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Area theorem in a ring laser cavity
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The generalization of the area theorem is derived for the case of a pulse circulating inside a ring laser cavity.
In contrast to the standard area theorem, which is valid for a single pass of a traveling pulse through a resonant
medium, the obtained generalized area theorem takes into account the medium-assisted nonlinear self-action
effects through the medium excitation left by the pulse at the previous round-trip in the cavity. The generalized
area theorem was then applied to the theoretical description of the dynamics of a single-section ring-cavity laser
and the steady solutions for the pulse area and for the medium parameters were found both in the limit of a
lumped model and for a spatially extended system. The derived area theorem can be used for the convenient
analytical description of different coherent photonic devices, such as coherently mode-locked lasers or pulse
compressors, as well as for the analysis of the photon echo formation in cavity-based setups.

DOI: 10.1103/PhysRevA.108.023506

I. INTRODUCTION

Over last decades there has been an impressive progress
achieved in the generation of ultrashort pulses of femtosecond
and even attosecond duration [1-5]. So short pulses allow
us to explore many unusual regimes of the light-matter in-
teraction as well as unveil the dynamics of different ultrafast
processes in atoms, molecules and solids [6-8].

When the pulse duration is much smaller than the coher-
ence or polarization relaxation time 7, in the medium (also
called the dephasing time), the resulting light-matter interac-
tion is called coherent [9-12]. Typically, the dephasing time 7,
in gaseous media falls in the ns range, while in solids 7, at the
room temperature varies from several tens to several hundreds
of fs. This means that few- and subcycle pulses in the optical
range, which are routinely generated nowadays, would surely
interact coherently with most resonant media.

Over such coherent light-matter interaction the phase
matching between multiple resonant centers in the medium
induced by the driving field is preserved, which gives rise to a
number of fascinating optical phenomena. As the most promi-
nent seems the self-induced transparency (SIT) phenomena,
when a light pulse propagates through an absorbing resonant
medium without losses and with its shape unchanged [13,14].

Since its discovery, SIT phenomena were experimentally
observed in many different media [11,15-21]. Still the prac-
tical applications of SIT have been quite poor (see the review
[22] and references therein). For instance, several studies have
demonstrated the possibility of the compression of ultrashort
pulses based on the SIT phenomenon [23]. However, in the
last years the so-called SIT- or coherent laser mode-locking
(CML) has been actively studied [24—41] and looks like the
most promising application of the SIT phenomenon. CML
represents an alternative mechanism of passive mode-locking
in a laser cavity based on the formation of SIT solitons. Due to
the coherent pulse-medium interaction in such mode-locked
lasers, some significant improvements can be achieved as
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compared with standard passively mode-locked lasers with
saturable absorbers.

Namely, standard passively mode-locked lasers rely on the
incoherent saturation of the absorber, leading to the generated
pulses being limited in duration by the value of the coherence
relaxation time 75 in the active medium [42-45]. At the same
time the SIT mode-locking does not exhibit such restrictions.
Instead, since the generated pulses coherently interact with
the active medium, the coherent mode-locking allows us to
produce pulses much shorter in duration than the coherence
relaxation time 7, [24—41]. Moreover, in some configurations
of coherently mode-locked lasers, pulses up to a single-cycle
duration were obtained [27,28,34]. It is also worth noting that
the CML regime was recently experimentally demonstrated,
although only with the coherent absorber section [37—41].

The pulse area theorem represents a unique analytical tool
to describe the coherent pulse propagation in resonant media.
For the first time the area theorem was derived in the pio-
neering work by McCall and Hahn [13] for a single pass of
a pulse through a two-level medium. The area theorem holds
for ultrashort pulses up to few-cycle pulses but breaks down
for the propagation of large-area few-cycle and especially
subcycle pulses in a two-level medium [46—49].

Some generalizations of the standard area theorem have
been developed in recent years, mainly for the description
of photon echo. Namely, the extensions of the area theorem
were derived for three-level atoms [50,51], two-pulse photon
echo [52], tripodal four-level atomic system interacting with
three fields in resonance [53] and optically dense media [54].
Specifically for cavity setups, the area theorem was consid-
ered for a single-mode ring cavity [55,56] and a single-mode
Fabry-Perot cavity [57]. However, in these papers only one
longitudinal cavity mode was assumed to be excited and thus
no propagation effects were considered. The area theorem
with the propagation included was studied in a single-mode
waveguide [58], but only for a single pass of propagating
pulses.
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At the same time, the proper theoretical description of
coherently mode-locked lasers or pulse compressors with
cavity setups requires the revision of the standard area the-
orem. Indeed, in a laser cavity a traveling pulse passes
through intracavity media at each round-trip, so that the in-
teraction dynamics each time depends on the outcome of
the previous round trip. Specifically, in coherently mode-
locked lasers the medium relaxation times are often longer
than the cavity round-trip time. As a result, the medium
excitation left after the pulse passage affects the pulse
propagation in the next round trip. That is why the respec-
tive extension of the area theorem is needed. The standard
area theorem was earlier applied to the analysis of the
CML regime in lasers in Refs. [30,32,33,36], but all the
above described medium-mediated self-action effects were
ignored.

It is worth mentioning that in the theoretical treatment of
the standard passive mode-locking with saturable absorbers
the medium polarization is always adiabatically eliminated
from the model equations [59-68]. As a result, the coher-
ent effects of the light-matter interaction are not taken into
account. However, today’s solid-state laser devices make it
possible to generate pulses of femtosecond durations [69-74],
which is comparable to the medium coherence lifetime 7; in
such lasers. Thus, in such a case, conventional mode-locking
theories are not applicable for the correct description of the
mode-locking regime. For this reason, the practical implemen-
tation of such ultrafast laser sources requires modification of
existing mode-locking theories by significantly new theoreti-
cal approaches, including the proper treatment of the coherent
light-matter interaction and the pulse area evolution in the
cavity.

