
PHYSICAL REVIEW A 108, 023508 (2023)

Exploring anomalous light dynamics around higher-order conjugate exceptional
points with local nonlinearity

Sibnath Dey and Somnath Ghosh *

Unconventional Photonics Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan-342037, India

(Received 30 January 2023; revised 26 May 2023; accepted 25 July 2023; published 10 August 2023)

Dynamical encirclement around higher-order exceptional point (EP) singularities can provide control over
higher-order modal transport, which holds promise for on-chip device applications. For future photonic
technologies, controlled light steering is in demand for communication, data processing, and computing.
Nonlinearity-driven dynamical encirclement of second-order EPs (EP2s) and corresponding chirality or
nonchirality driven nonadiabatic modal dynamics have attracted attention in the topological study of various
non-Hermitian photonic systems. Here, we propose the concept of nonlinearity-induced higher-order conjugate
EPs, which are analytically associated with multiple pairs of conjugate EP2s. Moreover, in the presence of
saturable nonlinearity, dynamical encirclement around higher-order conjugate EPs in two T -symmetric systems
are yet to be explored. Here, we report the hosting of higher-order conjugate EPs in two complementary photonic
systems in the presence of nonlinearity connected with T -symmetry by using the framework of a multilayer
gain-loss assisted planar optical waveguide. We establish that, in the absence of chirality, the same amount
of focusing and defocusing types of saturable nonlinearity leads to different dominating higher-order output
modes, irrespective of the choice of the inputs, in two T -symmetric devices. An analytical model to describe
this anomalous higher-order mode collapsing phenomenon in two T -symmetry systems owing to the interplay
between nonlinearity and the topology of the higher-order conjugate EPs has been developed. Our findings
provide a promising opportunity to switch higher-order modes and open up a credible platform to study the
physics of nonlinearity-induced higher-order conjugate EPs in T -symmetry systems.
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I. INTRODUCTION

The nontrivial topological nature of exceptional points
(EPs) is one of the distinct non-Hermitian features of non-
conservative systems [1–3], and it has also been substantially
studied theoretically [4–8] as well as experimentally [9–12].
The nth-order EP (EPn) can be defined as a specific sin-
gularity known as a branch point in the system parameter
plane. It occurs when n eigenvalues and their corresponding
eigenvectors converge simultaneously, resulting in a defective
system Hamiltonian [1–5]. However, it has also been verified
that the functionality of EPn where n > 2 can be realized
with the simultaneous presence of (n − 1) second-order EPs
[13–15]. In this paper, we conventionally use the abbreviation
“EPn(2, 3, 4)” to define the order number of EPs. Several
investigations proved that a higher-order EP has been realized
by winding around appropriate numbers of connected EP2s
[15–18]. The conventional Hermitian degeneracy, called the
diabolic point (DP), is different from EP due to the self-
adjointness of the Hamiltonian in the first and the lack of it
in the second case [19].

Over the last two decades, the exotic phenomena associ-
ated with EPs were explored in many non-Hermitian systems,
including optical waveguides [12,20,21], optical fiber [22],
nanooptomechanical systems [23], photonic crystal [24,25],
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cavity optomechanics [26], quantum heat engine [27], micro-
cavity [28], and also in various nonoptical systems such as
atomic [16] and molecular spectra [29], the cavity magnome-
chanical system [30], and microwave system [9,31]. However,
the photonic systems which require sophisticated fabrication
control can provide a highly promising platform to study the
fundamental aspect of EPs as an exciting tool for manipulation
of the light-matter interaction [3,32] towards a wide range
of unique technological applications, such as ultrasensitive
sensing [33–35], asymmetric mode switching [22,25,36–38],
novel steering of fast and slow light [39], photon blockade
[40], quantum switch [41], dark-state lasing [42], and coherent
perfect absorption [43], nonreciprocity enhancement [44–46],
optomechanically induced transparency [47], the generation
of frequency components [48], phonon-lasing action [49],
nonlinear EP laser [50], nonlinear phase transitions [51], en-
hanced stability of the nonlinear supermodes [52], and so on.
A significant effort in the theoretical aspect has been put for-
ward to investigate the higher-order EPs [6,15,16,53] instead
of only second-order EPs.

An adiabatic parametric encirclement process can explore
the topological nature of different-order EPs with a quasistatic
variation of coupling parameters along a closed trajectory.
Such a topological feature differs from the Hermitian systems,
which host DPs [54]. In a Hermitian parameter-dependent
Hamiltonian, the adiabatic theorem indicates that the states
of the respective systems return to their initial positions apart
from a global change of Berry’s phase after a slow parametric
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encirclement around a DP [55]. However, for the parameter-
dependent non-Hermitian case, the adiabatic parametric en-
circlement around an EP2 results in the adiabatic permutation
between the coupled states in the sense that two associated
states successively interchange their own identities, where one
of the eigenstates acquires an additional ±π phase change
at the end of the encirclement process [19]. Such unortho-
dox features are indicated by the geometry of the parameter
space, which is a direct consequence of the system’s topol-
ogy. Recently, state-switching mechanisms among multiple
states were established by parametrically encircling different-
order EPs [15,16,21,28]. Several experiments also [9,20,56]
proved that these types of topological effects are present
around EPs. These types of EP-aided state-switching mech-
anisms have many applications in quantum-based switching
and control.

However, instead of stroboscopic encirclement around
different-order EPs, if we consider time-dependent (analogous
to length scale) or dynamical parametric variation around
them, then the adiabaticity of the system breaks down during
the evolution of the state [57]. So when we consider the
clockwise and anticlockwise dynamical parametric evolution
around an EP2, it results in different dominating output states,
irrespective of the choice of the input state [12,20]. However,
the dynamical encirclement around EP3 results in nonchiral
light dynamics in the system [21,58].

The state-of-the-art facilities of fabrication in photonics
give us extraordinary capabilities for fabricating complex
structures to manipulate the flow of light. In seeking out
new physics to exploit these capabilities, recently, the reverse
chiral responses [59] in the two T -symmetric devices around
conjugate EP2s have opened up a new light manipulation
technique in on-chip planar devices. Now, to consider a
multimodal system, a natural question can be raised whether
the chiral properties are maintained for higher-order conjugate
EPs connecting multiple eigenstates in the presence of the
other noninteracting states. Moreover, what would be the chi-
ral aspects of the device if more than three states are mutually
interacting in the vicinity of multiple pairs of conjugate EP2s
in presence of judicious tuning of the parameters? In this
context, the higher-order state dynamics during the dynamical
parametric encirclement around higher-order conjugate EPs
in the multimodal system is a contemporary issue and is yet to
be explored.

