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Quantized optical vortex-array eigenstates in a rotating frame
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Linear combinations of Bessel beams can be used to effectively trap light within cylindrical domains. Such
hard traps can be used to produce states that exhibit stationary arrays of optical vortices from the perspective of a
steadily rotating frame. These patterned singularities can be engineered to have singularities of the same or mixed
charges and the requisite rotation rates are quantized even though the setting is purely linear. A hydrodynamic
interpretation is that the vortices are at rest within a compressible, two-dimensional fluid of light.
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I. INTRODUCTION

Rotating frames are ubiquitous in physics because they
allow for the investigation of phenomena that cannot nor-
mally be brought into equilibrium [1]. For instance, one of
the remarkable features of trapped, rotating Bose-Einstein
condensates (BEC) is their ability to support arrays of vortex
eigenstates [2,3]. While many comparisons have been drawn
between vortices in BEC and singularities generated in coher-
ent beams of light [4,5], there is no optical analog to such
trapped eigenstate arrays. This is addressed in the present
work by structuring beams so that energy and information
are confined to a fixed radial domain, effectively creating an
all-optical trap. These structures are engineered so that the
state within such traps appears fixed when viewed from a
frame that spirals with a specified pitch along the propagation
axis. With this axis interpreted as time, the result is a means
of producing optical eigenstates with patterned vortices.

For BEC, a circular hard trap is realized by the steric con-
tainment afforded by a vessel or external “bucket” potential
[6,7]. We show an optical setting that offers a particularly
attractive way of accomplishing the same thing. Zeroes of
idealized Bessel beams enforce such hard-trap boundary con-
straints; there is no energy flux across these boundaries, so
restricting attention to dynamics within the first Bessel zero
is equivalent to evolution within a hard-trap domain. This
allows trapped vortex dynamics to be studied in free-space
optics. This setting is advantageous, compared to trapped
BEC or fiber-trapped light, because the pattern and charge of
the optical vortices can be engineered by tailoring the Bessel
mode weights using digital holography. Likewise, a thorough
characterization of the resulting beam can be carried out using
standard optical equipment because of the free-space setting.

When viewed in a frame rotating with appropriate angular
speed, these vortex arrays exhibit motion that is dramatically
different from dynamics in a free-space Gaussian beam; the
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presence of the trap admits vortex states that are perfectly
stationary and do not appear to interact (although still con-
sistent with hydrodynamics [8]). While the behavior is purely
classical and linear, the requisite rotation rates are quantized.

In this paper, a theoretical framework for the construc-
tion of such rotating-frame eigenstates is developed and then
applied to produce and analyze a variety of charge-neutral
eigenstates. These states are then experimentally implemented
and characterized and optical vortex eigenstates are observed
in a rotating frame.

II. SINGLE-VORTEX EIGENSTATES

Under a paraxial approximation for the monochro-
matic electromagnetic vector potential, A(r, φ, z, t ) =
e0A0ψ (r, φ, z)ei(kz−ωt ), electrodynamics are governed by
a two-dimensional Schrödinger equation [9]:

i∂zψ = − 1

2k
∇2

⊥ψ. (1)

The associated dynamics are then characterized by a scalar
field, ψ , with the z axis treated as time. This field can be
confined by restricting attention to a circular domain for which
radius r � r0 and assuming that the field is separable—i.e.,

ψ (r, φ, z) = u(r)eımφe−ıεz. (2)

The scalar field, u, then satisfies Bessel’s eigenvalue problem,

∂r,ru + 1

r
∂ru − m2

r2
u = −2kεu, (3)

with modes described by Bessel functions of the first kind, Jm:

u(r) = Jm(
√

2kεr). (4)

A hard-trap boundary condition of u(r0) = 0 quantizes the
admissible eigenvalues to

εm j = ν2
m j

2kr0
. (5)