In this paper, we derive in a closed analytical form the
generalized area theorem for a pulse circulating inside a ring
cavity. We specifically address several important cases differ-
ing by the relative values of the cavity round-trip time and
the medium relaxation constants. The derived area theorem
is then applied for the proper description of the dynamical
regimes of a single-section ring-cavity laser.

The paper is organized as follows: In Sec. II we present
the considered model and derive the governing equations for
the evolution of a two-level medium during a single round trip
of a traveling pulse in a ring cavity. In Sec. III we formulate
the generalized area theorem for the pulse propagation in
a ring cavity and examine several approaches to reduce the
derived area theorem including the fast coherence relaxation
and the system with the lumped parameters. In Sec. IV we
apply the generalized area theorem to a single-section laser
setup with the gain medium in the cavity and analyze the
steady-state solutions and their stability for a lumped model.
Section V is devoted to the case of a spatially extended gain
medium and we derive explicit analytical expressions for the
pulse area and the population inversion in the medium. Fi-
nally, paper summary and concluding remarks are given in
Sec. VL.

II. MODEL

The most important quantity used for the description of the
coherent pulse interaction with a two-level resonant medium

is the so-called pulse area, given as [9]

do [T, .,
P(z) = —/ E', z)dt’, (D)
hJ

where £(¢, z) is the slowly varying envelope of the electric
field in the pulse, d}, is the transition dipole moment of the
two-level medium, 7 is the reduced Planck constant and the
time-domain integration is performed over the whole pulse
duration.

If a propagating light pulse coherently interacts with an in-
homogeneously broadened two-level medium, the pulse area
evolution can be described by a simple differential equation,
which is called the area theorem. The standard form of this
theorem originally derived by McCall and Hahn is as follows
[9,10,14,75]:

do 272Nyd? 0
— 4 TTTINQ ]20)128( )Sl

el D, 2
dz " @

npnlic

where the plus sign on the right-hand side corresponds to
an amplifying medium, while the minus sign refers to an
absorbing medium. Other quantities are the concentration
of two-level resonant centers Ny, the medium transition fre-
quency wiz, the host refractive index np,, and the function
g(A) describes the properly rescaled inhomogeneously broad-

ened line, so that
+00
/ g(A)dA =1,

o0

where A is the frequency detuning from the center of the
inhomogeneously broadened line.

Equation (2) was obtained under the assumption that there
was no induced medium polarization by the arrival of the
propagating pulse and the medium was either fully inverted
(i.e., all Ny resonant centers per unit volume were in the
excited state) or, inversely, fully uninverted (all Ny resonant
centers per unit volume were in the ground state). Equation (2)
has the following general solution:

d ®
tan | — ) = tan | —2 eFaMoz 3)
2 2

where @ is the initial pulse area and we have denoted

27'[2d122a)12g(0)
o=

npnfic

4)

This solution predicts the steady values of the pulse area
equal to integer numbers of x. In fact, in an absorbing two-
level medium the stable SIT-soliton must have the pulse area
equal to 27 [9,14], and is thus usually called the 27 pulse.
Such propagating 27 pulse excites the medium at its leading
edge and then returns back to the ground state at the pulse’s
trailing edge. The absorbing medium therefore undergoes a
single Rabi flopping over the pulse duration. As the medium
behind such a SIT-soliton stays fully uninverted, the 27 pulse
experiences almost no losses.

In contrast, in the amplifying or gain medium the pulse
with & = 27 appears to be unstable, while the only stable
value of the pulse area equals ® = 7. For any & € (0;27)
the pulse approaches the value ® = m upon its propagation
in the medium. At the same time, the steady state & = 7 is
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unstable in the absorbing medium and the propagating pulse
either approaches the pulse area ® = 0 for ®y € (0;7) or
approaches the value of the pulse area ¢ =2n for &( €
(T 2m).

To provide more general treatment of the coherent pulse
propagation in a ring laser cavity, we are, however, interested
to start off with the underlying equations for the system dy-
namics rather than the final result Eq. (2). We apply the system
of Maxwell-Bloch equations for two-level gain and absorber
media together with the usual wave equation for the electric
field (magnetic properties of the media are neglected).

As we expect long multicycle mode-locked pulses, we
make use of slowly varying envelope (SVEA) and rotating-
wave (RWA) approximations for the electric field. For
simplicity, we also suppose linearly polarized electric field
and neglect the transverse effects or diffraction. Thereby the
problem reduces to the scalar equation for the slowly varying
envelope of the electric field [9,10]:

+00
. I TR

ot Ngr 02 Ngrhph J—oo

where E is the slowly varying envelope of the electric field,
P,(g) is the slowly varying envelopes of the polarization of the
absorber (gain) medium phase-shifted by 7 /2 with respect
to the electric-field envelope, ng and nyy are the group and
the phase refractive indexes of the host medium at the pulse
carrier frequency w;.

Let us multiply both sides of Eq. (5) by the factor d»/k
and integrate both sides over the whole pulse duration. As
the electric field turns to zero in front of and beyond the
propagating pulse, the first term in the left-hand side of Eq. (5)
vanishes. As the result, Eq. (5) turns into

00 2mwind;, [T e
9 _ M/ g(A)dA/ Pugy (A, 1, 2)dt,

07 npnfic o oo

(6)

where the time-domain integration is performed over the
whole pulse duration.

The key assumption made upon the derivation of the area
theorem is related to the values of the pulse duration t, the
coherence relaxation time 7 (equal to the inverse width of the
homogeneously broadened line) and the inverse width of the
inhomogeneously broadened line A. Namely, the following
inequalities have to hold:

A< T« D )

It is should be noted that, due to the strong inhomogeneous
line broadening as given by Eq. (7), the residual macroscopic
medium polarization in the right-hand side of Eq. (5) left after
the pulse passage vanishes over a time interval of the order of
A~! due to the dephasing between multiple oscillating dipoles
across the inhomogeneously broadened line (the so-called
free polarization decay) [9]. According to Eq. (7), this means
that, as the traveling pulse is gone, the residual macroscopic
polarization in the right-hand side of Eq. (5) disappears much
faster than the pulse extends, so that no other field is to be
emitted afterwards.