Beyond the already reported reverse chiral response [59]
in dual mode complementary platforms, it should be pretty
exciting and more compact from a feasibility point of view
in integrated devices if it is possible to switch or retrieve a
selective higher-order mode in the presence of other modes
with higher conversion efficiency in T -symmetric devices.
Hence, to host a unique nonchiral higher-order state dynamics
in two T -symmetric multimode but planar structures would
be of interest for device applications with a deliberate choice
of dynamically tunable parameters.

In this paper, to address the highlighted issue, based on
the T symmetry, we explore the correlation between two
specially designed gain-loss-assisted multimode-supported
planar complementary optical waveguides with local sat-
urable nonlinearity to host higher-order conjugate EPs. We
design a planar multimode optical waveguide (WG), where

two complementary topological variants are realized based
on two T -symmetric complex potentials in the form of
unbalanced gain-loss profiles. Initially, by tuning the un-
balanced gain-loss profile in the absence of nonlinearity,
conjugate EP3s (EP3, EP3∗) were embedded by encounter-
ing two pairs of conjugate EP2s [(EP2(2,5), EP2(2,3)) and
(EP2∗(2,5), EP2∗(2,3))] among three coupled modes. Instead
of the reverse chiral response around conjugate EP2s [59],
we show nonchiral light dynamics of the coupled chosen
modes following the dynamical parametric encirclement pro-
cesses, enclosing the identified conjugate EP3s. Now, with
the onset of nonlinearity in the two T -symmetric optical
media, one of the previously unaffected modes interacts with
the previously chosen three modes. Simultaneously, varying
the gain-loss profile, we encounter another pair of conju-
gate EP2s in two complementary waveguides to connect
four coupled modes analytically. We now encircle all three
pairs of conjugate EP2s within the dynamical parametric
loop. In this process, we establish a new type of nonchi-
ral, higher-order modal dynamics. This exclusive dynamic
is omnipresent in both the variants of complementary op-
tical waveguides under consideration. Here, we reveal that,
regardless of the choice of the input mode, all the in-
teracting modes are collapsed into a specific dominating
higher-order mode, and most interestingly, the chirality of
both the complementary devices is destroyed. An analyti-
cal treatment has been developed to describe this anomalous
higher-order mode-collapsing phenomenon. Even though chi-
rality is absent around conjugate EP3s, we investigate and
report the influence of saturable nonlinearity on the nona-
diabatic mode conversion. The same amount of focusing
(FN) and defocusing (DFN) saturable nonlinearity will lead
to different dominating higher-order modes at the output
of the two complementary systems. Our proposed scheme
has the potential to explore an unconventional platform
to investigate the higher-order nonchiral modal dynamics
in two T -symmetric photonic systems around higher-order
conjugate EPs.

II. RESULTS AND DISCUSSIONS

A. Design of two complementary planar optical waveguides
to host higher-order conjugate EPs

We design a special type of gain-loss-assisted multimodal
planar optical waveguide, schematically shown in Fig. 1(a),
occupying the region −W/2 � x � W/2 along the trans-
verse x axis and 0 � z � L along the longitudinal z axis.
The passive refractive index of the core (nh) is 1.50, and
the passive cladding index (nl ) is 1.46. We set the total
width W = 162 µm, and the full length of the waveguide
as 15 mm, and set the wavelength λ in such a way that
k = 1. Moreover, we would like to mention that, with the
recent advancements in fabrication techniques, it is possible
to create this type of prototype waveguide structure. Such
a prototype can easily be fabricated by the thin-film depo-
sition technique of glass material (nh = 1.5) over a thick
silica glass (nl = 1.46) substrate. Our passive waveguide sup-
port six linearly polarized quasiguided optical modes, i.e.,
ψi(i = 1, 2, 3, 4, 5, 6). The chosen input field intensities of
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FIG. 1. (a) Schematic diagram of the proposed gain-loss-assisted
planar waveguide to realize two T -symmetric complimentary vari-
ants, having width W (along the transverse x axis) and optimized
length L (along the propagation axis z). (b) Normalized field in-
tensity profile of three chosen modes ψ j (2, 3, 5). The blue square
dotted line indicates ψ2, the solid black line represents ψ3, and
the dotted red line symbolizes ψ5. (c) Complex transverse refrac-
tive index profiles of two complementary variants, whereas (c.1)
represent for na and (c.2) represents for nc. The black line repre-
sents the variation of real part of the refractive index profile Re(n)
and red dotted line represent their respective imaginary part of the
refractive index Im(n) variation for a specific cross section of the
waveguide associated with γ = 0.0043 and τ = 5. (d) Coalescence
of complex β ′s (dotted blue and dashed dotted black curve represent
for β2 and β5, respectively) simultaneously at γ = 0.0043 for a
chosen τ = 5. (d.1) and (d.2) Indicates the location of two con-
jugate EP2s ([EP2(2,5), EP2∗(2, 5)]) in two complementary WGs,
respectively. (e) Coalescence of complex β2 and β3 (dotted blue and
dashed pink curve, respectively) at γ = 0.018 for a chosen τ = 1.85.
Panels (e.1) and (e.2) indicate the location of an other pair of con-
jugate EP2 ([EP2(2,3), EP2∗(2, 3)]) in two complementary WGs,
respectively

three modes ψ j ( j = 2, 3, 5) supported by the passive WG are
shown in Fig. 1(b). Here, the non-Hermiticity is introduced
by a specific transverse distribution of a multilayer gain-loss
profile, controlled by two tunable parameters as γ to repre-
sent the gain coefficient and τ to define a fixed loss-to-gain
ratio. Now we consider two complementary waveguide vari-
ants (W Ga and W Gc) concerning the T -symmetry complex
potentials in such a way that the refractive index profile of the
respective variants [i.e., na(x) and nc(x), respectively] can be

written as

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nl + iγ , for cladding W/6 � |x| � W/2,

nh − iγ , for core

⎧⎪⎪⎨
⎪⎪⎩

−W/6 � x � −W/9,

−W/18 � x � 0,

W/18 � x � W/9,

nh + iτγ , for core

⎧⎪⎪⎨
⎪⎪⎩

−W/9 � x � −W/18,

0 � x � W/18,

W/9 � x � W/6,

(1)

and

nc(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nl − iγ , for cladding W/6 � |x| � W/2,

nh + iγ , for core

⎧⎪⎪⎨
⎪⎪⎩

−W/6 � x � −W/9,

−W/18 � x � 0,

W/18 � x � W/9,

nh − iτγ , for core

⎧⎪⎪⎨
⎪⎪⎩

−W/9 � x � −W/18,

0 � x � W/18,

W/9 � x � W/6.

