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Exponentially enhanced gravitationally induced entanglement between quantum systems
with a two-phonon drive
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Finding a feasible protocol for probing the quantum nature of gravity has been attracting an increasing
amount of attention. We propose a protocol to enhance the detection of gravitationally induced entanglement
by exploiting the two-phonon drive in a hybrid quantum setup. We consider the setup consisting of a test
particle in a double-well potential, a qubit, and a quantum mediator. There is gravitational interaction between
the test particle (TP) and the mediator, and a spin-phonon coupling between the mediator and the qubit. By
introducing a two-phonon drive, the entanglement between the TP and the qubit are significantly enhanced and
the entanglement generation rate is remarkably increased compared with the case without the two-phonon drive.
Moreover, the entanglement between the TP and the qubit can be partially preserved in the presence of dephasing
by the proposed strategy. This work would open a different avenue for experimental detection of the quantum
nature of gravity, which could find applications in quantum information science.
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I. INTRODUCTION

Sixty years ago, physicists gathered to discuss gravity at
the Chapel Hill conference [1]. Feynman proposed a thought
experiment to analyze a profound problem: the incompat-
ibility of general relativity and quantum theory. First, he
considered a mass is prepared in a quantum superposition
of two different locations, A and B. General relativity de-
scribes how an object interacts with the gravitational field:
the mass drops depending on the strength of gravity lo-
cally and also slightly changes the value of the field at A
and B by its presence. Applying both theories means that
the gravitational field must also assume two configurations
at once: corresponding to the case where the mass is at A
or B. In other words, gravity would take on a nonclassi-
cal nature when it interacts with a mass that behaves in a
quantum way.

Although the thought experiment is interesting, one main
difficulty in judging to incompatibility is the lack of exper-
imental evidence. Fortunately, recent advances in the field
of optomechanics have provided the possibility to detect the
quantum nature of gravity [2–10], making the judgment of
the incompatibility feasible. Marletto et al . [11] proposed
an interference protocol to witness quantum nature of the
gravitational field by detecting it with two masses. The first
mass, being in a quantum superposition of two locations,
produces Schrödinger-cat states on the gravitational field
through gravitational interaction. The second mass (the quan-
tum probe) then interacts with the field and is measured
to reveal the quantum nature of the field. Such a protocol
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requires an extra step than in Feynman’s original thought
experiment. Krisnanda et al . [12] proposed a scheme for
revealing the nonclassicality of the gravitational field char-
acterized by quantum discord. The entanglement generation
between two gravitationally interacting systems signifies the
nonclassicality of the gravitational field between them. This
has motivated experimental proposals to explore the gravity-
induced entanglement [13–19]. In the literature, proposed
schemes typically rely on the direct gravitational interaction
between two heavy masses. Most recently [20], a protocol was
proposed to enhance this gravitational interaction by utilizing
a massive particle as a mediator to induce the interaction be-
tween a two-level test mass (system a) and an ancillary qubit
(system b). The mediator (system c) is weakly coupled to
the test mass through gravitational interaction with a coupling
strength of ga and strongly coupled to the ancillary qubit with
coupling strength gb � ga. At appropriately chosen points in
time, the mediator decorrelates from the system, leaving two
light masses entangled [with the unitary-evolution operator
U (tn) = exp(−igeffσ

z
aσ z

b tn), geff is the effective interaction be-
tween two light masses]. An effective interaction between two
light masses that increases with the mass of the mediator is
achieved, which is independent of its initial state. While this
is a truly remarkable development, the experimental imple-
mentation of such entanglement is still extremely challenging
given the difficulty in achieving quantum control of mechani-
cal degrees of freedom of ever more massive particles [21]. On
the other hand, all physical systems are invariably dissipative
as they inevitably couple to their environment [22–41]. As a
consequence, the macroscopic manifestation of this quantum
effect is extremely fragile and is dramatically reduced due to
the decoherence of the systems. This makes the observation
of such an entanglement challenging. Therefore, developing
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new techniques for detecting the quantum nature of gravity is
highly desirable.

A feasible way may lie in using a squeezing protocol
to realize nonlocal controllable interaction between quantum
systems. In this paper, we theoretically propose a mechanism
to enhance the amount of gravitationally induced entangle-
ment by exploiting the mechanical squeezing in a hybrid
quantum system. The proposed system contains a test particle
(TP) trapped in a double-well potential (DWP) (manifested
as a two-level system), a qubit, and a mechanical oscilla-
tor (mediator). The mediator is weakly coupled to the TP
through gravitational interaction and strongly coupled to the
qubit through a spin-phonon magnetic coupling. The qubit-
mediator coupling strength that does not depend on the mass
of the qubit. Therefore, our scheme has only two masses
[TP (mã) and mediator (mc̃)]. Since the TP-mediator and
qubit-mediator interactions depend linearly on the position
operator of the mediator, we can enhance the interaction by
increasing the spatial extent of the center-of-mass (COM)
wave function using a squeezing protocol. This squeezing is
implemented through the Coulomb interaction between the
charged mediator (with charge Q1) and the charged body (e.g.,
a nearby fixed mirror with charge Q2). The Coulomb inter-
action can be realized experimentally in an optomechanical
system. In experiments [42,43], an ensemble of NV centers
and electric charges can be embedded in a single-crystal di-
amond nanobeam. Alternatively, a charged particle can also
be levitated in a magnetic trap or Paul trap [44–49]. Since
the mechanical excitations (or phonons) occur in pair, this is
also referred to as an effective two-phonon drive. With the
two-phonon drive, the effective interaction between the TP
and the qubit is exponentially enhanced compared with the
case without the two-phonon drive. The protocol differs from
the known proposals that probe for gravitationally induced
entanglement in at least three points: (i) the mediator does
not need a large mass due to the exponential enhancement
of the gravitational interaction; (ii) we need to increase the
two-phonon driving strength only slightly to significantly ac-
celerate the generation of entanglement in certain regions; and
(iii) this entanglement can be partially preserved in presence
of dephasing by the proposed strategy. These advantages bring
experiments on gravity-induced entanglement a step closer to
reality.

