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Kerr frequency combs generated in high-Q microresonators offer an immense potential in many applications,
and predicting and quantifying their behavior, performance, and stability is key to systematic device design.
Based on an extension of the Lugiato-Lefever equation we investigate in this paper the perspectives of changing
the pump scheme from the well-understood monochromatic pump to a dual-tone configuration simultaneously
pumping two modes. For the case of anomalous dispersion we give a detailed study of the optimal choices of
detuning offsets and division of total pump power between the two modes in order to optimize single-soliton
comb states with respect to performance metrics like power conversion efficiency and bandwidth. Our approach
allows us also to quantify the performance metrics of the optimal single-soliton comb states and determine their
trends over a wide range of technically relevant parameters.
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I. INTRODUCTION AND MAIN RESULTS

Optical frequency combs have revolutionized many appli-
cations, comprising optical frequency metrology [1], spec-
troscopy [2,3], optical frequency synthesizer [4,5], optical
atomic clocks [6], ultrafast optical ranging [7], and high-
capacity optical communications using massively parallel
wavelength-division multiplexing (WDM) [8]. The recent
and rapid development of chip-scale Kerr soliton comb gen-
erators offers the prospects of realizing highly integrated
devices which offer compactness, portability, and robust-
ness, while being amenable to mass production and featuring
low power consumption [9]. Whereas Kerr soliton combs
have conventionally been generated by using a monochro-
matic pump, dual-tone pumping configurations permit one to
achieve thresholdless comb generation in both normal and
anomalous dispersion regimes [10,11], while stabilizing the
comb-tone spacing to a well-defined frequency [12,13]. Be-
sides, introducing the second pumped mode can maintain the
intracavity power constant and eliminate the sudden change
of the cavity temperature after the transition into soliton
regime. Such a scheme overcomes the cavity resonance drift
due to the thermo-optic effect, leading to significantly in-
creased soliton access range [14]. The dual mode pumping
scheme can be implemented either by using a phase- or
intensity-modulated continuous-wave laser or two lasers with
different wavelengths. Prior works theoretically investigated
the dynamical properties of dissipative cavity soliton gener-
ation in a dual-mode-pumped Kerr microresonator by using
the Lugiato-Lefever equation (LLE) with the addition of a
secondary pump term [15]. However, a comprehensive study
of the optimal pumping conditions for attaining the broadest

*wolfgang.reichel@kit.edu

comb bandwidth and the highest power conversion efficiency
in the anomalous dispersion regime is still lacking.

In this paper we study a variant of the LLE based on a
modification for dual-tone pumping [16], and we use this
equation for a more detailed study of the benefits of dual-tone
pumping. Focusing on resonators with anomalous dispersion,
we find that dual-tone pumping allows one to significantly im-
prove key performance metrics of Kerr frequency combs such
as bandwidth and power conversion efficiency. Mathemati-
cally, Kerr comb dynamics with a single pumped mode have
been described by the LLE, a damped, driven, and detuned
nonlinear Schrödinger equation [17–19]. Our modification of
the LLE arises due to a forcing term which describes the
pumping of two resonator modes instead of only a single one.

Using this equation as a base, we exploit numerical path
continuation methods for a more detailed analysis of comb
properties, the results of which can be summarized as follows.

(1) We show that with respect to comb spectral coverage,
pumping two modes is advantageous to pumping only one
mode.

(2) We present heuristic insights for finding the optimal
detuning parameters that provide the most localized single-
soliton states.

(3) We determined the optimal power distribution between
the two pumped modes, which corresponds to a symmetric
distribution where 50% of the power is pumped into each
mode.1 This power distribution simultaneously optimizes all
performance metrics (comb bandwidth, full width at half max-
imum in time domain, and power conversion efficiency) in

1For purposes of simplifying the analysis this was exactly the case
discussed by the authors in [10]. Our findings validate their assump-
tion of the pumps having equal amplitude and phase detuning.
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case equal detuning offsets between pump tones and nearest
resonant modes are used.

(4) Under optimal power distribution we determined trends
of the performance metrics with respect to varying dispersion
and normalized total pump power.

This paper is organized as follows. In Sec. II we introduce
the Lugiato-Lefever model for a dual-pumped ring resonator
with second-order dispersion. In Sec. III we present the main
ideas for finding localized solitons in the case of pumping two
adjacent modes in the anomalous-dispersion case. Section IV
is dedicated to the determination of the optimal power dis-
tribution between the two pumped modes. Here we use the
comb bandwidth, the power conversion efficiency, and the full
width at half maximum as performance metrics. In Sec. V
we provide trends for varying dispersion or forcing of these
performance metrics under the provision of optimal equal
power distribution between the two pumped modes. In Sec. VI
we describe the optimal solitons achieved by pumping two
arbitrarily distanced modes while maintaining second-order
dispersion. Appendix A is dedicated to the derivation of the
Lugiato-Lefever model for a dual-pumped ring resonator. In
Appendix B we explain the necessary modifications to treat
the case of pumping two arbitrarily distanced modes.