Here νm, j is the jth Bessel zero of the Bessel function of
order m. This delivers a set of mutually orthogonal modes that
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satisfy the boundary condition at r = r0,

ψm j (r, φ) = Jm(νm jr/r0)eımφ, (6)

where m ∈ Z and j ∈ N. Each mode is equivalent to a sum of
plane waves propagating on the surface of a cone that subtends
an angle, αm j , with respect to the z axis [10]:

αm j = √
2εm j/k. (7)

The enforcement of αm j � 1 ensures that the paraxial approx-
imation is satisfied [11]. Each solution, Eq. (6), has a vortex of
charge m at the center of the trap. Positive charges correspond
to a phase that increases from 0 to 2π with counterclockwise
motion around the vortex.

Linear combinations of these Bessel modes can be used to
construct evolving states, within the domain r � r0, for which
the field is zero at r = r0:

ψ (r, φ, z) =
∑
m, j

cm jψm j (r, φ)e−ıεm j z. (8)

Here constants cm j can be used to satisfy an arbitrary initial
condition.

III. EIGENSTATES COMPOSED OF VORTEX ARRAYS

There exists a particularly simple class of dynamics for
which a linear combination of stationary Bessel states can
itself be a stationary state within a steadily rotating frame.
To see this, consider the scalar field of Eq. (8) as viewed in
a frame that rotates with a steady angular speed of 
 about
the z axis:

ψ́ (r, φ, z) := ψ (r, φ − 
z, z). (9)

Define an azimuthal variable for this new frame, φ́ = φ − 
z.
Since

ψ (r, φ, z) = ψ́ (r, φ́, z), (10)

we have that

∂zψ (r, φ, z) = ∂zψ́ (r, φ́, z) + 
∂φ́ψ́ (r, φ́, z). (11)

Noting that the z component of the angular momentum oper-
ator is Lz = −ı∂φ́ , the paraxial equation in the rotating frame
is [3]

i∂zψ́ = − 1

2k
∇2

⊥ψ́ + 
Lzψ́. (12)

Look for separable solutions by assuming that

ψ́ (r, φ́, z) = u(r, φ́)e−ıηz. (13)

This gives the following eigenvalue problem:[
− 1

2k
∇2

⊥ + 
Lz

]
u = ηu. (14)

Consider a potential solution to Eq. (14) of the form

u(m)
j1, j2

= e−ıα/2 cos(β/2)e−ımφJm
(
νm, j1 r/r0

)
+ eıα/2 sin(β/2)eımφJm

(
νm, j2 r/r0

)
, (15)

where parameters α and β control the phase and magnitude of
the mode weighting. This will satisfy Eq. (14) provided that

FIG. 1. Quantized rotation rates in a Bessel trap. The quantized
rotation rates, 


(m)
j1, j2

, of Eq. (16), for Bessel zero indices, j1, ranging
from 1 to j2, and j2 ranging from 1 to 8. A complementary set of
positive rotation rates is associated with states for which j1 � j2. The
first three Bessel orders are plotted m = 1, 2, 3. The first three Bessel
orders, m = 1, 2, 3, are plotted as concentric cylindrical shells. For a
given pair of Bessel zero indices, the rotation rate decreases with
Bessel order m.

an associated eigenvalue, η
(m)
j1, j2

, and rotation rate, 

(m)
j1, j2

, are
specified as follows:

η
(m)
j1, j2

= 1

4kr2
0

(
ν2

m, j1 + ν2
m, j2

)
, (16)



(m)
j1, j2

= ν2
m, j1 − ν2

m, j2

4mkr2
0

. (17)

We now have a class of stationary trapped states within a
rotating frame. An immediate observation is that the requisite
rotation rates are quantized per Eq. (17). These are plotted
in Fig. 1 for a range of Bessel zeros, νm, j1 and νm, j2 , and
the lowest three Bessel orders. As shown there, rotation rate
magnitude increases with the difference between the Bessel
zero indices, j1 and j2.