(2)

In the core region (−W/6 � x � W/6), there are six alternate
gain-loss layers with equal width, whereas cladding (−W/6 �
|x| � W/2) consists of either loss or gain depending on the
respective complementary variants. The overall transverse
profiles of na(x) and nc(x) are shown in Fig. 1(c), where the
solid black line (in the left y axis) and the dotted red line (in
the right y axis) indicates real [Re(n)] and imaginary [Im(n)]
part of the refractive index profiles (for a specific γ = 0.0043
and τ = 5), respectively. So, it clearly indicates in Figs. 1(c.1)
and 1(c.2) that, owing to T symmetry, two complementary
waveguides experience exactly opposite gain-loss variation
along the transverse x axis. Here, gain-loss distribution is
associated with the specific set of a (γ , τ ) for each cross
section of the two proposed complementary systems. Now, we
can control the interaction among the modes by varying the
coupling parameters (γ , τ ) along the propagation directions.

Higher-order conjugate EPs have been embedded in both
complementary WGs by encountering multiple pairs of con-
necting conjugate EP2s among the chosen modes. We found
multiple conjugate EP2s in two complementary WGs among
the specifically chosen propagation constants of the modes by
topological ARC-type interactions [5,28] by solving the scalar
modal equations. We compute the propagation constants of
the modes using the scalar modal equation [according to the
instantaneous modes profile ψ (x)], which is given by[

∂2
x + n2(x)ω2 − β2

]
ψ (x) = 0. (3)

Even though the waveguide supports six quasiguided modes,
we can choose different sets of coupled modes to encounter
higher-order conjugate EPs by appropriate settings of the
gain-loss profile. In the absence of nonlinearity but with
proper tuning of (γ , τ ), EP3 and EP3∗ are embedded by
encountering two distinct pairs of connecting conjugate EP2s
among three chosen modes in two complementary WGs,
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FIG. 2. (a) Three chosen parametric loops in (γ , τ ) plane to encircle identified pairs of conjugate EP2s [following Eq. (4)] associated
with T -symmetry complimentary variants (as shown with respect to an additional i axis), where Loop1 (smallest area black dotted curve)
and Loop2 (medium area red dotted curve) encircle two distinct conjugate pairs (EP2(2,5), EP2∗(2,5)) and (EP2(2,3), EP2∗(2,3)), respectively, and
Loop3 (largest area green dotted curve) encircles both the identified pairs of conjugate EP2s simultaneously. (b) Adiabatic switching between
β2 (dotted blue) and β5 (dashed dotted black) due to individual parametric encirclement of EP2(2,5) and EP2*(2,5) in CW and CCW direction
by Loop1, unaffecting β3 (dashed pink). (c) Similar adiabatic switching between β2 (dotted blue) and β3 (dashed pink) due to individual
parametric encirclement of EP2(2,3) and EP2*(2,3) in CW and CCW direction by Loop2, unaffecting β5 (dashed dotted black). (d) Third-order
adiabatic switching phenomenon among β2, β3, and β5 in the complex β plane, following simultaneous encirclement (as Loop3) of both the
EP2s (EP2(2,5), EP2(2,3)) and their conjugate counterparts (EP2*(2,5), EP2*(2,3)) in both CW and CCW directions.

respectively. For a specific value of τ = 5, it is observed
in Fig. 1(d) that β2 and β5 coalesce at γ = 0.0043, refer-
ring to the presence of EP2 at (γ = 0.0043, τ = 5), for both
the the complementary variants. In Fig. 1(d.1), the coales-
cence is observed along the positive Im-axis for W Ga as
it is loss-dominated. However, in Fig. 1(d.2), it is observed
that the coalescence is observed along the negative Im axis
for W Gc as it is gain-dominated. Thus, in the same passive
waveguide, based on the T -symmetry gain-loss profile, we
encounter two EP2s in the (γ , τ ) plane. These two EP2s
can conventionally be defined as second-order conjugate EPs
(say EP2(2,5) and EP2∗(2,5)) in their respective (γ , τ ) spaces,
which are associated with two complex conjugate Im(n) pro-
files of corresponding two complementary structures (W Ga

and W Gc, respectively) of the designed passive WG. Similarly
in Fig. 1(e), by properly tuning the gain-loss profile, we find
another pair of conjugate EP2s between β2 and β3 in two com-
plementary variants, such as EP2(2,3) and EP2∗(2,3) at (0.018,
1.85). In Fig. 1(e.1), we show that the coalescence observed
along negative Im axis for W Ga as it is gain-dominated; how-
ever, in Fig. 1(e.2), coalescence observed along the positive
Im axis for W Gc as it is loss-dominated. So, in both the
cases, the locations of EP2(2,3) and EP2∗(2,3) are the same
but conjugate in nature.

B. Adiabatic modal dynamics: Encounter of higher-order
conjugate EPs

Here, we investigate the branch-point behavior during
quasistatic parametric encirclement processes around the dif-

ferent identified pairs of conjugate EP2s in the (γ , τ ) plane
associated with complementary WGs. To meet the device
implementation requirement, we chose the shape of the pa-
rameter space in such a way that both the beginning and end of
the encirclement process reach at γ = 0 [22,25,28,57]. To en-
sure such a condition, we implement the parametric equations

γ (φ) = γ0 sin (φ/2), τ (φ) = τ0 + r sin (φ) (4)

to enclose single or multiple pairs of conjugate EP2s (with
γ0 > γEP), as shown in Fig. 2(a). Here, γ0, τ0, and r are three
characteristic parameters and the tunable angle φ (0 � φ �
2π ) by which we can encircle specific EP2 in their respective
(γ , τ ) plane. In Fig. 2(a), γEP(= 0.0043) and τEP(= 5) we
define the location of EP2(2,5) and EP2∗(2,5) (enclosing by
Loop1; γ0 = 0.007, τ0 = 5, r = 0.5) with respect to the ad-
ditional i axis [+i indicates W Ga and −i for W Gc]. Whereas
γEP(= 0.0185) and τ0(= 1.85) define the location of EP2(2,3)

and EP2∗(2,3) (enclosing by Loop2; γ0 = 0.02, τ0 = 1.85, r =
0.5) with respect to the same i axis. Now we consider a new
parametric loop (say Loop3; γ0 = 0.024, τ0 = 4.75, r = 3)
to encircle both pairs of conjugate EP2s simultaneously.