II. LUGIATO-LEFEVER MODEL FOR A DUAL-PUMPED
RING RESONATOR

Kerr comb dynamics are described by the LLE, a damped,
driven, and detuned nonlinear Schrödinger equation [17–19].
As in [16] we use a variant of the LLE modified for two-mode
pumping, for which we provide a derivation of Eq. (1) start-
ing from a system of nonlinear coupled-mode equations in
physical quantities in Appendix A. Using dimensionless, nor-
malized quantities, this equation takes the form

i
∂a

∂τ
= −da′′ − (i − ζ0)a − |a|2a + i f0 + i f1ei(k1x−ν1τ ). (1)

Here, a(τ, x) is 2π periodic in x and represents the optical
intracavity field as a function of normalized time τ = κt/2
and angular position x ∈ [0, 2π ] within the ring resonator.
The constant κ > 0 describes the cavity decay rate and d =
2d2/κ > 0 quantifies the anomalous dispersion in the system
(2d2 corresponds to the difference between two neighboring
FSRs at the center frequency ω0). Since the numbering k ∈ Z
of the resonant modes in the cavity is relative to the first
pumped mode k0 = 0 we denote with k1 ∈ N the second
pumped mode (there is no loss of generality to take k1 as a
positive integer since k1 and −k1 are symmetric modes). Since
there are now two pumped modes there will also be two nor-
malized detuning parameters denoted by ζ0 = 2(ω0 − ωp0 )/κ
and ζ1 = 2(ωk1 − ωp1 )/κ . They describe the offsets of the
input pump frequencies ωp0 and ωp1 to the closest resonance
frequency ω0 and ωk1 of the microresonator, respectively.
Finally f0, f1 represent the normalized power of the input
pumps. If we set 	ζ = ζ0 − ζ1 and ν1 = 	ζ + dk2

1 , then (af-
ter several transformations; cf. Appendix A) Eq. (1) emerges
with the specific form of the second pump f1ei(k1x−ν1τ ).

In the case f1 = 0, Eq. (1) amounts to the case of pump-
ing only one mode. This case has been thoroughly studied,
e.g., in [18–27]. In this paper we are interested in the case

f1 �= 0. The particular form of the pump term i f0 +
i f1ei(k1x−ν1τ ) suggests performing a change of variables into
a moving coordinate s = x − ωτ with ω = ν1/k1 and study-
ing solutions of (1) of the form a(τ, x) = u(x − ωτ ). These
traveling-wave solutions propagate with speed ω in the res-
onator, and their profile u solves the stationary ordinary
differential equation

−du′′ + iωu′ − (i − ζ0)u − |u|2u + i f0 + i f1eik1s = 0, (2)

where u is again 2π periodic in s. In Fourier modes a and
u are represented as a(τ, x) = ∑

k∈Z âk (τ )eikx and u(s) =∑
k∈Z ûkeiks. The intracavity power P of the field a at time

τ is given by

P =
∑
k∈Z

|âk (τ )|2 = 1

2π

∫ 2π

0
|a(τ, x)|2 dx.

Since the Fourier modes of a and u are related by âk (τ ) =
ûke−ikωτ one finds P = ∑

k∈Z |ûk|2 = 1
2π

∫ 2π

0 |u(s)|2 ds. In
particular, P is independent2 of the time, and since∫ 2π

0 |u|2 ds = Re
∫ 2π

0 ( f0 + f1eik1s)ū ds we see that P � f 2 :=
f 2
0 + f 2

1 , i.e., the intracavity power cannot exceed the nor-
malized total input power. Details are given at the end of
Appendix A. Here, the notation z̄ denotes the complex con-
jugate of the complex number z ∈ C.

III. FINDING LOCALIZED SOLITONS IN THE CASE
OF PUMPING TWO ADJACENT MODES

In the following section, we explain the main idea for
finding strongly localized solutions of (2), where two adjacent
modes are pumped, i.e., the pumped modes are k0 = 0 and
k1 = 1. The parameters d > 0, k1 = 1, f0, and f1 are fixed,
and our goal is to find optimally localized solutions by varying
the parameters ζ0 and ω since they can be influenced by
the choice of the pump frequencies ωp0 and ωp1 through the
relations

ζ0 = 2

κ
(ω0 − ωp0 ), ω = 2

κ
[ω0 − ωp0 − (

ω1 − ωp1

) + d2].