The remainder of this paper is organized as follows. In
Sec. II, a physical model is introduced to describe the setup,
and the dynamical equations for the system are derived. In
Sec. III, we study the entanglement between the two quan-
tum systems. Sec. IV devotes to the entanglement analysis
in the presence of decoherence. In Sec. V, we discuss the
experimental feasibility of the protocol. Finally, we conclude
in Sec. VI. In the Appendix, we discuss the validity of the
approximation done in Eq. (7).

II. MODELING AND DYNAMICS

Consider the general situation illustrated in Fig. 1. The
system ã is a TP of mass mã trapped in a DWP along one
spatial direction (e.g., the X direction) and behaves as a two-
level system with frequency ωã,0 and state |A〉 (A = L, R). We
assume that the wells are far and deep enough to make any

Effec�ve two-
phonon drive

MediatorTest par�cle Qubit

FIG. 1. Schematic diagram of the hybrid quantum device for
probing the quantum nature of gravity. A test particle (system ã)
is trapped in a double-well potential (DWP) forming state |A〉 (A =
L, R) and the distance between the two wells is denoted by d0. A
qubit (system b̃) that has transition frequency ωb̃, is coupled to a
mechanical oscillator (system c̃) with magnetic coupling strength χ .
Levels |0〉 and |1〉 correspond to the ground state and the excited state
of the qubit, respectively. The mechanical oscillator is introduced to
mediate the interaction between systems ã and b̃. The equilibrium
position of the mediator is located at a distance d from the center of
the DWP. Xc̃ is the displacement of the mediator from equilibrium.
The mediator is weakly coupled to the TP through gravitational
interaction with energy Vã(Xc̃ ). The direct coupling between systems
ã and b̃ is ignored. To achieve an effective two-phonon drive, the
mediator is coupled to a nearby fixed mirror via the Coulomb inter-
action. See the text for details.

tunneling term negligible, and thus, that states |L〉 and |R〉 are
stationary states of the DWP for the duration of the protocol.
The system b̃ is a two-level atom (qubit) with frequency ωb̃
and state |B〉 (B = 0, 1). Finally, the system c̃ is a mechanical
oscillator (mediator) with mass mc̃ and frequency ωc̃, and
consider its motion in only one spatial direction, e.g., the
X direction. Assuming that the mediator is weakly coupled
to the TP via gravitational interaction with a interaction en-
ergy Vã(Xc̃). To ensure that the gravitational energy dominates
over Casimir forces [50], the separation distance between the
interacting objects needs to be sufficiently large, typically
exceeding significantly the separation d0 of the DWP [20]. We
further take into account the mediator couples to the qubit via
the direct spin-phonon magnetic coupling [51] and interacts
with a nearby fixed mirror through the Coulomb interaction
[44–46,52–59]. The Hamiltonian that describes such a system
reads

H = Hf + Hi + Hco. (1)

Here the free Hamiltonian Hf takes

Hf =
∑

A=L,R

h̄ωã,0|A〉〈A| + h̄ωb̃σ
z
b̃

+ P2
c̃

2mc̃
+ 1

2
mc̃ω

2
c̃ X 2

c̃ , (2)

the interaction Hamiltonian Hi represents the TP-mediator and
qubit-mediator couplings

Hi =
∑

A=L,R

Vã,A(Xc̃)|A〉〈A| + h̄χXc̃σ
z
b̃
, (3)
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and the Coulomb interaction is

Hco = keQ1Q2

|r0 + Xc̃| . (4)

Here ωã,0 = 0 due to the zero-energy splitting of the TP. σ z
b̃

=
|1〉〈1| − |0〉〈0| is the Pauli z operator acting on the system b̃
with the transition frequency ωb̃. Xc̃ and Pc̃ are the position and
momentum operators of the mediator, respectively. The term
Vã(Xc̃) represents the interaction energy between systems c̃
and ã. The coefficient χ is introduced for the qubit-mediator
coupling strength, which is independent of the mass of the
qubit [51]. The direct coupling between systems ã and b̃ is
negligible. In the Coulomb interaction Hamiltonian Hco, ke is
the electrostatic constant. Q1 > 0 is the positive charge on the
charged mediator, and Q2 < 0 is the negative charge on the
charged body. r0 denotes the equilibrium separation between
the charged mediator and the charged body, in absence of any
interaction between them.