Now we track the trajectories of complex β j ( j = 2, 3, 5) in
Figs. 2(b), 2(c), and 2(d) following the stroboscopic variation
of γ and τ along the chosen three loops [by using Eq. (4)].
In Figs. 2(b.1) and 2(b.3) we show the trajectories for en-
circlement of EP2(2,5) and EP2∗(2,5) in the clockwise (CW)
way (φ : 0 → 2π ), respectively. However, in Figs. 2(b.2)
and 2(b.4), we show the trajectories for the encirclement of
EP2(2,5) and EP2∗(2,5) in the anticlockwise (CCW) direction
(φ : 2π → 0), respectively. In both cases, we also observe
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that the trajectory of β3 regains its initial position, so it is
unaffected. The hosting of such conjugate EP2 encirclement
schemes in two T -symmetric systems of the designed optical
WG indicates adiabatic exchange between the initial positions
of the connecting β2 (blue curve) and β5 (black curve) in
the complex β space, as is shown in Fig. 2(b), which reveals
the second-order branch-point behavior of the pair of conju-
gate EP2. Here, it is observed that the overall β trajectories
due to the encirclement of EP2(2,5) and EP2∗(2,5) in any of
the particular directions look like two perfect mirror images
with respect to the Im(β ) axis. Similarly, another trajectory
between β2 (blue curve) and β3 (pink curve) is shown in
Fig. 2(c), while varying the parameter space along the Loop2,
which encircles another pair of conjugate EP2 (say, EP2(2,3)

and EP2∗(2,3)). Here, the adiabatic exchange is observed be-
tween β2 (blue curve) and β3 (pink curve) at the end of the
encirclement process, and they are also analytically connected
through this conjugate EP2 pair. In this case, β5 is not con-
nected through this pair, so it remains uninteracted. Here, it is
also noticeable that the overall β2 and β3 trajectories due to
this pair of conjugate EP2 encirclement in any of the specific
directions look like exact mirror images with respect to the
Im(β ) axis. Now, to consider the third-order mode exchange
phenomenon, we choose another loop [Loop3; as shown in
Fig. 2(a)], which encircles two identified pairs of conjugate
EP2s, simultaneously. In this case, we track the trajectories
of β j ( j = 2, 3, 5) in Fig. 2(d). Here with the quasistatic para-
metric variations in any of the specific encirclement directions
(CW or CCW) along the Loop3, all three chosen propagation
constants (β2, β3, β5) of the coupled modes exchange their
own identities for making a complete loop following the CW
encirclement: β2 → β3 → β5 → β2 in a complex β plane.
Thus, the system shows third-order branch-point behavior for
the corresponding eigenvalues if both the identified pairs of
conjugate EP2s are quasistatically encircled in (γ , τ ) space,
simultaneously. This occurrence of successive adiabatic state
exchange around pairs of conjugate EP2s certainly validates
the emergence of a conjugate EP3. It appears within two
complementary system parameter spaces, where all three se-
lected modes are analytically intertwined. Here, we observed
that the trajectories of third-order β switching due to encir-
clement around EP3 and EP3* in any of the specific directions
look like two mirror images with respect to the Im(β ). We
also observe that, if we reverse the parametric encirclement
direction, then the chosen complex β values exchange suc-
cessively as β2 → β5 → β3 → β2 in the complex β plane,
which are exactly the opposite progressions from the previous
observation. To control the interaction among the supported
modes, in addition with the optical gain-loss, we introduce
local saturable nonlinearity having the form

�nNL(x, z) = σ
n2|ψ |2

[1 + (|ψ |2/Is)]
, (5)

where n2 represents the nonlinear coefficient and Is is the satu-
rating intensity. Here, σ = +1 (−1) for focusing (defocusing)
nonlinearity. Unlike Kerr-type nonlinearity, we deliberately
incorporate the saturable nonlinearity to avoid any instability
in higher-order modal output. However, this type of nonlinear-
ity variation is saturated by the appropriate choice of Is after

propagating for a sufficient length. Here the actual nonlin-
earity level is quantified in the form of (�nNL/�n) × 100%
with �n = (nh − nl ). Here, we can achieve different amounts
of nonlinearities by adjusting the input signal power with the
proper choice of n2.

C. Dynamical parametric encirclement: Beam propagation
dynamics around conjugate EP3 in the absence of nonlinearity

After encountering two distinct pairs of conjugate EP2s,
we identify the adiabatic mode exchange phenomena. This
identification occurs due to the quasistatic encirclement of
the coupling parameters around these points. This observation
follows the principles outlined in the adiabatic theorem dis-
cussed in the previous section. To investigate the propagation
of the quasiguided modes through the two complementary
T -symmetric variants of the designed optical waveguide, we
map the parameter loops associated with different conju-
gate EP2s throughout the length of the waveguide. If we
consider dynamical parametric encirclement (time-dependent
parametric distribution), the inversion symmetry gets broken
in the overall gain-loss variation along the timescale, which
competes with the adiabatic theorem [57]. A complete encir-
clement process (φ : 0 → 2π ) followed by such a dynamical
encirclement method is equivalent to one complete pass of
light through the WG (z : 0 → L). Here, the control param-
eters vary along the length or analogous time for the optical
system (to establish the equivalence of the Helmholtz equa-
tion with Schrödinger equation). We utilize the concept of T
symmetry, which allows for the transformation of t to −t . By
analogy, we map the parameter space along the length or the
z axis in two opposite directions. This is done for the two
variants of the waveguide, which exhibit T symmetry. How-
ever, at each transverse cross section (at fixed z), the refractive
index profiles for two complementary systems correspond to
a specific set of (γ , τ ). Accordingly, such a parameter space
mapping is implemented by the consideration of

φ =
[

2πz

L

]
and φ =

[
2π (L − z)

L

]
(6)

separately in Eq. (4) to realize the dynamical encirclement
of different pairs of conjugate EP2s. The following modified
parameter space for W Ga as

γ (z) = γ0 sin

[
πz

L

]
; τ (z) = τ0 + r sin

[
2πz

L

]
. (7)

Here, CW encirclement is implemented by the propagation
of light from z = 0 to L and CCW encirclement is associated
with the propagation from opposite end, i.e., from z = L to
z = 0, respectively. Similarly, the modified parameter space
for W Gc is

γ (z) = γ0 sin

[
π (L − z)

L

]
, τ (z) = τ0 + r sin

[
2π (L − z)

L

]
.