Optimality is understood as minimality with respect to the
full width at half maximum (FWHM) of the field distribution
|u|2 in the time domain. We have used the MATLAB package
pde2path (cf. [28,29]), which has been designed to numer-
ically treat continuation and bifurcation in boundary value
problems for systems of partial differential equation (PDE).3

In short, our algorithm is as follows. We initialize by de-
termining a single-peak solution for the correct value of the
parameter f1 (ignoring the values of the parameters ζ0 and
ω). Then we alternately run an optimization algorithm with

2In fact, the power |ûk |2 = |âk (τ )|2 in each mode is independent of
time.

3Continuation and bifurcation solvers for boundary value problems
(on which pde2path is based) allow one to globally study the variety
of different stationary comb states by exploiting the full range of
technically available parameters. In contrast, time-integration solvers
mostly only allow one to access specific comb states which strongly
depend on the chosen device parameters and initial conditions.
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FIG. 1. Every column corresponds to a different choice of d , f , and f1. Upper panel [(a)–(c)]: spectral power distributions of the solitons
(two ζ0 steps leading to A1, A2 and two ω steps leading to B1, B2). Comb lines of A2, B2 do not differ significantly. Lower panel [(d)–(f)]:
stability plots for B3 obtained from the third ω step. B3 is spectrally stable since the eigenvalues of the linearized operator L (green) lie to the
left of the imaginary axis (black dashed line). An eigenvalue close to zero occurs since the solitons are found near turning points of the ζ0

branches.

respect to either the ζ0 or the ω parameter (while keeping the
other parameter fixed) until we detect a soliton u with minimal
FWHM of |u|2 in time domain. We stop the algorithm when
the relative change of the FWHM between two consecutive
solitons is sufficiently small. In our numerical experiments at
most three optimizations in both of the variables ζ0 and ω were
sufficient to obtain a relative change in FWHM below 10−7.

In Figs. 1(a)–1(c) we plotted the spectral power distribu-
tions of the iterated solitons A1, B1, A2, B2 for three different
choices of the parameters d , f , and f1 (Aj , Bj are the result of
the jth optimization in ζ0, ω, respectively). It is well visible
that the combs get broader after every optimization step. It
takes at least one optimization step in ζ0 and ω so that the
solitons position themselves near intensity maxima of the
pump. This can be seen also in Fig. 4. The second row of Fig. 1
contains information on the spectral stability of the optimized
solitons. This will be explained next.

Stability of optimal solitons. To investigate the stability of
the solitons, we use the transformation a(τ, x) = b(τ, x − ωτ )
and decompose b = b1 + ib2 into real and imaginary parts to
rewrite (1) as

∂b1

∂τ
= −db′′

2 + ωb′
1 − b1 + ζ0b2 − (

b2
1 + b2

2

)
b2

+ f0 + f1 cos(k1s),

∂b2

∂τ
= db′′

1 + ωb′
2 − b2 − ζ0b1 + (

b2
1 + b2

2

)
b1 + f1 sin(k1s),

(3)

where b is again 2π periodic in s. Solutions u of (2)
correspond to stationary solutions b(τ, s) = u(s) of (3).
Spectral stability is based on the following considerations.
Let b(τ, s) ≈ u(s) + [φ(s) + iψ (s)]eλτ with 2π -periodic real-
valued functions φ,ψ , and insert this ansatz into (3). After
keeping only the linear terms in φ and ψ , we find that φ,ψ

have to satisfy the eigenvalue equation

L

(
φ

ψ

)
= λ

(
φ

ψ

)
,

with the linearized operator

L =
(

ω d
ds − 1 − 2u1u2 −d d2

ds2 + ζ0 − u2
1 − 3u2

2

d d2

ds2 − ζ0 + 3u2
1 + u2

2 ω d
ds − 1 + 2u1u2

)
.

We see that the perturbation [φ(s) + iψ (s)]eλτ will tend to
zero if and only if the eigenvalues λ of L lie in the left com-
plex plane. Using this criterion, we found that the optimized
solitons (optimized with respect to ζ0 and ω by the above
algorithm) discussed in this section are all spectrally stable. To
show this, we computed the eigenvalues of the finite-element
discretization of the operator L and observed that they entirely
belong to the left complex plane; cf. Figs. 1(d) and 1(e). One
sees that there is always an eigenvalue very close to zero.
The reason for this is the following. The solitons with optimal
FWHM are found near turning points along branches of the ζ0

continuation. These turning points are necessarily associated
with a zero eigenvalue of the linearized operator L. Hence,
for u being in the vicinity of a turning point, there will be an
eigenvalue of L very close to zero.
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FIG. 2. Power conversion efficiency, comb bandwidth, and full width at half maximum as a function of ϕ for three different examples. The
blue curves correspond to d = 0.1 and f = 2 and the red ones to d = 0.25 and f = 2, as well as the green ones to d = 0.1 and f = 5.