By expanding the Newtonian gravitational energy in the
limit ±d0/2 − Xc̃ � d , we obtain [15]

Vã,± = − Gmãmc̃∣∣d ∓ d0
2 + Xc̃

∣∣
= −Gmãmc̃

d

(
1 + d2

0

4d2
± d0

2d

−
(

1 ± d0

d

)
Xc̃

d
+ X 2

c̃

d2
+ · · ·

)
, (5)

where G is the Newton constant and Vã,+ and Vã,− correspond
to Vã,R and Vã,L, respectively. The first two terms in the ex-
pansion produce the static energy shift, the third term gives
the energy splitting of the TP, while the fourth term generates
the displacement of the oscillator equilibrium position and the
linear interaction between the TP and the mediator. Finally,
the fifth term introduces a shift in the oscillation frequency
of the mediator. As the term proportional to (± d0

2 − Xc̃)2 is
already very small under the usual experimental conditions,
we ignore all terms of order O[(± d0

2 − Xc̃)3]. Similarly, in the
case of Xc̃ � r0, Hco can be expanded as [53,54,58]

Hco = −ke|Q1||Q2|
r0

(
1 − Xc̃

r0
+ X 2

c̃

r2
0

+ · · ·
)

, (6)

where we ignore all terms of order O(X 3
c̃ ). The validity of this

approximation is manifested in Sec. V.
Introducing position and momentum operators for

the mediator as Xc̃ = [h̄/(2mc̃ωc̃)]1/2(a† + a) and Pc̃ =
i[h̄mc̃ωc̃/2]1/2(a† − a), the above Hamiltonian of the system
can be rewritten as

H̃ = h̄ωãσ
z
ã + h̄ωb̃σ

z
b̃

+ h̄(ω̃ − 2F )a†a + h̄ε(a + a†)

− h̄F (a†2 + a2) + h̄
(
gãσ

z
ã + gb̃σ

z
b̃

)
(a + a†), (7)

where we defined σ z
ã = |L〉〈L| − |R〉〈R| and the energy

splitting of the system ã is given by ωã = ωã,0 +
Gmãmc̃d0/(2h̄d2). ω̃2 = ω2

c̃ − (2Gmã/d3) is the modified
frequency of the mediator, F = ke|Q1||Q2|/(2mc̃ωc̃r3

0 ) is
the effective two-phonon driving strength, and the fourth
term comes from the linear term proportional to Xc̃ in the
expansion of the gravitational and Coulomb interactions with

ε = (Gmãmc̃/d2 + ke|Q1||Q2|/r2
0 )[1/(2h̄mc̃ωc̃)]1/2. Since

this displacement term does not affect the entanglement
[60], we can safely ignore the linear term in position, which
can be verified by numerical simulations (more details are
given in the Appendix). The TP-mediator and qubit-mediator
coupling strengths are gã = −(Gmãd0/d3)

√
mc̃/(2ω̃h̄) and

gb̃ = χ [h̄/(2mc̃ωc̃)]1/2, respectively. Note that the above
two-phonon drive can also be realized for the case where
the spring constant of the mechanical resonator is modulated
via applying a tunable and time-varying voltage to this
electrode [61–66]. In contrast, this scheme of Coulomb
interaction-enhanced entanglement is much simpler and does
not require additional modulation of the spring constant of
the mechanical oscillator. It is worth mentioning that the
mechanical resonator electrometers usually do not measure
the charge densities in tiny objects (e.g., < 6 nm) [67]. In
Eq. (7), we ignore the zero-point energy from the third term.

To obtain strong TP-mediator and qubit-mediator coupling
strengths, we need to use the mechanical amplification of
mediator. By virtue of a Bogoliubov squeezing transformation
[68] a = cosh(s)as + sinh(s)a†

s , with a squeezing parameter
s = (1/4) ln[ω̃/(ω̃ − 4F )] and a preferred squeezed mechani-
cal mode. Then, we can obtain the Hamiltonian for this hybrid
system in this squeezed frame

Hs = h̄ωãσ
z
ã + h̄ωb̃σ

z
b̃

+ h̄ωsa
†
s as

+ h̄
(
gs

ãσ
z
ã + gs

b̃σ
z
b̃

)
(as + a†

s ). (8)

Here, the third and fifth terms in Eq. (7) are diagonalized by
the squeezing transformation and are simplified to a squeezed
mediator (h̄ωsa†

s as) in Eq. (8) with a transformed mechani-
cal frequency ωs = √

ω̃(ω̃ − 4F ) = (ω̃ − 4F ) exp(2s). In the
context, the local squeezing enhances the coupling strength as

gs
j = g je

s( j = ã, b̃), (9)

where the TP-mediator and qubit-mediator coupling strengths
grow exponentially with the squeezing parameter s. Such an
exponential enhancement of this interaction is one of our most
important results. We notice that the effective squeezed mode
frequency ωs, the squeezing parameter s, and the coupling
strength gs

j are controlled by the modified frequency ω̃ of the
mediator and the two-phonon driving strength F , as shown
in Fig. 2. When ω̃ infinitely approaches 4F , the coupling
strength gs

j is enhanced significantly with respect to the bare
coupling strength g j . We will demonstrate later how the intro-
duction of the squeezing parameter promptly enhances and
accelerates the generation of entanglement between the TP
and the qubit, with the entanglement is highly sensitive to
variations in the squeezing parameter.