(8)

In this case, z = 0 and z = L are associated with φ = 2π

and 0, respectively. We can achieve the required longitudinal
gain-loss profile by using either a standard photolithography
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FIG. 3. (a) Beam propagation simulation results for the CW dynamical encirclement around EP2(2,5), EP2(2,3), simultaneously [conversion
of (ψ2, ψ3, ψ5) → ψ3] through W Ga, and (b) for CCW direction, showing the similar conversion in W Ga. (a.4), (b.4) show the output field
intensities at z = L and z = 0, respectively associated with the conversion through W Ga. (c), (d) Beam propagation simulation results through
W Gc for the dynamical encirclement around EP2*(2,5), EP2*(2,3), together [conversion of (ψ2, ψ3, ψ5) → ψ3], in (c) the CW direction and
(d) the CCW direction. (c.4), (d.4) the output field intensities at z = L and z = 0, respectively, associated with the conversion through W Gc.

technique or controlled doping of active or lossy materials
with state-of-the-art fabrication techniques.

Here, we investigate the light dynamics around conjugate
EP3s in the presence of two different pairs of conjugate EP2s
in two complementary systems as per Eqs. (7) and (8). If
we consider any single pair of conjugate EP2 [(EP2(2,5) and
EP2∗(2,5)) or (EP2(2,3) and EP2∗(2,3))] and study the light
dynamics around it, we observe the reverse-chiral response
of two complementary waveguides with respect to the direc-
tion of the encirclement process. The individual dynamical
encirclements around conjugate EP2 in opposite directions
results in the delivery of the same dominating modes by their
respective waveguide variants. However, the section on the
reverse chiral response around any single pair of conjugate
EP2s in two complementary systems is deliberately not in-
cluded in the paper, as it has already been reported [59]. Here,

we show that, due to the dynamical encirclement around the
conjugate EP3 associated with two complementary systems,
all the interacting modes associated with it get converted into
a specific higher-order mode, irrespective of the choice of
the input direction. We thoroughly investigate the intriguing
physics of the conjugate EP3 and explore the resulting light
dynamics in their vicinity, as shown in Fig. 3. For a sufficiently
slow variation of Im(n) within the adiabatic limit along the z
direction, the dynamics of quasiguided modes are governed
by the (1 + 1)D scalar beam propagation equation (under
paraxial approximation) as

2iω
∂ψ (x, z)

∂z
= −

[
∂2

∂x2
+ �n2(x, z)ω2

]
ψ (x, z), (9)

where �n2(x, z) ≡ n2(x, z) − n2
l . We use the split steps

Fourier method to solve Eq. (9) [60]. It was established that,
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during the dynamical encirclement process, one of the coupled
modes evolvesd with lower average loss following the adia-
batic expectations followed by the associated β trajectories
[25]. In Figs. 3(a) and 3(b), we show the beam propagation
simulation results in W Ga for the dynamical encirclement
process along Loop3, which encloses EP2(2,5) and EP2(2,3)

(or equivalent to an EP3) simultaneously. Here, in Fig. 3(a),
to consider CW encirclement, we choose the input port at
z = 0 to launch the input. Here, all three coupled modes
(ψ2, ψ3, ψ5) associated with EP2(2,5), EP2(2,3) are converted
into ψ3 at z = L beyond the adiabatic expectation unlike the
corresponding β trajectories, as shown in Fig. 2(d.1). Here, β5

evolves with lower average loss in comparison to β2 and β3,
so the respective mode ψ5 is adiabatically converted to ψ3, but
the other two modes (i.e., ψ2 and ψ3) experience nonadiabatic
transitions (NAT). Now, if we consider CCW encirclement
around EP3, all the analytically connected modes are con-
verted to ψ3, irrespective of the choice of the input modes.
However, in this case, ψ2 evolves adiabatically due to lower
average loss and the two other modes follow NAT.

Now, we consider checking the effect of dynamical en-
circlement around EP3* in W Gc. In Figs. 3(c) and 3(d), for
CW and CCW encirclements around EP3* (associated with
simultaneous encirclement around EP2∗(2,5) and EP2∗(2,3)),
all the chosen coupled modes are converted into ψ3 at the
end of the encirclement process. However, here, for CW and
CCW encirclements, β2 and β5 evolve adiabatically due to
lower average loss, respectively, which is exactly the opposite
from the previous encirclement process, as shown in Figs. 3(a)
3(b). Thus, owing to the breakdown of the adiabaticity during
evolutions of the interacting modes, the nonchiral dynamics is
evident for the dynamical encirclement scheme around con-
jugate EP3 in two T -symmetric WGs. Here, we introduced
the term “nonchiral” in the general sense, which refers to the
property of two complementary systems that exhibit the same
outputs, regardless of the direction of the input.

We also calculate the conversion efficiencies in terms of
the overlap integral as

CP→Q = |∫ ψPψQdx|2∫ |ψP|2dx
∫ |ψQ|2dx

, {P, Q} ∈ i. (10)

Here, CP→Q defines the conversion efficiency for the con-
version ψP → ψQ. The maximum conversion efficiencies for
CW and CCW encirclements (associated with dynamical
encirclement around EP3) in W Ga are 77% and 72%, respec-
tively. On the other hand, the conversions {ψ2, ψ3, ψ5} →
ψ3 in W Gc for CW and CCW directions (associated with
dynamical encirclement around EP3*) are 73% and 75%,
respectively.