IV. OPTIMAL POWER DISTRIBUTION WHEN PUMPING
TWO ADJACENT MODES

In this section we answer the question of which amount of
the normalized total input power f 2 = f 2

0 + f 2
1 needs to be

pumped into each mode in order to obtain the best soliton,
i.e., we determine the optimal power distribution between
the two pumped modes. The power distribution is described
as ( f0, f1) = ( f cos ϕ, f sin ϕ) with ϕ ∈ [0, 2π ). As before,
we assume anomalous dispersion d > 0 and fix the indices
k0 = 0 and k1 = 1 of the two pumped modes. Additionally,
the normalized total input power f 2 is given. Armed with the
algorithm from Sec. III we are able to identify for any fixed
ϕ ∈ [0, 2π ) a 1-soliton with the strongest spatial localization,
i.e., with minimal FWHM.

Using this approach, we calculate for each such comb state
u(s) = ∑

k∈Z ûkeiks the power conversion efficiency (PCE),
the comb bandwidth (CBW), and its FWHM. The PCE is
defined as the ratio PFC/ f 2 between intracavity comb power

PFC =
∑

k∈Z\{0,1}
|ûk|2 + f 2

1

f 2
|û0|2 + f 2

0

f 2
|û1|2

=
∑

k∈Z\{0,1}
|ûk|2 + sin2(ϕ)|û0|2 + cos2(ϕ)|û1|2

and the normalized total input power. Note that the intracavity
comb power is a weighted sum over the power in each mode.
The weights f 2

j / f 2, j = 0, 1 of the power of the zero mode
and the first mode are such that f1 = 0 or f0 = 0 lead to the
usual definition of PCE and f0 → ∞ or f1 → ∞ lead to an
exclusion of the power contributed by the zero or first mode,
respectively. The CBW is defined via the 3 dB points, i.e.,

CBW = k∗
l + k∗

r ,

with minimal integers k∗
l > 0 and k∗

r > 0 which fulfill∣∣û−k∗
l

∣∣2 � 1

2
|û−1|2,

∣∣û1+k∗
r

∣∣2 � 1

2
|û2|2,

respectively. Note that the 3 dB comb bandwidth is defined
with respect to the power |û−1|2 and |û2|2 of the modes di-
rectly adjacent to the pumped modes rather than the power
|û0|2 and |û1|2 of the pumped modes themselves.

To find the optimal power distribution between the zero
mode and the first mode we performed a parameter study in

ϕ for three different examples; cf. Fig. 2. In the first example
we chose d = 0.1 and f = 2 and in the second example we
kept f = 2 but changed the dispersion to d = 0.25, while in
the last example we kept d = 0.1 and changed the forcing to
f = 5. For these three examples we computed the most lo-
calized 1-soliton for ϕ ∈ [0, 2π ) based on the algorithm of
Sec. III and evaluated the PCE and the CBW as well as the
FWHM of the resulting comb state.

The results depicted in Fig. 2 clearly demonstrate the
advantages of dual-tone pumping, in particular when using
equal power in both modes. In all of the examples PCE
and CBW increase while the FWHM decreases with ϕ ∈
[0, π/4]. Moreover, as we will explain at the end of this
section, PCE, CBW, and FWHM are π/2 periodic and sym-
metric with respect to π/4. We conclude that (i) pumping two
modes is advantageous to pumping only one mode, (ii) PCE,
CBW, and FWHM are monotonic functions of | f0| + | f1| =
| f |(| cos ϕ| + | sin ϕ|), and (iii) the optimal case arises for
equal pump powers | f0| = | f1|.

In Figs. 3(a) and 3(b) we plotted the optimal values of
ζ0 and ω (for which the most localized soliton was found)
against ϕ. Since k1 = 1 we have ω = 	ζ + d so that the
optimal value of ω can be easily translated into an optimal
value of 	ζ . We added in Fig. 3(c) a plot of the optimal value
of 	ζ against ϕ since the normalized detuning difference
	ζ = ζ0 − ζ1 is the physically more tangible quantity, while
from a mathematical point of view it is more convenient to
work with ω. In all of the examples the optimal values of ζ0,
ω, and 	ζ increase with ϕ ∈ (0, π/4]. Once again we observe
several symmetries, which we will address in the end of this
section. We further conclude that (iv) the optimal value of ζ0 is
almost independent of d , (v) the optimal value of ω is almost
independent of f , and (vi) the optimal value of ω coincides
with the dispersion d in the case of optimal power distribution
| f0| = | f1|.

As ω = 	ζ + d , (vi) means 	ζ = 0, i.e., optimal solitons
require equal detuning distances ω0 − ωp0 = ω1 − ωp1 in the
case of equal power distribution | f0| = | f1|. From Fig. 3(c)
we further find that the optimal values for ζ0 and ζ1 satisfy the
relation | f0| > | f1| ⇔ ζ0 < ζ1, i.e., pumping more power into
one mode is compensated by a larger detuning for the second
mode.