In a rotating reference frame defined by U =
exp(−iωãσ

z
ã t − iωb̃σ

z
b̃
t − iωsa†

s ast ), the Hamiltonian (8)
is reduced to

HI (t ) = (
gs

ãσ
z
ã + gs

b̃σ
z
b̃

)
(ase

−iωst + a†
s eiωst ). (10)

Notice that Eq. (10) has a commutation relation at different
times given by

[HI (t ), HI (t ′)] = (
gs

ãσ
z
ã + gs

b̃σ
z
b̃

)2
(eiωs (t ′−t ) − e−iωs (t ′−t ) ),

(11)
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FIG. 2. (a) The squeezing parameter s versus two-phonon driv-
ing strength F . (b) The gravitational interaction strength gs

ã versus
the two-phonon driving strength F . The parameters used are chosen
as gã = 1/48ω̃ and gb̃ = ω̃, as in Ref. [20].

and all higher-order commutation relations vanish. Thus, the
time evolution in the interaction picture is characterized by the
first two orders in the Magnus expansion UI = exp{�1(t ) +
�2(t )} [69], with

�1(t ) = −i
∫ t

0
dt ′H (t ′) = −i

(
gs

ãσ
z
ã + gs

b̃σ
z
b̃

)

×
(

a
e−iωst − 1

−iωs
+ a† eiωst − 1

iωs

)
,

�2(t ) = −1

2

∫ t

0
dt ′

∫ t ′

0
dt ′′[H (t ′), H (t ′′)]

= i
(
gs

ãσ
z
ã + gs

b̃σ
z
b̃

)2
(

t/ωs − sin ωst

ω2
s

)
. (12)

The time evolution of the system is then performed with the
unitary operator

UI = exp
{(

gs
ãσ

z
ã + gs

b̃σ
z
b̃

)
(−asαt + a†

s α
∗
t )

}

× exp

{
−i

2gs
ãgs

b̃

ωs
σ z

ãσ z
b̃

(
t − sin ωst

ωs

)}
, (13)

where we defined αt = [(e−iωst − 1)/ωs]. At times tn =
2πn/ωs that are a natural period of the mediator, then
αt = 0 and the first term vanishes, leaving an effective
interaction between the TP and the qubit with an effective cou-
pling g̃eff = 2gs

ãgs
b̃
/ωs. Then the unitary operator Eq. (13) is

reduced to

UI (tn) = exp
{−ig̃effσ

z
ãσ z

b̃
tn

}
. (14)

Therefore, the mediator will correlate and decorrelate peri-
odically from the rest of the system and the initial mediator
state does not impact the quantum entanglement between the
TP and the qubit. This entanglement can then be detected
by standard approaches making local measurements on the

two-qubit system [70,71]. Note, however, that decoherence
ensuing from damping to the mediator motion during the state
evolution will adversely affect the final detection of the entan-
glement. We will not consider this phonon decoherence in this
work and instead assume that the mechanical decoherence is
negligible over one oscillation period of the mediator [72].

In the following, we will introduce the concept of a
logarithmic negativity EN and clarify that the role of the two-
phonon drive for enhancing and accelerating the generation of
entanglement between the TP and the qubit.

III. ENTANGLEMENT

In this section, we consider that the TP and the
qubit are prepared in the states (|L〉 + |R〉)/

√
2 and (|1〉 +

|0〉)/
√

2, respectively. For the sake of convenience, we
assume that the mediator is initially in a squeezed co-
herent state |ζ 〉 = S(ξ )|α〉 with the squeezing operator
S(ξ ) = exp( 1

2ξ ∗a2
s − 1

2ξa†2
s ) and the squeezing parameter ξ =

s exp(iθ ) (θ = π ). Therefore, the initial state is given by
|ψin〉 = 1

2

∑
A,B |A; in〉ã|B; in〉b̃|ζ ; in〉c̃ (A = L, R; B = 0, 1).

After a time t in the considered system, the evolved state
of the system is given by

|ψout(t )〉 = Uf UI (t )|ψin〉
= 1

2Uf {e[−i(ϕ−�1 )]|R, 0〉|α1, ζ 〉
+ e[−i(ϕ−�2 )]|L, 1〉|α2, ζ 〉 + e[i(ϕ+�3 )]|R, 1〉|α3, ζ 〉
+ e[i(ϕ+�4 )]|L, 0〉|α4, ζ 〉}, (15)

where

Uf = e−i(h̄ωãσ
z
ã +h̄ωb̃σ

z
b̃
+h̄ωsa†

s as )t/h̄,

ϕ = 2gs
ãgs

b̃

ωs

(
t − sin ωst

ωs

)
,

�1 = �2 = Im
[(

gs
ãα

∗
t

)(
gs

b̃α
∗
t

)∗]
,

�3 = �4 = Im
[( − gs

ãα
∗
t

)(
gs

b̃α
∗
t

)∗]
,

α1 = −(
gs

ã + gs
b̃

)
α∗

t , α2 = (
gs

ã + gs
b̃

)
α∗

t ,

α3 = −(
gs

ã − gs
b̃

)
α∗

t , α4 = (
gs

ã − gs
b̃

)
α∗

t . (16)