D. Dynamical parametric encirclement: Nonchiral beam
propagation dynamics in the presence of nonlinearity

The above investigations were carried out in the absence
of any local nonlinearity when three interacting modes were
associated with conjugate EP3 with the simultaneous presence
of other noninteracting modes. Now, we introduce the effect
of intensity-dependent saturable nonlinearity in the spatial
index distribution and further investigate the dynamics of
interacting modes. Here, by introducing the nonlinearity, the

FIG. 4. (a) Parametric loops in the (γ , τ ) plane to encircle three
identified pairs of conjugate EP2s, simultaneously. (b) The overall
length dependent variations of Im(na) and Im(nc ) associated with
T -symmetric complementary waveguides [(b.1) for W Ga and (b.2)
for W Gc, respectively] after mapping the respective (γ , τ )-parameter
spaces to dynamically encircle all the identified EP2s and their con-
jugate parts, respectively.

real refractive index profile is locally modified, and due to
that, the complex β values also get modified. We investigate
the light dynamics through the two complementary variants
for various nonlinearity strengths by changing the input in-
tensity levels. Here, we observe that, for the nonlinearity
level up to 2.5%, the proposed complementary variants pos-
sess a similar kind of beam dynamics, as shown in Fig. 3.
However, once we reach the nonlinearity level 3.2% in the
two T -symmetric variants, the corresponding local modifi-
cation of n(x) sufficiently affects the dynamics of ψ4, and
then it starts interacting with the other three chosen modes
(ψ2, ψ3, ψ5). Such types of mutual interactions remain in-
tact up to a strength of 9% nonlinearity. Thus, by changing
the nonlinearity percentage within this range (3.2% → 9%),
we can control the simultaneous interactions among four
modes in both the complementary WGs. We choose a spe-
cific signal intensity to introduce 4.2% nonlinearity in the
special index distribution of the two complementary WGs
and observe the mutual interactions among all the modes to
host multiple conjugate EP2s. Here, investigating the ARCs
between the different pairs of β j ( j = 2, 3, 4, 5) in the pres-
ence of nonlinearity, we encounter another pair of conjugate
EP2 (say: EP2(3,4), EP2∗(3,4)) in the (γ , τ ) plane at location
(0.0022, 3.25) in addition to the other two pairs of conjugate
EP2s (as demonstrated previously). So the simultaneous pres-
ence of three pairs of conjugate EP2s analytically connects
four quasiguided modes ψ j (2, 3, 4, 5). We dynamically en-
circle all three pairs of conjugate EP2s simultaneously using
the length-dependent parametric loop shown in Fig. 4(a) and
perform the beam propagation dynamics. The corresponding
Im[n(x, z)] distributions for CW dynamical encirclement in
two complementary variants are shown in Fig. 4(b), where
Fig. 4(b.1) is for W Ga and Fig. 4(b.2) corresponds to W Gc.
We chose the size of the parameter loop in such a way that
the presence of a certain level of nonlinearity does not affect
the location of the other pairs of EP2s. By introducing up to
a specific level of nonlinearity (ranging from 3.2% to 9%) in
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FIG. 5. (a), (b) Beam propagation simulation results through W Ga in presence of focusing nonliterary (FN), the conversion of [(ψ2,
ψ3, ψ4, ψ5) → ψ4] following dynamical encirclement around three identified EP2s [EP2(2,5), EP2(2,3), EP2(3,4)] in CW, CCW directions,
respectively, where all the interacting modes collapsed to ψ4. (a.5) and (b.5) Output field intensities in the presence of FN at z = L and
z = 0, respectively, associated with the conversion through W Ga. (c), (d) Beam propagation simulation results through W Ga in the presence of
defocusing nonlinearity (DFN): in the presence of DFN in the optical medium for both CW and CCW encirclement direction, all the interacting
modes are collapsed into ψ3. (c.5) and (d.5) Output field intensities in the presence of DFN at z = L and z = 0, while three identified EP2s are
encircled in CW and CCW directions, respectively.

the parameter loops, it is possible to ensure that all the antici-
pated positions of the EP2s are encompassed within the loops.
Essentially, we design the topologically complementary struc-
tures in such a way that we can consider both cases, i.e., with
and without nonlinearity. Now, if we choose σ = 1 to consider
FN in the W Ga variant, the light propagation due to dynamical
encirclement along Loop3 [indicated in Fig. 4(b.1); associated
with EP2(3,4), EP2(2,5), and EP2(2,3)] are shown in Figs. 5(a)
and 5(b). In Fig. 5(a), it is evident that all the four coupled
modes are collapsed into ψ4 (light propagation in the forward
direction, i.e., from z = 0 to z = L), given that, due to lower
average loss, ψ5 evolves adiabatically and the other three
modes (ψ2, ψ3, ψ4) evolve nonadiabatically. Now, instead
of forward light propagation, if we reverse the propagation
direction, i.e., from z = L to z = 0, we get similar modal
dynamics as can be seen in Fig. 5(b). In this case, ψ3 evolves
adiabatically and the other three modes follow NAT. We also

calculated the conversion efficiencies followed by Eq. (10). In
this case, the maximum conversion efficiencies for CW and
CCW encirclements are 95% and 98%, respectively. Now,
we consider the same amount of DFN (σ = −1) and study
the beam propagation dynamics of the chosen coupled modes
in Figs. 5(c) and 5(d) for CW and CCW encirclement along
the same parametric loop described in Fig. 4(b.1). As can be
seen here, for both the encirclement direction, four interacting
modes are collapsed in ψ3 at the output end of the W Ga.
Moreover, in this case, the maximum conversion efficiencies
for CW and CCW encirclements are 96% and 97%, respec-
tively. So, it is clearly observed that conversion efficiencies
have increased drastically after applying a certain percent-
age of nonlinearity. A comparative study of the output field
intensities has been done at different nonlinearity conditions
in W Ga. Figures 5(a.5) and 5(b.5) represent the normalized
output intensities for CW and CCW encirclement conditions
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FIG. 6. (a) Beam propagation simulation results through W Gc in presence of FN, the conversion of [(ψ2, ψ3, ψ4, ψ5) → ψ4] following
dynamical encirclement around three identified EP2s [EP2(2,5), EP2(2,3), EP2(3,4)] in CW, CCW directions, respectively, where all the interacting
modes collapse to ψ4. (a.5) and (b.5) Output field intensities in the presence of FN at z = L and z = 0, respectively associated with the
conversion through W Gc. (c), (d) Beam propagation simulation results through W Gc in the presence of DFN: however, in the presence of DFN
in the optical medium for both CW and CCW encirclement directions, all the interacting modes are collapsed into ψ3. (c.5) and (d.5) Output
field intensities in the presence of DFN at z = L and z = 0, while three identified EP2s are encircled in CW and CCW directions, respectively.