For each of the three examples from Figs. 2 and 3 we added
in Fig. 4 plots of the spatial and spectral power distributions
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FIG. 3. Optimal values of ζ0, ω, and 	ζ as a function of ϕ for three different examples. The blue curves correspond to d = 0.1 and f = 2
and the red ones to d = 0.25 and f = 2, as well as the green ones to d = 0.1 and f = 5. The blue and the red curves in (a) as well as the
blue and the green curves in (b) and (c) are plotted dashed so that one of the curves is not completely covered by the other one. The dashed
lines colored in magenta in (b) emphasize that the optimal value of ω coincides with the dispersion d in the optimal case | f0| = | f1|, where
ϕ ∈ {π/4, 3π/4, 5π/4, 7π/4}. The dashed lines colored in magenta in (c) emphasize that the optimal value of 	ζ vanishes in the optimal
case | f0| = | f1|, where ϕ ∈ {π/4, 3π/4, 5π/4, 7π/4}.
of the optimal solitons for selected values of ϕ ∈ [0, π/4]. In
this range for ϕ we have f0, f1 � 0. The particular values of
ϕ are chosen as f 2

0 = 100% f 2 (one mode case), f 2
0 = 90% f 2

(slight perturbation of the one mode case), and f 2
0 = 50% f 2

(optimal two mode case). We have chosen a logarithmic scale
for the spatial power distribution to highlight the noncon-
stant background of the solitons. Since for f1 > 0 there is
no shift invariance in (2) anymore all of the depicted solitons
are localized around s = 0, which is the unique point in the
interval [0, 2π ), where the absolute value of the pump power
is maximal, i.e., f 2 + 2 f0 f1 = maxs∈[0,2π ) |i f0 + i f1eis|2. In

other words, the best soliton positions its maximum at the
point where the pump has maximal power and its background
follows qualitatively the shape of the pump.

In the time domain, with only one pumped mode, the pump
power is constant and so is the background. In contrast, with
a second pumped mode, the pump profile becomes sinusoidal
with a peak at s = 0, and in particular the peak pump power is
higher than the pump power in the one mode case (provided
we keep the same total input power). Physically, only the
fraction of the pump that overlaps temporally with the soliton
pulse can effectively power the soliton. We observe that the

FIG. 4. Spatial and spectral power distributions of optimal solitons for selected values of ϕ ∈ [0, π/4], which correspond to f 2
0 = 100% f 2

and f 2
0 = 90% f 2, as well as f 2

0 = 50% f 2 for three different examples. Every column corresponds to one example. The logarithmic scale in
[(a)–(c)] was chosen to highlight the nonconstant background of the solitons.
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generated optimized soliton makes use of the sinusoidal peak
pump power profile and positions itself at s = 0 where the
pump power is maximal, which leads to an improved pump
to soliton-pulse power conversion efficiency [30,31]. As ex-
pected, the peak power of the soliton is then also improved
compared to the one mode case. But apparently, this is not the
case for the background and the quantitative relation between
soliton background and pump shape is more subtle. Finally,
for fixed total input power f 2 = f 2

0 + f 2
1 , the peak power of

the pump f 2 + 2 f0 f1 is maximal for f0 = f1 = f /
√

2, i.e.,
it is attained when the power distribution between the two
pumped modes is equal. This leads to the optimal pump to
soliton power conversion efficiency. Let us point out that
our findings on the position of the optimized solitons are in
contrast to [30,32]. In [30] the authors explain that the solitons
position themselves off the peak of the driving field and how
this is influenced by detuning of the pumping rate, the nor-
malized pump-cavity detuning, the pumping field profile, and
additionally by taking the Raman effect into consideration.
In [32] a similar effect is described in dependency on the
driving field peak amplitude and pump-cavity detuning. The
major difference is that in our case the detuning variables
ζ0, ζ1 and thus ζ0, ω as well as the distribution of input power
between the two modes are completely free and subject to the
optimization, whereas in [30,32] optimization with respect to
these degrees of freedom was not part of the investigation.

Finally, we explain the symmetry properties of Figs. 2 and
3 from the symmetries of (2). If u solves (2) then u(· + π )
solves (2) with f1 replaced by − f1 and −u(· + π ) solves (2)
with f0 replaced by − f0. This means that the signs of f0 and f1

are not relevant for the curves in Figs. 2 and 3. The symmetry
with respect to π/4 of the curves in Fig. 2 stems from the
interchangeability of f0 and f1. Namely, if u solves (2) with
given values of ζ0, ω then v(s) := u(−s)eis solves

−dv′′ + iω̃v′−(i − ζ1)v − |v|2v + i f1 + i f0eis = 0,

with ζ1 = ζ0 − ω + d and ω̃ = 2d − ω. Note that the roles of
f0 and f1 are now interchanged. The fact that ζ0 and ω have
changed to ζ1 and ω̃ is not relevant since we optimize anyway
in these parameters. Together with (vi) this also explains that
the curves in Figs. 3(b) and 3(c) are odd with respect to the
points (π/4, d ) and (π/4, 0), respectively. We also mention
that the curves in Fig. 3(a) are not symmetric with respect

to π/4 but this is not visible in the plot since the difference
	ζ = ζ0 − ζ1 = ω − d is small compared to ζ0 and ζ1.