With the conditions (7), as shown in Refs. [9,14], the inte-
gral on the right-hand side of Eq. (6) can be simplified to

+00 +00
f g(A)dA / Puo(A, 1, 2)dt’

o0 —00

- ng(O)Pa(g)(Os ) + T, Z)v (8)

where f#( is the time point, when the traveling pulse arrives
to the spatial point z. The last factor in the right-hand side
of Eq. (8) thus represents the induced medium polarization
at the central frequency of the medium’s inhomogeneously
broadened line (i.e., zero frequency detuning A = 0) at the
spatial point z just after the pulse has fully passed this point.
Equation (6) for the pulse area evolution using the expression
(8) becomes:

9P _ @ p .10 +17.2) ©)
- = 5 ) T, )
dZ d12 a(8) 0 .
with the parameter « defined by Eq. (4). Finally, the induced
medium polarization in the right-hand side of Eq. (9) has to
be found through the solution of the Bloch equations for the
dynamics of the resonant medium.
The Bloch equations for a two-level resonant medium for
the zero-frequency detuning A = 0 read as follows [9]:
dPug | Pagg d122
—9 4 U _ TRy E,
a T h @

dNag) | Nag) = Noace) 1
8 _ __p E, 10
ar T Ti n® (10)

where N, are the population inversions in the absorber
(gain) sections, Ny 4(g) are the equilibrium values of the pop-
ulation inversion, i.e., the pumping rates in absorber (gain)
sections, 77 is the lifetime of the excited state, 7> is the
medium coherence lifetime.

It should be noted that the two-level model in Eq. (10)
was successfully applied for the theoretical description of
the coherent pulse propagation and the self-induced trans-
parency phenomena in different gaseous and solid-state media
[9,10]. Moreover, this model was even able to describe
the experimentally observed features of the Rabi flopping
in such complex solid-state media, as bulk semiconductors
[76-78].

The coherent pulse propagation requires the pulse du-
ration T to be much smaller than the relaxation times 7],
T> in the medium. In this case we can reliably neglect the
relaxation terms in the left-hand side of the Bloch equa-
tions (10) upon the medium interaction with the pulse. The
solution of Egs. (10) without relaxation can be then readily
found as

d t
Nug)(t) = Ny cos (712/ E@t)dt' + 60),

d t
Pagg)(t) = di2No sin (712] E(t"dt' + ®o>, 1D

—0Q
with the spatial density Ny and the integration constant ®
determined by the initial conditions.

For example, for an initially unexcited medium, i.e., the
medium is in the ground state before the arrival of a driving
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pulse (absorber), one needs
N(t)|i=—oo = —No,
P(t)|i=—0o = 0. (12)

This case corresponds to the ®y = in Eq. (11). In the
opposite case of an initially fully excited medium, i.e., the
medium is in the upper excited state before the arrival of a
driving pulse (gain), one needs

N(®)li=—o00c = No,
P(1)]i=— =0, (13)

which already corresponds to ®y = 0 in Eq. (11). In these
cases Eqs. (12) and (13), if inserting the respective solution for
Py(g)(t) from Eq. (11) into the spatial evolution equation (9),
one gets again the standard area theorem (2).

If the induced medium polarization does not fully relax
over a full round trip in the cavity, then the nonzero initial
values of the polarization P(t) arise, leading to other possible
values of the integration constant ® in Eq. (11). Specifically,
for arbitrary initial conditions:

Natg)(Oli=-oe = Ny,

Pae)()li=—o00 = Pifty, (14)

with the initial values of the quantities N, P,f%, the solution
(11) turns to

Ny dir [
Nyo)(t) = N;‘(‘;f) cos (ﬁ / E(t’)dt’)
)

Pinit d t
— 99 in ﬁ/ E@)dt' ),
dip hJ_
P _ Pinil d12 ! E / d /
(o)) = alg) COS 3 . (t)dt

12

- d !
+d12N;(1g) sin <7 / E(l/)dl/>. (15)
—00

Next, let us find out the solution of the Bloch equations (10)
in between the passages of a pulse circulating in a cavity.
For this case we assume zero value of the electric field, i.e.,
skip the right-hand side in Egs. (10) and take into account the
relaxation terms. The respective solutions of Egs. (10) then
yield

Nagg)(1) = Noe™ /T + No gg(1 — €7/,

Pa(g) (t) = P;I(ljgl)eit/Tz ) (16)

with the initial values Nai'(‘g), P;(‘;‘) Altogether, Egs. (15) and
(16) fully describe the medium evolution over the whole

round-trip of a pulse inside a ring laser cavity.

III. GENERALIZED AREA THEOREM

Having obtained the explicit expressions for the resonant
medium evolution both during the pulse passage [Eq. (15)]
and in between the sequential pulse passages [Eq. (16)], we
are now ready to formulate the generalized pulse area theorem
for the unidirectional pulse propagation in a ring cavity.

Instead of the single unknown ®(z) as in the standard area
theorem (2), in the general case we have to also consider the
spatial distribution of the population inversion in the active
laser medium N (z) and the spatial distribution of the induced
medium polarization P(z).

Let us assume a ring cavity with the round-trip time 7;;. We
suppose that a single isolated pulse circulates inside a cavity in
one specific direction, e.g., anticlockwise. Thus, the medium
parameters at each spatial point z evolve according to Eq. (15)
as the pulse passes through this point, then decay according
to Eq. (16) during the round-trip time 7, until the circulating
pulse arrives again, and so on.

We denote the pulse area at the nth round trip as ®,(z) and
the population inversion and the induced medium polarization
after n full round trips right before the pulse arrives at the
point z in the (n + 1)st round trip as N,(z) and P,(z). Now
bringing together Eqs. (15) and (16) and the spatial evolution
equation Eq. (9), we get the following generalized pulse area
theorem for the unidirectional pulse circulation inside a ring
cavity:

dod, . P,
—H(Z) = a<Nn(z) sin®,1(2) + @
dz dia

cos &, 4 (Z)) ,

Pn(Z)
diz

Nup1(2) = <N,, (z) cos @41 (2)— sin @, (Z)> o~ Tn/Th

+ No (1 — e /M),
Poy1(z) = (Pu(z) cos @,41(2)
+ diaNy(2) sin @41 (2))e /™,
0 < 7 < Leays
®@,41(0) = Pp(Leay), (17)

with the cavity length L,y .