in the presence of FN, respectively, whereas Figs. 5(c.5) and
5(d.5) show the same for both the encirclement conditions
in the presence of DFN, respectively. Now, if we choose
another complementary structure W Gc, and select σ = 1(−1)
to consider FN (DFN), the corresponding beam propagation
dynamics are shown in Fig. 6. Here, for introducing 4.2% of
FN, the beam propagation dynamics due to CW and CCW
dynamical encirclement along the same loop [in Fig. 4(b.2);
associated with EP2∗(3,4), EP2∗(2,5) and EP2∗(2,3)] are shown
in Figs. 6(a) and 6(b), respectively. In this case, the coupled
four modes collapse into ψ4 at the output end, irrespective of
the choice of the input direction. Here, we observe that ψ2

evolves adiabatically for CW encirclement, while ψ5 evolves
adiabatically for CCW encirclement. Similarly, for consider-
ing the same amount of DFN, four coupled modes collapse
into ψ3 due to CW and CCW dynamical encirclement around
Loop3, which are shown in Figs. 6(c) and 6(d). Here, we

observe that ψ2 evolves adiabatically for CW encirclement,
while ψ4 evolves adiabatically for CCW encirclement. This
adiabatic evolution is attributed to the lower average losses of
the respective modes during parametric encirclement.

However, if we further increase the nonlinearity level
(above 9%), then, due to the overall modification of the
index profile, conjugate pairs of EP2s may not be appropri-
ately encircled, and the overall light dynamics may be taken
over by the effect of nonlinearity. In this context, instead of
using nonlinearity to manipulate the higher-order conjugate
EPs (associated with multiple pairs of connecting EP2s) po-
sitions, it can also be possible to control the locations by
changing the real refractive index of the waveguide. However,
dynamically changing the refractive index profile in any two
complementary waveguide variants is challenging during de-
vice applications. So we deliberately use a certain percentage
of nonlinearity as a tuning parameter for dynamic refractive
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index modification. The proposed prototype design can be
effectively implemented using appropriate fabrication tech-
niques while ensuring proper scalability to select the suitable
nonlinearity level. So the mode-collapsing phenomenon is a
result of the interplay between the topology of exceptional
points (EPs) and nonlinearity along the dynamical loop that
encircles multiple pairs of conjugate EP2s, as shown in Figs. 5
and 6.

III. ANALYTICAL TREATMENT FOR
NONLINEARITY-INDUCED LIGHT DYNAMICS

Here a detailed analytical treatment based on nonadiabatic
correction factors is presented to establish the anomalous
higher-order nonchiral modal propagation around higher-
order EPs in two T -symmetric WGs. For instance, consider
the four level Hamiltonian H depends on three time-
dependent parameters κn(t ) (for n = 1, 2, 3, analogous to
γ , τ , �nNL), where four modified eigenvalues are taken as
βad

2 [κn(t )], βad
3 [κn(t )], βad

4 [κn(t )], βad
5 [κn(t )], and the corre-

sponding eigenvectors are ψad
2 [κn(t )], ψad

3 [κn(t )], ψad
4 [κn(t )],

ψad
5 [κn(t )], respectively. Here, under the adiabatic limit, the

evaluation of the eigenfunction follows the time-dependent
Schrödinger equation (TDSE). Here, both complementary
variants show similar parametric dependency as they individ-
ually host higher-order conjugate EPs, which appear in the
eigenvalues of the Hamiltonian. The time-dependent parame-
ters [κ1(t ), κ2(t ), κ3(t )] control the nonadiabatic corrections in
the TDSE associated with H [57]. Such nonadiabatic correc-
tion factors around higher-order EPs during beam propagation
can be written as

ØNA
G→H = ∪G→H exp

{
(+)i

∮ T

0
�βad

G,H [κn(t )]dt

}
, (11a)

ØNA
H→G = ∪H→G exp

{
(−)i

∮ T

0
�βad

G,H [κn(t )]dt

}
, (11b)

with the preexponent terms

∪G→H =
〈
ψad

G [κn(t )]

∣∣∣∣∣
3∑

m=1

κ̇n
∂

∂κn

∣∣∣∣∣ψad
H [κn(t )]

〉
, (12a)

∪H→G =
〈
ψad

H [κn(t )]

∣∣∣∣∣
3∑

m=1

κ̇n
∂

∂κn

∣∣∣∣∣ψad
G [κn(t )]

〉
, (12b)

and �βad
G,H [κn(t )] = βad

G [κn(t )] − βad
H [κn(t )]

≡ Re
[
�βad

G,H {κn(t )}] ∓ i�ζ ad
G,H [κn(t )]. (12c)

In Eqs. (11) and (12), the suffixes G → H and H → G
correspond to the conversion ψad

G → ψad
H and vice versa, re-

spectively. T is the encirclement duration during evolution.
Now, the preexponent terms ∪G→H and ∪H→G, as given by
Eqs. (12a) and (12b) contain the time derivative of κn(t )
(i.e., κ̇n). The exponential divergence in T of the exponent
of Eq. (11) beats the (1/T ) suppression associated with
∪G→H and ∪H→G. Thus, for slow parametric evolution around
higher-order conjugate EPs, one of the interacting modes has
a lower average path loss, and due to that, it evolves adiabati-
cally, but other modes follow NAT.

In Eq. (12c), the menus or plus sign correspond to
two different complimentary variants, i.e., W Ga and W Gc,

respectively. If we substitute the term �βad
G,H in Eq. (11), the

corresponding exponent terms for the two complimentary
variants are the key elements dictating the dominate output
during the propagation. So, for W Ga, if we consider a
situation �ζ ad

G,H > 0, then for T → ∞, ØNA
G→H → ∞ and

ØNA
H→G → 0, but for the W Gc case, at T → ∞, ØNA

G→H → 0,
and ØNA

H→G → ∞. Thus for very slow parametric evolution
within the parametric limit, the mode conversion associates
with nonadiabatic correction terms ØNA

H→G (for W Ga) and
ØNA

G→H (for W Gc) follow the adiabatic expectation, but the
conversion associated with other nonadiabatic correction
terms ØNA

G→H (for W Ga) and ØNA
H→G (for W Gc) do not ensure

these adiabatic expectations. In a similar way, we can set
up the opposite condition for �ζ ad

G,H < 0. So, in any of the
specific dynamical parametric encirclement directions, only
one state shows the adiabatic transition.