V. TRENDS FOR VARYING FORCING
AND VARYING DISPERSION

For the results in this section we have carried out a param-
eter study with respect to dispersion d and normalized pump
amplitude f , considering the behavior of PCE, CBW, and
FWHM of the best solitons (i.e., minimal FWHM) under opti-
mal power distribution f0 = f1 = f /

√
2. As before, we have

fixed the two pumped modes to k0 = 0 and k1 = 1. We have
considered dispersion parameters d = 0.1, 0.15, 0.2, 0.25 and
normalized total pump amplitude f ∈ (0, 10]. From Sec. IV
we know that under optimal power distribution the solitons
with minimal FWHM arise for ω = d . Using this information
we can reduce the algorithm of Sec. III to a single optimiza-
tion step in ζ0. Since f0 = f1 we see that now PCE is the ratio
between

PFC =
∑

k∈Z\{0,1}
|ûk|2 + 1

2
|û0|2 + 1

2
|û1|2

and the total pump power f 2.
The results are shown in Fig. 5. We observe the following

trends: CBW increases, whereas FWHM and PCE decrease
with increasing forcing f . Additionally, one can see that with
d → 0+ once again CBW increases and FWHM and PCE
decrease. These observations are in good agreement with the
trends from the one mode case; cf. [20]. Further, one can ob-
serve in Fig. 5(c) that FWHM tends to π as f → 0+. This can
be understood as follows: as f → 0+ the solutions of (2) tend
to zero and behave like the solutions of the linear equation

−du′′ + iωu′ − (i − ζ0,opt)u + i f0 + i f1eis = 0.

Since d = ω for optimal solitons under optimal power distri-
bution f0 = f1 = f /

√
2 the above linear equation is solved

by

u(s) = i f√
2(i − ζ0,opt)

(1 + eis)

FIG. 5. Power conversion efficiency, comb bandwidth, and full width at half maximum as a function of the forcing f and dispersion
d = 0.1, 0.15, 0.2, 0.25.
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FIG. 6. Spatial and spectral power distributions of the optimal 1-solitons from the case d = 0.1 and f0 = f1 = √
2 for k1 = 2, 3, 4. Plot

(b) is a zoom of plot (a), which highlights the background of the solitons.

and the latter has a FWHM of π . Similarly, in agreement with
Fig. 5(a), we have

PCE(u) → 1

2
(
1 + ζ 2

0,∗
) � 1

2

as f → 0+, where we assume ζ0,∗ = lim f →0+ ζ0,opt.
Finally we mention that the jumps of size two in Fig. 5(b)

could be caused by our choice of the discretization of the f
interval (0,10]. It is possible that a finer discretization would
lead to more plausible jumps of size one. Nevertheless, the
finer discretization, which leads to significantly longer run
times of the code, has no essential effect on the trends of the
curves.

VI. 1-SOLITONS OBTAINED FROM PUMPING TWO
ARBITRARILY DISTANCED MODES IN a PURELY

SECOND-ORDER DISPERSION CASE

For large distances between the two pumped modes, we
would need to take into account higher-order dispersion.
Higher-order dispersion effects together with pumping modes
from different mode families were considered in [33]. In the
following considerations, however, we restrict to second-order
dispersion and to modes coming from the same mode family.
In the case where the pumped modes are k0 = 0 and k1 � 2
we have a heuristic algorithm which enables us to identify a
1-soliton with the strongest spatial localization. The algorithm
is based on a variant of the one from the case k1 = 1, cf.
Sec. III, and details can be found in Appendix B. Applying
this algorithm our experiments suggest that the optimal power
distribution is again given by the equal distribution | f0| = | f1|
as in the case k1 = 1. Moreover, for equal power distribution,
ω = k1d turns out to be optimal, which once again translates
into equal detuning offsets 	ζ = 0. In Fig. 6(a) we plotted
the spatial power distributions of the optimal 1-solitons from
the case d = 0.1 and f0 = f1 = √

2 for k1 = 2, 3, 4. One can
observe that the optimal 1-soliton gets less localized as k1

increases. In Fig. 6(b) we added a zoom in to better point out
the background of the solitons. Since with u also u(· + 2π/k1)
is a solution of (2) optimal 1-solitons can be shifted by multi-
ples of 2π/k1. We see that the 1-soliton localizes once again
around one of the points where the absolute value of the pump
term i f0 + i f1eik1s is maximized. In Fig. 6(c) we added the
spectral power distributions of the optimal 1-solitons. Nec-

essarily each comb is peaked at the pumped modes k0 = 0
and k1.