To quantify the entanglement between the TP and the qubit,
we introduce the positive partial transpose (PPT) criterion
[73,74] and the logarithmic negativity EN [70] as follows. For
a given density operator ρãb̃ of systems ã and b̃, the partial
transposition matrix ρ

Tb̃

ãb̃
of ρãb̃(t ) = Trc̃[|ψout(t )〉〈ψout(t )|] is

given by

ã
〈
A′|b̃〈B′∣∣ρTb̃

ãb̃

∣∣A〉ã|B
〉
b̃
= ã〈A′|b̃〈B|ρãb̃|A〉ã|B′〉b̃ (17)

for a basis {|A〉ã|B〉b̃} of the Hilbert space Hã ⊗ Hb̃ of systems
ã and b̃. Tb̃ denotes the partial transpose with respect to the
subsystem b̃. If ρ

Tb̃

ãb̃
has a negative eigenvalue then the den-

sity matrix ρãb̃ is entangled. This is called the PPT criterion
[73,74]. We obtain an entanglement measure based on the PPT
criterion as

EN = max
(
0, log2

∥∥ρ
Tb̃

ãb̃

∥∥
1

)
, (18)
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where ‖ · ‖1 is the trace norm, which is defined as
‖χ‖1 = Tr

√
χχ†, and EN ∈ [0, 1] with the maximum value

corresponding to maximally entangled states and the mini-
mum value to separable states.

The partial transpose matrix ρ
Tb̃

ãb̃
takes the following form:

1

4

⎛
⎜⎜⎜⎝

1 e[i(2ϕ+�3−�1 )]〈α1, ζ |α3, ζ 〉 e[i(−2ϕ+�1−�4 )]〈α4, ζ |α1, ζ 〉 e[i(�3−�4 )]〈α4, ζ |α3, ζ 〉
∗ 1 e[i(�1−�2 )]〈α2, ζ |α1, ζ 〉 e[i(2ϕ+�3−�2 )]〈α2, ζ |α3, ζ 〉
∗ ∗ 1 e[i(−2ϕ+�2−�4 )]〈α4, ζ |α2, ζ 〉
∗ ∗ ∗ 1

⎞
⎟⎟⎟⎠, (19)

where the ∗s are determined by the Hermiticity of ρ
Tb̃

ãb̃
.

The four rows and four columns are labeled by the
out states |R, 0; out〉, |R, 1; out〉, |L, 0; out〉, |L, 1; out〉 and
〈R, 0; out|, 〈R, 1; out|, 〈L, 0; out|, 〈L, 1; out|, respectively. The
out states

|A; out 〉ã = exp (−iωãσ
z
ã t )|A; in〉ã,

|B; out 〉b̃ = exp
(−iωb̃σ

z
b̃
t
)|B; in〉b̃,

(20)

describe the states of the TP and the qubit at the time t ,
respectively [35]. In the local Hamiltonians h̄ωãσ

z
ã and h̄ωb̃σ

z
b̃

may give other accumulated phases, which are included in
the out states |A; out 〉ã and |B; out 〉b̃. Since such phases are
given by the local unitary evolution, they do not influence the
entanglement between the TP and the qubit, which can be
verified by numerical simulations [see the green solid stars
in Fig. 3(a)].

As shown in Fig. 3(a), we see that the entanglement (red
dashed line) between the TP and the mediator oscillates with
the period of the mediator and disappears completely at times
tn, as predicted by Eq. (13). A similar result was obtained
for the entanglement (orange solid circles) between the qubit
and the mediator. At these times the mediator is decoupled
while the logarithmic negativity between the TP and the qubit
reaches its maximum (blue solid line). The maximum entan-
glement is given by

EN (tn) = max{0, log2[1 + | sin(2g̃efftn)|]}. (21)

For comparison, we numerically solve the logarithmic nega-
tivity between the TP and the qubit by the Hamiltonian (8)
(see the green solid stars). We see that the above result (blue
solid line) is highly consistent with the numerical result. In
Fig. 3(b), we show that the entanglement between the TP and
the qubit can be enhanced via introducing the two-phonon
drive. It can be observed that the amount of generated entan-
glement does not increase monotonically with the squeezing
parameter.