We can study possible adiabatic and nonadiabatic modal
dynamics among the four interacting modes in our two com-
plementary waveguides with the proper choice of G and
H . Now, if we consider W Ga, the dynamical encirclement
along Loop3 [as shown in Fig. 4(b.1)] in the presence of
two different types of nonlinearity (σ = +1 or − 1) in the
optical medium of the WG, the refractive index profile and
corresponding β values change depending on the types of
nonlinearity, and accordingly, the sign of the relative gain
factor (�ζ ad

G,H ) for different choice of G and H are modified.
Here for considering the loops shown in Fig. 4(b), in addi-
tion to the relative gain factors between the coupled pairs,
i.e., �ζ ad

2,3 and �ζ ad
4,5, there should be four other terms viz.

�ζ ad
3,4, �ζ ad

5,2, �ζ ad
3,5, and �ζ ad

4,2 due to possible interactions
among the four chosen coupled modes. Here, in the pres-
ence of FN (σ = +1) and considering both CW and CCW
propagation, we observed that in W Ga, the terms �ζ ad

2,3 and
�ζ ad

3,5 dominate over the other factors associated with nona-
diabatic correction. So, we find the situations �ζ ad

2,3 < 0(or
>0) and �ζ ad

3,5 > 0 (or <0) for CW (or CCW) encirclement
direction [as shown in Fig. 4(b.1)], which gives the conversion
of {ψ2, ψ3, ψ4, ψ5} → ψ4, as shown in the Figs. 5(a) and
5(b). Thus, beyond the adiabatic expectations, �ζ ad

3,5 > 0 and
�ζ ad

3,4 < 0, with an adiabatic transitions of ψ5 → ψ4 for CW
encirclement, however, �ζ ad

2,3 > 0 and �ζ ad
4,2 > 0, for CCW

directions includes the adiabatic conversion of ψ3 → ψ4.
Now if we consider DFN (σ = −1) in the same loop, then we
observe that �ζ ad

5,2 < 0(or >0) and �ζ ad
4,2 < 0 (or >0) for CW

(or CCW) encirclement directions, which gives the conversion
of {ψ2, ψ3, ψ4, ψ5} → ψ3, as shown in Figs. 5(c) and 5(d). In
this case, beyond the adiabatic expectations, ψ5(→ ψ3) fol-
lows adiabatic conversion due to the two dominating factors
�ζ ad

5,2 < 0 and �ζ ad
2,3 < 0 for the CW directions, but at the

CCW condition, the terms �ζ ad
5,2 > 0 and �ζ ad

3,5 > 0 with an
adiabatic transitions of ψ2 → ψ3.

If we consider the W Gc variant and study the dynami-
cal encirclement along Loop3 [Fig. 4(b.2)] in the presence
of FN or DFN, we observe similar dynamics as shown in
Fig. 6, which are similar to those in Fig. 5. To consider CW
dynamical encirclement along the loop in the presence of
FN (σ = +1), in the presence of other terms, we find the
situations where the dominating factors are viz. �ζ ad

3,5 < 0,
�ζ ad

3,4 > 0, and �ζ ad
5,2 > 0. Thus we get the situation where ψ2
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follows the adiabatic expectations. If we consider the CCW
encirclement along the same loop, the dominating factors are
�ζ ad

2,3 < 0, �ζ ad
5,2 < 0, and �ζ ad

4,2 < 0. In this case, ψ5 follows
the adiabatic transition. In both situations, we get the overall
conversion of (ψ2, ψ3, ψ4, ψ5) → ψ4. On the other hand, for
DFN (σ = −1) conditions, we observe that for CW encir-
clement, the dominating nonadiabatic factors are �ζ ad

5,2 > 0,
�ζ ad

3,4 < 0, and �ζ ad
3,5 < 0. Here, ψ2 follows the adiabatic

transition. In addition, for CCW encirclement, the dominating
factors are viz. �ζ ad

3,5 < 0, �ζ ad
2,3 > 0, and �ζ ad

4,5 < 0. Here,
the ψ4 follows adiabatic transition. These analytical predic-
tions are supported by the beam propagation results illustrated
in Figs. 5 and 6.

IV. CONCLUSION

In summary, we propose the concept of a nonlinearity-
induced higher-order mode-collapsing phenomenon. This
event occurs during a dynamic encirclement around higher-
order conjugate exceptional points (EPs) in two multimodal,
gain-loss-assisted planar waveguides. These waveguides are
linked with T -symmetric optical potentials grounded on com-
plex refractive index profiles. Here, the multilayer gain-loss
profiles vary in such a way that two complementary waveg-
uide variants experience complex conjugate imaginary parts
of the refractive index profiles, and both are correlated by
T symmetry. Instead of the reverse chiral response around
a single pair of conjugate EP2, here we observed that, in

the absence of nonlinearity, two complementary waveguides
exhibit nonchiral light dynamics around the conjugate EP3s
even in the presence of other noninteracting modes. Now,
with the onset of the nonlinearity, four interacting cou-
pled modes collapse into a specific dominating higher-order
mode (with higher conversion efficiencies) irrespective of
the choice of the encirclement direction in both complemen-
tary WGs. Here, we establish that, based on the constraints
of T symmetry, the presence of the same amount of in-
dividual focusing and defocusing nonlinearities results in
different dominating higher-order outputs for the same para-
metric encirclement process around higher-order conjugate
EPs. The proposed scheme is enriched with the topology of
higher-order conjugate EPs to investigate the inherent corre-
lations between two T -symmetric systems based on optical
responses. We may also explore higher-order nonrecipro-
cal light transmission through such complementary optical
waveguides around higher-order conjugate EPs in the pres-
ence of nonlinearity. Applying this strategy to the proposed
device will offer distinct opportunities. Particularly, it enables
direction-dependent higher-order modal transport. Moreover,
the feasibility of fabricating such a device would significantly
impact chip-scale-integrated photonic systems.
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