One can easily see that, in the limit 77, 7, < Ty, the
population inversion and the induced medium polarization
completely relax over the round-trip time to their stable values
N,(z) = Nog and P,(z) = 0, respectively. As the result, the
generalized pulse area theorem Eq. (17) simply reduces to the
classic one:

dd,. (z .
4®u1@) = Ny ¢ sin @, (2),
dz

0 <z < Leays (18)

i.e., exactly coincides with Eq. (2).

Typically, especially in solid media, the lifetime of the
excited state 77 is by many orders of magnitude greater than
the coherence lifetime 7. Therefore it is also of interest to
consider the specific case with T, < Ty < Tj. In this case the
induced medium polarization fully vanishes over the round-
trip time, so that we can put P,(z) = 0 in Eq. (17). As the
result, the generalized area theorem gets reduced to the form

d®,41(2)
dz
Nui1(2) = Ny(z) cos @y (2)e” ™7 Ny (1 — /T,
0 < z< Lewys
®,11(0) = Dy (Leay)- (19)

= aNn(Z) sin canrl (Z),
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The first equation for ®,,1(z) in Eq. (19) can be readily
integrated and yields

n <©n+21 (Z)) . (d>n+21 (0))ea AT

0 <z < Lea,
q)n+1(0) = q:)n(Lcav)- (20)

Here the function N,(z) under the integral sign is fully deter-
mined by the pulse area dependencies in the previous round
trips ®;(z), j < n. For instance, the function N,(z) according
to the second equation in Eq. (19) can be expressed as

N, (z) = N,_1(z) cos @, (z)e” /T
+N0,g(1 - E_T"/Tl )’

where the function N,_;(z) is to be similarly expressed
through N,_»(z) and ®,,_1(z) and so on.

In the general case (17) the differential equation for the
pulse area @, 1(z) can be represented as

d®,11(2) | P (2) .
d—z =« N,%(Z) + d_122 sin <¢>n+1(z)

P(2)

:|) 21
JP2(2) + dLN2(2)

When P,(z) # 0, the obtained Eq. (21) cannot be generally
integrated analytically. Therefore one has to rely on the nu-
merical solution only.

The generalized area theorem (17) allows us to find the
pulse area and the medium parameters at the (n + 1)st round
trip, provided that these functions at the nth round trip are
already known. However, since the equation (21) does not
permit the analytical solution, it looks attracting to find out
any reasonable simplifications to transform Eq. (21) into an
analytically solvable form. The most natural way to do it is
neglecting the spatial dependencies of the medium parame-
ters, i.e., setting P,(z) ~ const, N,(z) ~ const. With such an
assumption Eq. (21) can be indeed easily solved to yield

o, P ®,.,(0 D\ « /N}+ﬁ
tan <—+1(Z) + ) = tan (—H( )+ )e : d

2 2

+ arcsin |:

’

by

VBt dpN?
0 < z < Lied,
CI>n+1(0) = q)n(Lcav)v (22)

sin ® =

with the medium length Lyeq.

As can be seen, the analysis of the pulse propagation in
a ring cavity with Eq. (22) reduces to a simple mapping
connecting the pulse area and the medium parameters at the
sequential round trips. In the next section we intend to ex-
amine the solutions of the generalized area theorem for the
case provided by Eq. (22) for a specific example of a single-
section laser cavity with an amplifying medium inside.

Gain

<

FIG. 1. The scheme of the considered single-section ring-cavity
laser with the output mirror M; all other mirrors are assumed to be
fully reflecting

IV. SINGLE-SECTION RING-CAVITY LASER

We start with a single-section ring cavity with the unidirec-
tional field propagation, as sketched in Fig. 1. It is assumed
that the laser output is provided through one of the cavity
mirrors with the amplitude reflection coefficient » = r(w»)
at the pulse carrier frequency wi,, while all other mirrors
are fully reflecting. As before, the unidirectional lasing in
the cavity is supposed, which can be achieved by placing an
additional component inside the cavity.

The setup shown in Fig. 1 can be exploited in several
applications. First, as it was numerically shown in Ref. [33],
the stable self-starting coherent mode-locking based on the
m-pulse formation can arise in such a single-section laser with
the achieved pulse duration of several hundreds of fs. How-
ever, the analytical study in Ref. [33] was solely focused on
the case of a very long round-trip time, namely, T}, Tr < Ty.
At the same time taking a shorter cavity with 7, T, ~ Ty
should lead both to much shorter mode-locked pulses and to
much larger pulse repetition rate. Still the analysis for such
cavity parameters can only be performed with the generalized
area theorem derived in the previous Sec. [Eq. (17)].

Second, the laser cavity like in Fig. 1 can be naturally used
for the efficient pulse compression. It is well known that the
coherent pulse propagation in an amplifying medium results
in the pulse amplification accompanied by the temporal com-
pression [10]. The cavity-based configuration then assures the
multiple pulse passages through the gain medium and thus the
sequential pulse compression.

It is worth noting that the pulse compression scheme needs
the injection of an initial pulse into the cavity. The coherent
mode locking can also be started by the injection of an ex-
ternal seed pulse [27,28]. However, the recent studies have
also demonstrated that the coherent mode-locking can be self-
starting, including the single-section geometry [31-36]. In the
latter case the produced mode-locked pulse evolves from a
weak initial noise in the cavity. That is why, in the following
treatment, when talking about the pulse circulation inside a
ring cavity, we will keep in mind that either an external seed
pulse was initially injected into the cavity or some isolated
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field burst has randomly arisen against the weak background
field.