IV. DECOHERENCE

Until now, we implicitly considered the unitary dynamics
imprinting on the quantum systems. However, quantum entan-
glement is fragile in the sense that when the quantum system is
in contact with an environment [23,24,34–36]. In this section,
we consider how the decoherence influences the entanglement
generation between the TP and the qubit. A simple case arises
if the decoherence process is assumed to affect only one sys-
tem, say qubit. We consider the usual situation where the qubit

energy relaxation time is much longer than the dephasing time
[26–29]. Such suppression can be modeled by introducing the
decaying factor as

|1; in 〉b̃〈0; in | → e−γ t |1; out 〉b̃〈0; out |,
|0; in 〉b̃〈1; in | → e−γ t |0; out 〉b̃〈1; out |, (22)

where the decaying term e−γ t fully characterizes the dephas-
ing dynamics of the qubit. In this analysis, the dephasing
rate is treated as a phenomenological parameter. Taking into
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0

0.5

1

0 2 3 4 5 6 7 8 9 10 11
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FIG. 3. Temporal evolution of the entanglement quantified by the
logarithmic negativity EN . (a) The blue solid line denotes the EN
between the TP and the qubit, the red dashed line represents the EN
between the TP and the mediator, and the orange solid circles display
the EN between the qubit and the mediator. The green solid stars
are the numerical results obtained using the Hamiltonian (8), which
is independent of ωã and ωb̃. (b) The evolution of entanglement
between the TP and the qubit at three different squeezing parameter.
We vary δ = ω̃ (s = 0, blue solid circles), 0.5ω̃ (s = 0.1733, red
solid line), and 0.2ω̃ (s = 0.4024, green dash-dotted line). Here the
symbol δ represents the difference between parameters ω̃ and 4F as
δ = ω̃ − 4F . The other system parameters are the same as in Fig. 2.
These curves are plotted in the absence of a decoherence process.
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FIG. 4. The behavior of the EN of systems ã and b̃.
(a) EN versus t at F = 0 (s = 0). The blue dash-dotted line shows
the EN at γ = 0, the thin red dashed line indicates the EN at γ =
0.1ω̃, the black solid line denotes the EN at γ = 0.2ω̃, and the thick
orange dashed line represents the EN at γ = 0.33ω̃. (b) EN versus F
and γ at ωstn = 2π . (c) EN versus gb̃ and γ at ωstn = 2π and δ = ω̃

(s = 0, ωs = ω̃). (d) EN versus gb̃ and γ at ωstn = 2π and δ = 0.5ω̃

(s = 0.1733, ωs = 0.7071ω̃). The other system parameters are the
same as in Fig. 2.

account the dephasing rate, the modified partial transpose
matrix is obtained as follows:

1

4

⎛
⎜⎜⎜⎝

1 ρ1,2 ρ1,3 ρ1,4

ρ∗
1,2 1 ρ2,3 ρ2,4

ρ∗
1,3 ρ∗

2,3 1 ρ3,4

ρ∗
1,4 ρ∗

2,4 ρ∗
3,4 1

⎞
⎟⎟⎟⎠, (23)

whose elements are given by

ρ1,2 = e[i(2ϕ+�3−�1 )−γ t]〈α1, ζ |α3, ζ 〉,
ρ1,3 = e[i(−2ϕ+�1−�4 )]〈α4, ζ |α1, ζ 〉,
ρ1,4 = e[i(�3−�4 )−γ t]〈α4, ζ |α3, ζ 〉,
ρ2,3 = e[i(�1−�2 )−γ t]〈α2, ζ |α1, ζ 〉,
ρ2,4 = e[i(2ϕ+�3−�2 )]〈α2, ζ |α3, ζ 〉,
ρ3,4 = e[i(−2ϕ+�2−�4 )−γ t]〈α4, ζ |α2, ζ 〉. (24)

Similarly, the effect of TP dephasing can also be considered.

At times tn = 2πn/ωs, then α j = 0, � j = 0, and ϕ = 4πngs
ãgs

b̃
ω2

s

( j = 1, 2, 3, 4). Thus, the final state Eq. (23) is reduced to

1

4

⎛
⎜⎜⎜⎝

1 ei2ϕ−γ tn e−i2ϕ e−γ tn

e−i2ϕ−γ tn 1 e−γ tn ei2ϕ

ei2ϕ e−γ tn 1 e−i2ϕ−γ tn

e−γ tn e−i2ϕ ei2ϕ−γ tn 1

⎞
⎟⎟⎟⎠. (25)

In Fig. 4(a), we show the evolution of the entanglement
between the TP and the qubit, but now in the presence of
dephasing rate of the qubit. Without mechanical amplification,
the entanglement between the TP and the qubit is seriously
spoiled by the detrimental decoherence. However, the amount

FIG. 5. (a) EN versus gã and γ at ωstn = 2π , gb̃ = ω̃, and δ = ω̃

(s = 0, ωs = ω̃). (b) EN versus gã and γ at ωstn = 2π , gb̃ = ω̃, and
δ = 0.5ω̃ (s = 0.1733, ωs = 0.7071ω̃). (c) The generation rate ηgb̃

of entanglement between the TP and the qubit at γ = 0.1ω̃, ωstn =
2π , and gã = 1/48ω̃. We vary s = 0 (red solid line) and s = 0.1733
(blue dashed line). The orange solid line represents that the rate of
entanglement generation is zero. (d) EN versus F and gb̃ at ωstn =
2π , γ = 0.1ω̃, and gã = 1/48ω̃. The squeezing parameter satisfies
s ∈ [0, 0.2849].

of generated entanglement can be enhanced to some extent
by increasing the two-phonon driving strength [see Fig. 4(b)].
To amplify the role of the two-phonon drive, we plot the
logarithmic negativity EN between the TP and the qubit in
(γ , gb̃) parameter’s space [see Figs. 4(c) and 4(d)]. We observe
that the entanglement exists only within a certain range of γ .
More importantly, the rate of entanglement generation after
the introduction of the two-phonon drive [see Fig. 4(d)] is
much faster than the rate before the introduction of the two-
phonon drive [see Fig. 4(c)]. Similarly, we plot the logarithmic
negativity EN between the TP and the qubit in (γ , gã) pa-
rameter’s space [see Figs. 5(a) and 5(b)]. It can be seen that
the introduction of the two-phonon drive greatly reduces the
requirement on the mass of the mediator.