Each of these quantized rotation rates can be used to pro-
duce eigenstates in the rotating frame. In fact, a continuous
spectrum of weighting coefficients, α and β, are associated
with each quantized choice of rotation rates 


(m)
j1, j2

and eigen-

values η
(m)
j1, j2

.

IV. POLAR ARRAYS OF VORTEX EIGENSTATES

Eigenstates in the rotating frame are expressed as a linear
combination of just two Bessel modes of order m, but the
states exhibit multiple pairs of linear-core, tilted vortices of
charge ±1 along with a linear-core, tilted vortex of charge m
at the center of the domain, r < r0. Each eigenstate, Eq. (15),
is parametrized by Bessel order m, Bessel zero indices j1 and
j2, and tilt angles α and β. These five parameters offer a great
deal of control over the structural features of vortex arrays.

Two particularly simple arrays are shown in Fig. 2, for
which the Bessel modes are of the lowest order. Panel (a)
shows an eigenstate phase and associated vortex array consist-
ing of two positive and two negative vortices arranged about
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FIG. 2. Vortex-array eigenstates in a Bessel trap. Frames rotating
in accordance with Eq. (16) support a wide range of vortex-array
eigenstates, Eq. (15), parametrized by Bessel order m, Bessel zero
indices j1 and j2, and tilt angles α and β. Contour phase plots are
shown for two eigenstates for which m = 1. In both cases, α = 0
and β = 125◦. White dots correspond to experimentally measured
vortex positions, as discussed in the text, and correspond to a hard
trap radius of r0 = 0.4 mm. (a) m = 1, j1 = 1, and j2 = 2; (b) m = 1,
j1 = 1, and j2 = 3.

a +1 vortex at the center. The state shown in panel (b) differs
from that of (a) by only one parameter, but it features a pair
of vortex dipoles. In fact, the spacing between the dipoles
can be smoothly increased or decreased by increasing or de-
creasing tilt angle, β. The existence of eigenstates supporting
vortex dipoles is in stark contrast to freely propagating [8] and
harmonically trapped [12] settings where vortices of opposite

FIG. 3. Higher-order vortex arrays. Two eigenstates of Eq. (15)
are shown. Contour phase plots are shown for two eigenstates for
which α = 0. White dots correspond to experimentally measured
vortex positions, as discussed in the text, and correspond to a
hard trap radius of r0 = 0.4 mm. (a) A second-order version of
Fig. 2(b) with β = 120◦, m = 2, j1 = 1, and j2 = 3. (b) An array
without dipoles for which the inner 12 vortices are arranged on the
vertices of equilateral triangles with β = 78.565◦, m = 3, j1 = 2,
and j2 = 3.

charge contribute to each others’ background field, leading to
annihilation [8].

Higher-order Bessel modes, m, elicit more complex polar
arrays, as shown in Fig. 3. Panel (a) amounts to a doubling
of the single charges and dipoles observable in Fig. 2(a),
while panel (b) is an example of how the mode parameters
can be tuned to realize a specific array design. In this case, a
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FIG. 4. Large vortex arrays. An eigenstate of Eq. (15) is shown
that is sufficiently large so that the polar-array structure is easily
visible. Here β = 120◦, m = 5, j1 = 5, and j2 = 7. White dots cor-
respond to experimentally measured vortex positions, as discussed in
the text, and correspond to a hard trap radius of r0 = 1.6 mm.

mixed-charge pattern has been produced in which the charges
fall on the vertices of equilateral triangles. A final array eigen-
state is shown in Fig. 4 to give a sense for the general structure
of higher-order vortex arrays.