For the setup in Fig. 1, the initial pulse area at the (n 4 1)st
round-trip is expressed as

q>n+l(0) = FCD”(Lg), (23)

where L, is the length of the gain medium. Here we have used
the result strictly proven in Ref. [33], that the pulse areas (1)
of the incident and reflected ultrashort pulses upon reflection
from a mirror are simply related through the factor of the
amplitude reflection coefficient r.

Below we consider separately several cases, depending on
the relative values of the relaxation times 7;, 7> of the resonant
medium and the cavity round-trip time Ty.

AT, L L T

This is the simplest possible situation, when the medium
fully relaxes to its equilibrium state before the next pulse
passage. Therefore the propagating pulse interacts at each
round trip with exactly the same medium, while the medium
state right after the previous round trip plays no role anymore.

Let us denote the pulse area just after the gain section after
n round-trips inside the cavity as ®, = ®,(Ly). Now using
Egs. (18) and (23) we get the following explicit expression
for the value @, :

b, b,
tan 1) — gan (20 ) ek, (24)
2 2

The steady-state operation regime implies that

q)n+l =o, = q)*a

so that we finally obtain the following equation for ®*:

ro* 25
) e

The solutions of Eq. (25) and their stability were analyzed
in Ref. [33]. The performed analysis has shown that Eq. (25)
always possesses the trivial solution:

d* =0, (26)

®* = 2 arctan [e“N“'ng tan (

which is stable if re*™osfs < 1, and the nontrivial steady state
®* € (0; ), which exists if re®™ss > 1 and is stable across
the whole parameter range of its existence.

B DL LTy ~Th.

The induced medium polarization now completely van-
ishes over the round trip. At the same time, the population
inversion does not relax, so that its relaxation has to be prop-
erly considered.

As in the previous case, we denote the pulse area just after
the gain section after n round-trips inside the cavity as ®,,.
Besides that, we introduce the population inversion in the gain
section just before the (n 4 1)st passage of the pulse as N,,. For
simplicity we start with the case of the constant population
inversion over the whole gain section. This condition requires
that the pulse area undergoes just slight changes during a
single round-trip, i.e.,

[P — Pl K [Pl @7

The solution of the area theorem [Eq. (20)] together with
Eq. (23) then gives the following expression connecting ®,,;

and ®,:

d,
®,+1 = 2arctan [eaLﬁNn tan <r2 >i| (28)

As can be seen from Eq. (28), the condition Eq. (27) im-
plies that

al,N, <1,
1-r<l. (29)

The expression for N, is provided by the second line in
Eq. (19), where the value ®,;(z) in the right-hand side varies
in between r®, and the one given by Eq. (28). Using the
inequalities (27) and (29), we can reasonably take the average
value of @, (z) equal to ®,,. As the result, Eq. (19) yields for
Nn+] .

Nus1 = Nycos @, /T 4 Ny (1 — e ™1 (30)

Now we end up with the coupled equations (28) and (30),
which describe the evolution of the pulse and the active
medium over the round trips in the ring cavity.

Let us analyze the steady states of the obtained system (28)
and (30). One can easily see the trivial solution:

®,=P*=0, N,=N*=Ny,. 31)

We proceed now to check the stability of this trivial so-
lution. We denote the functions on the right-hand side of
Eqgs. (28) and (30) as f1(®P,N) and f>(P, N) respectively.
Then the stability of the steady state (31) requires that

|Ai] < 1forall &; € eig J(f1, f)lo=o+n=n+,  (32)

where J is the Jacobian matrix:

i i
70 aN
J(fi, L) = , (33)
3 i
70 aN

and A; are the eigenvalues of this Jacobian matrix.
The condition Eq. (32) then reduces to

Ay = re?tMos < 1,

*Tn/Tl (34)

M =ce < 1.

As the second inequality in Eq. (34) is obeyed by default, only
the first line Eq. (34) states the actual stability criteria for the
trivial steady state. Note that this condition coincides with the
one from the case (A).

Let us look for other nontrivial steady states of Egs. (28)
and (30), i.e., solutions in the form

®, =d*#£0, N,=N* <Ny, (35)

Inspired by the findings for the case (A) we expect to get a
steady state with the formation of almost-r pulses, i.e., ®* ~
7. Inserting this approximate value into Eq. (30) and taking
Nu+1 = N, = N*, one gets

1 — e*Tn/Tl

* —_—
N* = Noo o=

(36)

According to Eq. (36), the faster is the inversion relaxation,
the greater gain experiences the propagating pulse at each
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round trip. Specifically, in the limit 7}y >> Tj, i.e., the popula-
tion inversion fully relaxes over a single round-trip, we arrive
to the results of the case (A) with N* — Np .

The stability of the nontrivial steady-state can be again
checked using the criteria Eq. (32). For the eigenvalues of the
Jacobian matrix we find

reotLgN*
cos? (£24) + 2N sin? (55-)

_e—Tn/Tl , 37)

A =

Ay =
so that Eq. (32) gives

retN” < cos? (Z5-) + €2k sin? (13-,
/% (38)
e i < 1.

The second condition is again satisfied by default, while for
the first one, taking r &~ 1, ®* ~ 7 we obtain

r< kN

which also always holds as r < 1 and the exponent in the
right-hand side is greater than 1, meaning that the nontrivial
steady state Eq. (36) is always stable.

The existence range of such nontrivial steady state can be
analyzed using the behavior of the function in the right side
of Eq. (28). Therefore we find that this nontrivial steady state
exists when

L,N*

> 1. (39)

re*

The comparison of the stability condition for the trivial so-
lution provided by Eq. (34) and the existence condition of
the nontrivial solution Eq. (39) yields, that because N* < Ny ,
always, there is a range of the values of N ¢, namely,

1 1 1 14 W/ 1

—In|-)<M;< ———=In(-), (40

oL, <r> oLy 1 — e /N (r)
where the trivial state already becomes unstable, but the
nontrivial steady state with ®* ~ 7 does not yet exist. For ex-
ample, for T,y = 0.17; the right-hand side in Eq. (40) exceeds
the left-hand one by the factor of 20.02, for 7y = T; by the
factor 2.16, for Ty = 0.57; by the factor 4.08. In this range
one can expect the formation of the nontrivial steady states
with intermediate values of the pulse area ®* € (0; 7).