To quantify the generation rate of entanglement between
the TP and the qubit, we define the rate of generated entangle-
ment as

ηg j = d (EN )

dg j
( j = ã, b̃). (26)

Figure 5(c) shows ηgb̃
as a function of the coupling strength

gb̃. The orange solid line represents that the generation rate
of entanglement is kept at zero. Above this solid line, the
rate of entanglement generation speeds up and, vice versa,
slows down. Moreover, we need to increase the two-phonon
driving strength only slightly to considerably accelerate the
generation of entanglement in certain regions, which is an-
other major finding of our analysis.

Considering the amount of entanglement between the
TP and the qubit does not increase monotonically with the
squeezing parameter. To this end, we discuss the possibility
of enhancing the amount of entanglement between the TP
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and the qubit by jointly modulating the squeezing parameter
s and the qubit-mediator coupling strength gb̃ [see Fig. 5(d)].
Specifically, when the squeezing parameter is modulated to a
value corresponding to a minimum amount of entanglement,
the amount of entanglement between the TP and the qubit can
be further improved by modulating the coupling strength gb̃.

V. DISCUSSION OF EXPERIMENTAL FEASIBILITY

To examine the feasibility of this proposal in the exper-
iments, we consider a particle of nanodiamond [75] in a
DWP as a TP with radii rã = 70 nm, density ρã = 3.5 × 103

Kg/m3 (mass mã = 5.0286 × 10−18 Kg), and separation d0 =
500 nm. Recently, the trapping and cooling of nanodiamonds
were demonstrated with magnetic traps [76,77]. There are
many types of mechanical oscillators [29,43–49,66,78–82].
For concreteness, we select one of them, where the me-
chanical degree of freedom (mediator) is a charged diamond
particle containing a single nitrogen vacancy (NV) center. The
diamond particle is levitated in a magnetic trap or Paul trap
and cooled down to an internal temperature of 1 K. It pos-
sesses a density of ρc̃ = 3.5 × 103 Kg/m3, radii rc̃ = 1.25 μm
(mass mc̃ = 2.8634 × 10−14 Kg), and an oscillation frequency
ωc̃/2π = 2 KHz (ωc̃ � ω̃) [47]. The equilibrium position of
the mediator is located at a separation distance d = 180 μm
from the center of the DWP. Based on the above parameters,
we find that the gravitational interaction strength is gã =
2.9907 × 10−15 Hz. To magnetically couple a single NV cen-
ter (qubit) to the mediator, the NV spin must be immersed in a
spatially inhomogeneous magnetic field such that the position
of the NV spin in the field is controlled by the position of the
mediator [51]. The possible first-order gradient magnetic field
B′ in the laboratory is about 104 T/m [80]. We can obtain
the magnetic coupling strength between the mediator and
the qubit as gb̃ = γeB′[h̄/(2mc̃ωc̃)]1/2 = 673.4614 Hz, where
γe/2π = 28 GHz/T is the electronic gyromagnetic ratio.

It is worth noting that the decoherence process for the
NV spin should be considered. The single NV spin decoher-
ence in diamond is mainly induced by the coupling of the
surrounding electron or nuclear spins [29,66,81]. With the ad-
vancement of the dynamical decoupling techniques [83–88],
the dephasing time for a single NV center in diamond is
estimated to be 1/γ � 1 ms. We find that the resulting en-
tanglement between TP and qubit vanishes at ωst = 2π and
large decoherence. To generate and enhance the entanglement
between the TP and the qubit, it is necessary to enhance
the effective TP-qubit coupling strength g̃eff. However, until
now this experimental implementation of such gravitationally
mediated entanglement is still a big challenge. Fortunately,
in our proposal, this effective interaction can be dramatically
enhanced by exploiting the two-phonon drive. To introduce
a two-phonon drive, we consider an ultraminiature charged
body can be embedded in a nearby fixed mirror [42,43].
The relevant parameters of the Coulomb interaction can be
chosen as |Q1| = 10−15 C and |Q2| = 27.5 nC [47,55], and
then the two-phonon driving strength F can be estimated via
r0 (∼10−3 m). When ω̃ infinitely approaches 4F , we obtain
a large squeezing parameter s. This leads to the realization
of the strong effective interaction g̃eff. We assume that the
difference between parameters ω̃ and 4F as δ = ω̃ − 4F =

