a homogeneous anomalous GVD
fiber and up to 50% larger than those found for the periodic
arrangement. Comparison to the direct numerical solution in
a Monte Carlo fashion confirms the soundness of the method.
Splicing tens of fiber segments of slightly different length and
opposite GVD could allow one to experimentally demonstrate

this phenomenon. The number of samples obviously cannot be
as large as that considered in our numerical analysis.

This may be of of interest for tailoring and controlling MI
sidebands for telecommunications and parametric sources.
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