We have performed the numerical simulations of the map-
ping Egs. (28) and (30), which showed that the system always
rapidly reaches either the trivial or the nontrivial steady state.
Exemplary diagrams for the resulting steady-state solutions
are plotted in Fig. 2 for the pulse area ®* and in Fig. 3 for
the population inversion N*. The reflection coefficient was
fixed to 7 = 0.9, while the parameters 7,;/T; and o L,Np , were
varied. One can see that as the ratio T;;/7T; grows, the steady
values go to ®* — 7, N* — Ny ,, which simply corresponds
to the nontrivial solution of the case (A) with fast inversion
relaxation.

The conditions (27) and (29) are generally not satisfied
over the first several iterations, if the initial conditions for
dy, Ny are taken quite far away from their steady values
from Figs. 2 and 3. However, after a few iterations the system
comes close enough to the steady states and for the following
iterations the condition Eq. (27) is surely obeyed. This finding

0.9
0.8
0.7
r10.6
r10.5

r104 7

0.3

0.2

0.1

0.5 1 1.5 2
Trt/Tl

FIG. 2. The steady-state solution of Egs. (28) and (30) for the
pulse area ®* vs the parameters T;/T; and aL,Ny , for r = 0.9; the
white dashed line depicts the stability threshold of the trivial steady
state according to the first line in Eq. (34)

justifies the reduction of the spatially distributed model from
Sec. III to the simple mapping given by Egs. (28) and (30),
which is much more convenient both for the simulations and
for the analysis.

O T~ T, Th.

In this case the induced medium polarization does not
make it to fully relax over the round trip and the remaining
polarization has to be taken into account.

As before, we assume for simplicity the constant popula-
tion inversion and the medium polarization across the entire
gain medium. The respective mapping for this case can be
again obtained using the generalized area theorem (17) and

‘ : 1
. 0.9
: 0.8
: 0.7
- 0.6
05 N*
' 04 Nos
’ 0.3
' 02
' 0.1
0.5 1.5 2

1
Trt / Tl

FIG. 3. The steady-state solution of Egs. (28) and (30) for the
population inversion N* vs the parameters 7, /T, and LNy , for r =
0.9; the white dashed line depicts the stability threshold of the trivial
steady state according to the first line in Eq. (34).
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Eq. (22). Taking again the average value of ®,,(z) equal to
®,, in the equations for the medium quantities N,4; and P, |,
we obtain

. ( P,
&, = —arcsin | ————
/P2 + d2,N?
r 1 . P,
X tan E(D" + 3 arcsin | —————— ,
VPt di,N?

1
—P, sin <I>,,)eT"/T‘
12

2 2 2
) + 2 arctan |:e°‘LW Nit+Fy/di

Nyt = (N,, cosd, —

+No (1 — ™),

P,1 = (P,cos @, + doN, sin @,)e /2 41)

where we have introduced the induced medium polarization
after n full round trips right before the circulating pulse enters
the gain section at the (n + 1)st iteration as P,.

Similar to the previous cases the trivial steady state has the
form

®,=d* =0, N,=N*"=Np,, P, =P =0. (42

For the eigenvalues of the Jacobian matrix (33) of this
trivial solution (42), one finds the explicit expression for one
eigenvalue:

M= W <,

while for two other eigenvalues A,, A3 the following charac-
teristic equation arises:

A2 4 A(relNos 4 o= T/ T2y

+ eiT"/Tz(re“LgN“*’ + 1 — LMy = 0,

The analysis of this characteristic equation yields that the
absolute values of both roots are less than unity as long as

Aol < Lif e*sMos[r 4 W1 — )] < 1. (43)

In the limit 73/T, — +o00 we arrive to the case (B) above
and the stability condition Eq. (43) reduces to the respective
stability criteria Eq. (34). From the comparison of Egs. (34)
and (43) one can see that the slow relaxation of the medium
polarization leads to the decrease of the lasing threshold.
Besides the trivial solution, the nontrivial steady state can
be also expected to exist above the threshold Eq. (43). Follow-
ing the findings for the case (B), well above the threshold we
can obtain the approximate solution for the nontrivial steady
state as
1 — e Tn/Th

k *
Pr=0, N*=Nogi—

d* ~ o, 44)

The performed numerical simulations with the mapping
Eq. (41) show that the system always rapidly evolves towards
either the trivial solution Eq. (42), if the parameters obey
the condition Eq. (43), or towards the nontrivial steady state
otherwise.

Figure 4 depicts a diagram for the respective steady state
of the pulse area in the mapping (41), where the parameters
were fixed to r = 0.9, Ti;/T, = 1, while the values of Ti/T}
and oL Ny , were varied. Again, similar to the case (B), we

0.9
0.8
0.7
0.6
0.5
o
04
03
0.2
0.1

FIG. 4. The steady-state solution of Eq. (41) for the pulse area
®* vs the parameters T, /T, and aL,Ny , for r = 0.9, T, /T, = 1; the
white dashed line depicts the stability threshold of the trivial steady
state according to Eq. (43).

Trt /T

get the stable trivial zero steady state below the threshold and
the stable nontrivial steady state above the threshold, which
goes to the solution (44) as the pumping rate Ny , increases.

The respective diagram for the induced medium polariza-
tion P* is shown in Fig. 5. Here one can see that the stable
value of the polarization goes to zero as the pumping param-
eter Ny, gets larger, thus evolving towards the solution (44).
As a result, we get a nonmonotonic dependence of the stable
value P* on the varying parameters. Namely, the steady-state
solution for P* equals zero both below the threshold (43) and
well above this threshold. The largest value of P* is therefore
achieved just beyond the threshold (43), as can be seen in
Fig. 5.