VII. SUMMARY

We have considered pumping two different modes for a
Kerr nonlinear microresonator with anomalous dispersion.
Using numerical path continuation and optimization methods
we found and tested an algorithm which allows one to find
for fixed normalized total pump power the optimal detuning
offsets that provide the most localized 1-soliton. The algo-
rithm applies in its simple form to the case of pumping two
adjacent modes and in a more refined form (taking bifurca-
tions into account) also to the case of pumping two arbitrarily
distanced modes. Optimal 1-solitons appear to be spectrally
stable and localize themselves around the intensity maxima
of the pump. While it became clear that pumping two modes
is always advantageous to pumping one mode, in the case
of pumping two adjacent modes we went deeper into the
question of how the normalized total input power should be
divided into the two pumped modes in order to optimize qual-
ity metrics like PCE, CBW, and FWHM. A detailed parameter
study shows that the optimal distribution is always the equal
distribution | f0| = | f1| = | f |/√2 with equal detuning offsets.
The situation appears to be similar in the case of pumping two
arbitrarily distanced modes. Our approach has thus validated
the assumptions in [10]. Finally, we determined trends of
PCE, CBW, and FWHM by varying anomalous dispersion
and normalized total input power. The trends are in good
agreement with the case of pumping only one mode; cf. [20].
Our approach is well suited to determining and analyzing
optimal pumping schemes in the case where more than two
modes are pumped.
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APPENDIX A: DERIVATION OF THE LUGIATO-LEFEVER
MODEL FOR A DUAL-PUMPED RING RESONATOR

In this section we derive (1) from a system of coupled-
mode equations; cf. [16,34]. When a resonant cavity is
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pumped by two continuous wave lasers with frequencies ωp0

and ωp1 a system of nonlinear coupled-mode equations can
be used to describe the evolution of the field inside the cavity.
The numbering k of the resonant modes in the cavity is relative
to the mode k0 = 0. We use the cold cavity dispersion rela-
tion ωk = ω0 + d1k + d2k2 for the resonant frequencies ωk ,
where d1 corresponds to the FSR of the resonator and 2d2

to the difference between two neighboring FSRs at
the center frequency ω0. With k̃0, k̃1 ∈ Z, k̃0 < k̃1, we denote
the two pumped modes. If Âk is the mode amplitude of the
kth resonant mode normalized such that |Âk|2 is the number
of quanta in the kth mode, then the simplified set of equa-
tions reads as follows; cf. [16,34]:

∂Âk

∂t
= − κ

2
Âk +

1∑
j=0

δkk̃ j

√
κexts je

−i(ωp j −ωk̃ j
)t

eiφ j

+ ig
∑

k′+k′′−k′′′=k

Âk′ Âk′′ ¯̂Ak′′′e−i(ωk′ +ωk′′−ωk′′′ −ωk )t . (A1)

Here, κ = κ0 + κext denotes the cavity decay rate as a sum of
intrinsic decay rate κ0 and coupling rate to the waveguide κext

and φ0, φ1 are the initial phases of the pumps. If Pin,0, Pin,1

are the powers of the two input lasers, then s j = √
Pin, j/h̄ωk̃ j

,
j = 0, 1 are the powers coupled to the cavity. The nonlinear
coupling coefficient

g = h̄ω2
0cn2

n2
0Veff

denotes a per photon frequency shift of the cavity due to the
Kerr nonlinearity and thus describes the strength of the cubic
nonlinearity of the system with linear refractive index n0,
nonlinear refractive index n2, and effective cavity nonlinear
volume Veff. Finally, c is the vacuum speed of light and h̄ is
the Planck constant.

By using the transformation

ã(τ, x) :=
√

2g

κ

∑
k∈Z

Âk

(
2

κ
τ

)
e−idk2τ eikx,

the system (A1) of coupled-mode equations may be rewritten
in a dimensionless way as a partial differential equation,

i
∂ ã

∂τ
= −dã′′ − iã − |ã|2ã + i

1∑
j=0

f je
i(̃k j x−ν̃ jτ+φ j ),

ã 2π periodic in x, (A2)

where τ = κt/2, d = 2d2/κ , and ζ j = 2(ωk̃ j
− ωp j )/κ , ν̃ j =

dk̃2
j − ζ j , η = κext/κ , f j =

√
8ηg/κ2s j for j = 0, 1. By set-

ting

a(τ, x) := e−i[̃k0(x+2dk̃0τ−ψ )−ν̃0τ+φ0]ã(τ, x + 2dk̃0τ − ψ ),

with ψ = (φ1 − φ0)/k1, we find that a satisfies (1) with k1 =
k̃1 − k̃0, 	ζ = ζ0 − ζ1, and ν1 = ν̃1 − ν̃0 − 2dk̃0k1 = 	ζ +
dk2

1 . Thus we can always assume, for simplicity, that the
pumped modes are k0 = 0 and k1 ∈ N and that the initial
phase of both pumps is zero. Moreover, we see that the change
from ã to a shifts the time-dependent Fourier coefficients from
Âk to Âk+k̃0

and multiplies them with e−i(ζ0τ+φ0+kψ ) so that

the power in each individual mode is (up to an index shift)
preserved.