V. EXPERIMENTAL IMPLEMENTATION

The examples of the previous sections were implemented
and tested in a propagating laser beam, using the apparatus in
the schematic of Fig. 5. Vortex arrays were generated using
a collimated, single-mode Gaussian laser beam (λ = 526 nm)
that was transmitted through a spatial light modulator (SLM)
[13]. The SLM displayed a digital hologram, constructed by
turning the amplitude and phase of the initial condition Bessel
trap field, Eq. (15), into a diffraction grating. This digital
hologram is a two-dimensional discrete array matching the
pixel pitch (12.4 microns) of the SLM and its resolution
(1024 × 768) and it has the following structural form:

H(x, y) =
∣∣u(m)

j1, j2

∣∣
max

(∣∣u(m)
j1, j2

∣∣)
∣∣0.5 ei arg(u) + 0.5 eikg(

√
3x/2+y/2)∣∣.

(18)

The first term on the right-hand side of Eq. (18) controls the
amplitude to match the target mode and the next term specifies
the phase. The last term puts the phase into a sinusoidal grat-
ing with wave number kg = 2π/N , which defines the fringe
separation (N = 5 pixels in these experiments) on the SLM.
The scaling parameters in front of the x and y components
of the plane wave cause the grating to be “diagonal” so
that the first-order diffracted beam avoids interference with
pixel-diffracted beams. This hologram allows the construc-
tion of any vortex array, including complete experimental

control over the Bessel trap parameters of α, β, m, and r0,
by simply providing experimental values for them in Eq. (18).
By propagating a Gaussian laser beam through the resulting
hologram-modulated diffraction grating, as depicted in Fig. 5,
the first-diffracted order is imprinted with the vortex array that
was programed into the hologram.

The first-diffracted order was isolated using an iris at the
focus of a 4 f lens imaging setup and then measured with
a camera at the imaging location. Propagation of the mode
was measured by stepping the propagation distance with a
Newport M-IMS400PP translation staged. At each step, an
intensity image of the beam was acquired with a WinCamD-
LCM CMOS camera; this was converted to an amplitude
image by taking a square root of each pixel. A phase image
was acquired using collinear phase-shifting digital hologra-
phy [14,15]; this entailed programing composite holograms,
composed of a sum of the hologram of the mode to be mea-
sured with a zero-order Bessel mode of the same hard trap
radius. The zero-order Bessel mode acted as the reference, and
we made four new holograms with reference phase shifts of
0, π/2, π , and 3π/2. From camera measurements of the four
phase-stepped interferograms, we then calculated the phase
map of the signal field.

Figure 5 compares the predicted and measured amplitude
and phase of Figs. 2–4 for the initial (z = 0) transverse plane.
Consistent with the experimental vortex positions shown in
those figures, these magnitude and phase images show ex-
cellent visual agreement in each case. The vortex positions
featured as white dots in Figs. 2–4 were measured by com-
bining these amplitude and phase measurements into a single
complex field for each z step: ψ = |ψ | ei arg(ψ ). For each prop-
agation step, we tracked the vortices of Figs. 2 and 3 by
finding the intersections of zero crossings in the real and
imaginary parts of the field ψ . Vortex tracking for Fig. 4 was
accomplished by finding locations of minimum value in the
amplitude. The modified approach of the latter case was called
for because the array features high density vortices and the
associated phase gradients are severe [16].

Some key differences are evident comparing theory to ex-
periment and these lend insight into the physics. First, vortices
at the trap center with a charge |m| > 1 are unstable and
dissociate into m unit-charge vortices. This well-known effect
[17] is evident at the center of the experimental phase maps
(colored with legend showing scale) of subpanels (c)–(e) of
Fig. 5. Second, the hard trap boundary is clearly visible in the
experimental amplitude, but it is pixelated in the phase maps
due to the low levels of light at those radial distances used in
the phase calculation. Third, there are small deviations in the
symmetry of the experimental profiles, as in the lack of sym-
metry with respect to the horizontal axis of the central vortex
in Figs. 5(a) and 5(b). Such small differences are typical and
unavoidable for finite-aperture systems.