2
18 03
1.6
14 0.25
>
Zd L 0.2
>
P*
~ 0.15
S o. d12No g
0.6 0.1
0.4
0.05
02

rt/Tl

FIG. 5. The steady-state solution of Eq. (41) for the induced
medium polarization P* vs the parameters T;/7T; and aL,N,, for
r = 0.9, T;/T, = 1; the white dashed line depicts the stability thresh-
old of the trivial steady state according to Eq. (43).
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0.5

1
Trt / Tl

FIG. 6. The steady-state solutions of Eq. (41) for the pulse area
®* vs the parameters Ty, /T; and aL,Ny , forr = 0.9, T, /T, = 0.5; the
white dashed line depicts the stability threshold of the trivial steady
state according to Eq. (43).

It should be noted that the diagrams in Figs. 4 and 5 do not
exhibit significant deviations when changing the parameter
T.1/T>. To illustrate this statement, we plot in Fig. 6 the similar
diagram for the stable pulse area ®* like in Fig. 4, but with the
ratio T/ T, reduced to T;;/T, = 0.5. The resulting behavior of
the steady-state solution stays largely unchanged, indicating
the stability of the obtained solutions against the variations of
the system parameters.

V. SPATIALLY EXTENDED SOLUTIONS

In the previous section, specifically for cases (B) and (C),
we made use of the approximations of the spatially homo-
geneous functions P,(z) & const., N,(z) & const. Let us now
consider in more detail the role of the spatial extension in the
dynamics of a single-section ring laser cavity and find out the
validity limits for such approximations. Therefore we study
the solution of the generalized pulse area theorem (17) taking
into account the spatial coordinate z.

The case (A) from the previous section is trivial, since the
inversion fully relaxes back to Ny, and the induced medium
polarization fully vanishes, so that in the stable regime we end
up with the spatially homogeneous solutions:

N*(z) = Ny g = const., P*(z) = 0 = const.

That is why we are going to focus on case (B), when
the dynamics of the population inversion comes into play.
Specifically, we are interested to find the solutions for ®*(z)
and N*(z) in the stable regime of the pulse circulation inside
the cavity. For this aim we insert into the pulse area theorem
Egs. (19) and (20):

D,41(2) = Du(2) = D*(2),
Ny11(z) = No(2) = N*(2). (45)

Substituting the expressions (45) into Egs. (19) and (20) we
get the following integral equations for the unknown functions

N*(z) and ®*(z):
N*(2) = N*(z) cos ®*(2)e” /T ++ Ny o(1 — e /1),

2 ATk () 4 d)* 0
d*(z) = 2arctan |:e"‘foN (2)dz tan( 2( ))]’

0< <Ly (46)

Using the formula
cos @ =
we can reduce Eq. (46) to

N
cos D¥(z) = /Tt — 08 ( T/Ti _

N*(z)
o | — i N a2 (L0
cos O = I TN (Z0y’
0<2< L,

Putting the right-hand sides of the above two expressions
equal, we get:

2 fi N @ 2 (q’* 2(0))

_ N*(2)(1 — eT/Tr) _l’_Noyg(eTn/Tl -1
TN + /T — Noyg(eTrt/Tl -1y

0<z< L,
“47)

Now taking the log of both sides of Eq. (47) and then
differentiating over z, we find

20N*(z) = aN" () 2No.g
dz  (N*(2) —Noy)
1
x [N*(2)(1 + eT/Ti) — No’g(eTn/Tl -
0<z< L. (48)

It is convenient to rewrite the obtained ordinary differential
equation (48) in the form

dN*

= kdz, 49
NN —NoN*—R) " ° @
with the following parameters:
o T _ 1 0
= M08 TyT +1 =Y

K = i(1 + /Ty,
No,g

Assuming that
R < N*(2) < Nog,
we can integrate Eq. (49) as follows:

N* R Ny, — N*

In ( (z)) 4 In ( 0.6 (z)>
N*(0) Nogs—R No,g — N*(0)

Mo (N@-R

No,—R N*(0) —R

) = KN(),gRZ, 0 < Z < Lg.

(50)
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ey
0.87 _________________________________
0.75]
D*(2)
s 0.7-
0.65¢ - rt/Tl =0.2 |
j}t/Tl =0.5
o - rt/T1 =1
0.55¢ |
0.5///
0'450 0.2 0.4 0.6 0.8 1

Coordinate z/L,

FIG. 7. The steady-state spatially extended solutions of Eq. (46)
for the pulse area ®*(z) for the parameter values r = 0.9, aL,Ny , =
1 and several different values of the ratio i /7.

The integration constant N*(0) can be expressed from the
first line in Eq. (46) through the value cos ®*(0) as

T

cos ®*(0)e~Tw/Ti

N*(0) = No,e7— 51)
Now using the relation between the values of the pulse area
at the boundaries in the steady-operation regime:

@*(0) = r®*(Ly),

we can rewrite the second line in Eq. (46) taking z = L,:
o _ 2 arctan [e"‘ Jo* N* @@ (0))d2’ 1 <<1> (0))]'
d 2

Here we explicitly stated that the steady solution for N*(z)
depends on the value ®*(0) through the expression for the
integration constant N*(0) [Eq. (51)].

Solving numerically Eq. (52) for the value ®*(0), we even-
tually get the sought-for solutions for N*(z) from Egs. (50)
and (51) and the respective solution for ®*(z) from the second
line in Eq. (46).

A few examples of the resulting steady-state solutions are
plotted in Figs. 7 and 8 for the functions ®*(z) and N*(z),
respectively. In these figures the values of r and «L,Ny , were
fixed, while the ratio 7;;/T; was varied. The obtained values of
both functions ®*(z) and N*(z) turn out to closely match the
steady-state values of ®* and N* for the lumped model with
the same parameters, as shown in Figs. 2 and 3.

As Fig. 8 shows, the steady-state spatially varying solu-
tions for N*(z) in a wide range of the laser parameters exhibit
rather limited spatial inhomogeneity. Specifically, the rela-
tive variations of the functions N*(z) across the entire length
of the medium would barely exceed 10%. This finding can
thus serve as the justification of the approximations made
in Sec. IV, where spatially homogeneous functions P,(z) =
const., N,(z) =~ const. were assumed.