Finally, let us explain that the intracavity power P =∑
k∈Z |ûk|2 = 1

2π

∫ 2π

0 |u(s)|2 ds of a 2π -periodic traveling-
wave comb state u cannot exceed the normalized total input
power f 2 = f 2

0 + f 2
1 . To see this, we multiply the equation (2)

for the traveling-wave profile u with ū(s) and take the imagi-
nary part to obtain

− d Im[u′′(s)ū(s)] + ω Re[u′(s)ū(s)] − |u(s)|2

+ Re[( f0 + f1eik1s)ū(s)] = 0.

Integration over the interval [0, 2π ], using integration by
parts for the first term and d

ds |u(s)|2 = 2 Re[u′(s)ū(s)] for the
second term together with the Cauchy-Schwarz inequality,
yields∫ 2π

0
|u(s)|2 ds =

∫ 2π

0
Re

[(
f0 + f1eik1s

)
ū(s)

]
ds

�
(∫ 2π

0
|u(s)|2 ds

)1/2√
2π

(
f 2
0 + f 2

1

)1/2

and hence 1
2π

∫ 2π

0 |u(s)|2 ds � f 2
0 + f 2

1 .

APPENDIX B: FINDING LOCALIZED SOLITONS
IN THE CASE OF PUMPING TWO

ARBITRARILY DISTANCED MODES

By considering additional bifurcations we will demonstrate
how the optimization algorithm from Sec. III can be adapted
to arbitrary values of k1 � 2. A first observation is that the
very same algorithm as used in Sec. III would lead to solitons
which are not only 2π but in fact 2π/k1 periodic, i.e., the algo-
rithm detects no 1-solitons. This is essentially due to the fact
that starting from a constant solution any kind of parameter
continuation will develop solutions that have the shape of the
pump.

However, in contrast to the case k1 = 1, we also detect
bifurcations this time. The idea of the adapted algorithm is
to switch in every ζ0-optimization step to a bifurcating branch
containing 1-solitons. For d = 0.1, f = 2, and f 2

1 = 25% f 2,
this is illustrated in Figs. 7(a) and 7(d) for k1 = 2, 3. The
gray branch is the new additional branch bifurcating from
the first continued (blue) branch in ζ0 and A1 indicates the
optimal point with the minimal FWHM on that branch. The
point A1 is then used as the starting point for the subsequent ω

optimization and from here on we can once again iterate the
whole process.

The mentioned bifurcations turn out to be not of a simple
nature in general. For example, if k1 is odd, pde2path detects
no bifurcations at all (which may be due to an even number
of eigenvalues crossing zero simultaneously). However, we
can easily overcome this issue by using an interpolation trick
for branch switching. For that, we consider a ζ0 value near a
turning point, where we find two distinct solutions (named
X and Y ) for one and the same value of ζ0. In Fig. 7(a)
we used ζ0 = 3.3 and in Fig. 7(d) we used ζ0 = 3.1 for this
purpose and marked the mentioned solutions in red and green,
respectively. Figures 7(b) and 7(e) show the spatial power
distributions of X and Y . It turns out that a 1-soliton-like
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FIG. 7. Example for d = 0.1, f = 2, and f 2
1 = 25% f 2. First column: branches show intracavity power ‖u‖2

2 = 1
2π

∫ 2π

0 |u(s)|2 ds of the
soliton u plotted vs ζ0. Blue branch as achieved by first ζ0 optimization and gray branch obtained from first bifurcation from blue branch. A1

indicates the optimal point with minimal FWHM. Second and third column: spatial power distribution of solutions used for branch switching.
Plots [(a)–(c)] correspond to the case k1 = 2, while plots [(d)–(f)] correspond to k1 = 3.

state, which is not 2π/k1 periodic anymore, can be glued
together from parts of these solutions. The resulting soliton
Z is marked in blue in Figs. 7(a) and 7(d) and its spatial power
distribution is given in Figs. 7(c) and 7(f). The interpolated

soliton serves as the starting point for another ζ0 optimization
yielding the gray branch, which actually is a branch which
bifurcates from the original curve and connects two of its
turning points.
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