There is a fourth key difference between the theory and the
experimental demonstration: Bessel-Gaussian beams, rather
than idealized Bessel modes, were generated [18]. These
beams have a finite lifetime—i.e., a maximum propagation
distance—for which they can be reasonably approximated
as nondiverging [19] and for which vortex dynamics will
follow trajectories predicted in their idealized-Bessel coun-
terparts [20]. As a consequence, the Bessel hard trap does
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FIG. 5. (Top) Schematic of the experiment. Laser diode emission from a single-mode fiber is subsequently collimated. A computer controls
the display of digital holograms on the SLM, sends commands to the motorized propagation stage, and controls the CMOS detector that
captures intensity images. A 4 f -imaging system, including two 50 cm focal length lenses and an iris, selects the first diffracted order from
the SLM and allows for data collection starting at the z = 0 initial state. Only the first diffracted order from the hologram is depicted after the
SLM. (Box) Comparisons between theoretical predictions and experimental implementations for all five examples. Transverse profiles, both
amplitude [abs(ψ )] and phase [arg(ψ )], are generated and measured at z = 0.
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not persist indefinitely in the experiment. Vortex positions
will therefore tend to drift as the beam diverges, an effect
that is more pronounced with increasing distance from the
center of the trap. This is clearly seen in Fig. 4, by contrast-
ing the discrete “clumps” of vortex positions in the center
of the trap with the “trails” of vortex positions near the
trap boundary. Nonetheless, within these modest experimental
restraints, the implementation produced a satisfying match
with the proposal—demonstrating the major benefit of a sim-
ple, accessible experimental setting for these vortex array
dynamics.

VI. CONCLUSION

The examples considered, along with others that were used
to test our understanding, allow the following observations.
For the sake of definiteness, we have restricted attention to
cases for which j1 < j2.

(i) There is a singularity of order m at the center of the trap.
(ii) The parameter, α, produces a rigid rotation of the array

by α/2 about the trap center.
(iii) The presence of vortices outside of the trap center

requires that j1 �= j2. Swapping j1 and j2 while also replacing
β with π/2 − β results in the same vortex structure.

(iv) Vortices lie at the intersection of rings and radial lines.
There are 4m radial lines and a maximum of 2( j2 − 1) rings.
Each radial line contains a maximum j2 − 1 vortices.

(v) There are only two types of radial vortex patterns and
they alternate azimuthally. For α = 0, one type is along φ =
0, while the other is along φ = 3π

2m . There are 2m replicates
of this pair of lines, rigidly rotated by an integer multiple of
π/m.

(vi) Replacing β with 2π − β swaps the vortex structure of
the two types of radial lines.

(vii) For β < π − ( j2 − 1) π
j2

or β > π + ( j2 − 1) π
j2

, there
are at most j1 − 1 vortices along each radial line. As |π −
β| → 0, the vortex cores become increasingly tilted and are
extended azimuthally.

In conclusion, we have demonstrated that polar vortex ar-
rays can be generated within an all-optical hard trap using
a linear combination of just two Bessel modes. From the
perspective of a steadily rotating frame, each of these is an
eigenstate. The requisite rotation rates are quantized, calling
to mind BEC vortices produced in a rotating trap [2], but the
current setting is both linear and classical. Bessel traps should
also prove useful in the study of confined vortex dynamics that
are not stationary and can be used to produce annular domains
with hard boundaries on either edge.

The pseudopotential associated with a rotating frame can
be interpreted as a potential function that changes the free
energy relative to eigenstates associated with a fixed frame
and the use of free energy in association with optical states is
worthy of further investigation.

The current work has focused on Bessel traps with a
circular domain. However, the same approach can be imme-
diately applied to consider annular domains as well. Such
settings may exhibit their own novel features because there
is no longer a trap center nor any vortex associated with
this position. It is also possible to construct analogous array
eigenstates within a harmonic trap, but the setting is not as ac-
cessible since it requires that the light be propagating through
an environment with inhomogeneous dielectric character.
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