Still the analysis performed in Sec. IV with the finite-
dimensional mapping (41) is not directly applicable to the
spatially extended model described by the generalized area
theorem (17). Therefore, the stability of the derived spatially

(U ————— | | ]
0.45r |
—T/T1 =02
Tw/Ty = 0.5
040 | o/l |
N*(2) ~T/Th =1
No,g 0.35r |
0.3 7
0.25¢ |
0.2r |
—

0-13 02 0.4 0.6 0.8 1

Coordinate z/L,

FIG. 8. The steady-state spatially extended solutions of Eq. (46)
for the population inversion N*(z) for the parameter values r = 0.9,
aLyNy , = 1 and several different values of the ratio T;;/T;.

varying solutions has to be additionally examined. For this
purpose we have numerically solved the system of equa-
tions (17) using the fourth-order Runge-Kutta scheme. The
medium was assumed to be initially in the equilibrium state
and the initial pulse area 0.0017 was taken at the entrance of
the medium at the first iteration. As the numerical simulations
show, above the lasing threshold provided by Eq. (34) the
system always rapidly evolves towards the lasing solution
given by the above-derived functions (46), (50), and (51).
Hence, these spatially varying steady-state solutions turn out
to be stable for any values of the control parameters above the
lasing threshold.

In the case (C) from the previous section it is not possible
to find the general steady spatially varying solutions of the
generalized area theorem (17) in an explicit analytical form.
That is why we also examined this case through the numer-
ical solution of the system of equations (17). As before, we
have again found that the system always rapidly goes to the
stable spatially varying steady-state solutions above the las-
ing threshold (43). An example of the numerically calculated
steady-state values for the pulse area at the end of the gain
section ®*(Lg) vs the parameters Ty /71, aLgNo , and with the
fixed parameters r = 0.9, T;;/T, = 1 is plotted in Fig. 9. This
diagram has to be compared with the diagram in Fig. 4, where
steady-state values for the pulse area for the same parameters
were calculated using the simplified mapping (41). One can
see that both the exact numerical solutions of Eq. (17) in Fig. 9
and the solutions of the simplified finite-dimensional mapping
(41) in Fig. 4 perfectly match.

In Fig. 10 we depict an example of the numerically ob-
tained stable spatially varying solutions of Eq. (17) for certain
system parameters. It is worth noting that, similar to Fig. 8§,
the steady-state spatially varying solutions for the medium
quantities just slightly vary across the whole length of the gain
medium. Again, we can thus conclude that the approxima-
tions made in Sec. IV with spatially homogeneous functions
P,(z) = const., N, (z) & const. appear to be well justified and
also explain the excellent coincidence of the respective dia-
grams in Figs. 4 and 9.
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FIG. 9. The steady-state values for the pulse area ®*(L,) ob-
tained by the numerical solution of the generalized area theorem (17)
vs the parameters T;;/T} and L Ny, for r = 0.9, T,,/T, = 1.

VI. CONCLUSION

We have derived the generalized area theorem for the
unidirectional pulse circulation in a ring laser cavity. This
generalization allows us to describe the feedback action of the
residual medium excitation, i.e., the residual induced polar-
ization and the population inversion, caused by the pulse in
the previous round trip in the cavity on the pulse propagation
at the next round trip. Such effects are essential, as long as
the round-trip time of the cavity becomes comparable to the
medium relaxation times, e.g., in compact lasers.

The obtained generalized area theorem includes the ordi-
nary differential equation for the spatial evolution of the pulse
area at each round trip inside a ring cavity together with two
explicit expressions for the spatially dependent medium polar-
ization and the population inversion. In the general case, when
the dynamics of both the medium polarization and the popula-
tion inversion has to be taken into account, the equation for the
pulse area cannot be analytically integrated. For this case we
have considered the reduction of the derived area theorem to
the lumped system, assuming the medium quantities roughly
constant in space. As the result, the theoretical model turns
into a simple mapping for the pulse area @, and the medium
quantities N,+; and P, expressed through their values at the
previous round trip.

The derived area theorem as well as its reduced lumped
form were tested with an exemplary setup of a single-
section ring-cavity laser with the gain section only, which
could represent either a single-section coherently mode-
locked laser or a multipass cavity-based pulse compressor.
The performed analysis for different relations between the
relaxation times 7}, 7 and the round-trip time 7 has yielded
that the system always rapidly evolves toward either the trivial
steady state below a certain lasing threshold, or to a nontrivial
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FIG. 10. The spatially extended steady-state solutions for the
pulse area ©*(z), the induced medium polarization P*(z), and the
population inversion N*(z) obtained by the numerical solution of
the generalized area theorem (17) with the parameter values » = 0.9,
T.,/T, =1,T,/T, = 0.5, and aL,Ny , = 1.

steady state above the threshold. It is also worth noting that
the stable value of the pulse area tends to m well above the
threshold. Beside that, the lumped version of the area theorem
was shown to yield good quantitative agreement with the
spatially extended model.

The approach considered above is quite similar to that used
in standard passive mode-locking theories based on incoher-
ent light-matter interactions [59-68], where evolution of the
field amplitude at each round-trip is expressed through its
value at the previous round-trip. However, these theories are
inapplicable for the correct description of passively mode-
locked ultrafast laser systems, where coherent effects play a
crucial role. It was shown earlier that, to obtain shorter pulses,
it is necessary to decrease the cavity length [33,34]. In such
compact laser systems the pulse duration is already compa-
rable to the medium coherence lifetime 7> and the coherent
effects are of significant importance. Thus, the area theorem
approach introduced above can be useful for the theoretical
description of mode-locking in ultrafast laser systems, where
previously developed mode-locking theories are not applica-
ble anymore.

We expect that the presented generalized area theorem can
be used for the efficient analytical description of the coherent
mode-locking phenomena, the cavity-assisted pulse compres-
sors based on the coherent pulse propagation or for the
description of photon-echo effects in cavity-based schemes,
e.g., in view of quantum-memory applications.
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