10−8 Hz, the transformed mechanical frequency is given by
ωs = √

ω̃(ω̃ − 4F ) = 0.0112 Hz and the squeezing param-
eter is s = (1/4) ln[ω̃/(ω̃ − 4F )] = 6.9649. Then, we find
that the TP-mediator and qubit-mediator coupling strengths
are gs

ã = 3.1665 × 10−12 Hz and gs
b̃
= 7.1304 × 105 Hz, re-

spectively (g̃eff = 2gs
ãgs

b̃
/ωs = 4.0283 × 10−4 Hz). Based on

the above parameters, our protocol theoretically predicts that
the amount of entanglement between TP and qubit falls
in the range of EN ∈ [0.5224, 0.001] at ωst = 2π and γ ∈
[0, 0.01] Hz. However, this dephasing rate is beyond what can
be attained with the state-of-the-art instruments and requires
further experimental efforts.

On the other hand, the present scheme works for zero
dephasing rate of TP. In realistic scenarios, however, the
disturbance of TP by environmental noise is inevitable. The
electrostatic interaction (if the TP carries a net charge, it will
be subject to a random Coulomb interaction due to fluctuating
electric fields), the magnetic interaction due to fluctuating
magnetic field, and the direct magnetic dipole interaction be-
tween the TP and the qubit are potential sources of noise. It is
fortunate that there are mitigation methodologies for this elec-
tromagnetic interactions [13,89,90]. Moreover, we note that
in the presence of the mechanical amplification, the mechan-
ical noise is also amplified. To eliminate the adverse effect
of amplified mechanical noises, a possible approach is to
use the dissipative squeezing method (see the Supplementary
Material of Ref. [66]), where an additional optical mode is
added to the system for suppressing the mechanical noise.

Finally, we check the validity of the approximation done in
Eq. (6). Note that the COM delocalization of the mechanical
oscillator �x is given by �x � √

h̄/mc̃ω̃ exp(s). Based on
the above parameters, the COM delocalization is 5.7318 ×
10−10 m. At this point, the third term in Eq. (6) is extremely
small, so we can safely ignore all terms of order O(X 3

c̃ ). The
interaction between TP and mediator, dominated by Casimir
force, remains negligible (the minimum distance between
their surfaces is kept above 157 μm [20]).

Although it is extremely challenging to attain the required
experimental parameters, at the least, the present work pro-
vides a different approach for experimental detection of the
quantum nature of gravity.

VI. CONCLUSION

In conclusion, we proposed a mechanism to enhance the
gravity-induced entanglement via the use of two-phonon
drive. The system consists of a test particle (TP), a qubit,
and a quntum mediator. Among the three parts, the TP is cou-
pled to the mediator via a gravitational interaction, while the
qubit is coupled to the mediator through a direct spin-phonon
coupling. A two-phonon drive is introduced via the Coulomb
interaction between the charged mediator and the charged
body. The introduction of the two-phonon drive allows us to
amplify the effective interaction between the TP and the qubit
that grows exponentially with the squeezing parameter. More
interestingly, the generation of entanglement between the TP
and the qubit can be significantly improved and accelerated
compared with the case without the two-phonon drive. Our
protocol can partially recover the entanglement between the
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FIG. 6. Temporal evolution of the degree of the entanglement,
as quantified by the logarithmic negativity EN . Here we assume an
initial state (|L〉 + |R〉)/

√
2 ⊗ (|1〉 + |0〉)/

√
2 ⊗ |α〉, where (|L〉 +

|R〉)/
√

2 is the initial state of the TP, (|1〉 + |0〉)/
√

2 is the initial
state of the qubit, and |α〉 is the initial coherent state of the mediator.
We vary ε = 0 (blue solid line), 0.1ω̃ (red dashed line), and ω̃ (green
solid squares). The parameters used are chosen as gã = 1/48ω̃,
gb̃ = ω̃, and F = 0. These curves are plotted in the absence of a
decoherence process.

TP and the qubit in the presence of dephasing. It is worth not-
ing that the basic mechanism proposed in this paper is generic,
i.e., it is not restricted to the specific case under discussion but
can be extended to other defect centers or solid-state systems
such as germanium-vacancy center, silicon-vacancy center,
and tin-vacancy center in diamond [91–94].
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APPENDIX: VALIDITY OF THE APPROXIMATION DONE
IN THE MAIN TEXT

In this Appendix, we discuss the validity of the approx-
imation done in Eq. (7). In Fig. 6, we numerically plot the
temporal evolution of the degree of the entanglement between
the TP and the qubit by the Hamiltonian (7) and Eq. (18).
Clearly, the displacement term in the Hamiltonian (7) does
not affect the entanglement between the TP and the qubit, as
we expected.

[1] D. Rickles and C. M. DeWitt, The Role of Gravitation
in Physics: Report from the 1957 Chapel Hill Conference
(Max-Planck-Gesellschaft zur Förderung der Wissenschaften,
Berlin, 2011), Chap. 23.

[2] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[3] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak,
M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M.
Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, Quan-
tum ground state and single-phonon control of a mechanical
resonator, Nature (London) 464, 697 (2010).

[4] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser
cooling of a nanomechanical oscillator into its quantum ground
state, Nature (London) 478, 89 (2011).
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