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We study the topological properties of interacting and noninteracting bosons loaded in the orbital angular
momentum states l = 1 in a lattice of rings with alternating distances. At the single-particle level, the two
circulation states within each site lead to two decoupled Su-Schrieffer-Heeger lattices with correlated topological
phases. We characterize the topological configuration of these lattices in terms of the alternating distances, as
well as their single-particle spectrum and topologically protected edge states. Second, we add on-site interactions
for the two-boson case, which lead to the appearance of multiple bound states and edge bound states. We
investigate the doublon bands in terms of a strong-link model and we analyze the resulting subspaces using
perturbation theory in the limit of strong interactions. All analytical results are benchmarked against exact
diagonalization simulations.
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I. INTRODUCTION

A cornerstone idea behind topological insulators is the
bulk-boundary correspondence. It relates the presence of ro-
bust edge states in a system with open boundary conditions
with nontrivial values of topological invariants defined by
the bulk bands. The symmetries and dimensionality of the
noninteracting bulk restrict the possible topological phases
that the system can host [1,2]. However, interacting sys-
tems do not possess a well-defined band structure with an
associated topological invariant. In contrast to the charac-
terization of noninteracting topological phases, a systematic
description of interacting topological phases has yet to be
developed [3].

The simplest case where interactions already play a role
is the two-body problem. Repulsive and attractive interac-
tions can cause the formation of bound pairs of particles
with energies outside the non-interacting energy bands [4,5].
Such composite objects, usually called doublons [6–9], have
very long lifetimes due to the finite energy bandwidth of
the single-particle kinetic energy [10]. Doublons have been
experimentally observed in ultracold atoms [6] and organic
salts [11]. Also, they have been shown to arise in a variety
of systems, including models with long range interactions
[12–15], in superlattices [16], and in spinor gases [17].

Here we study a system of one or two bosons in a
one-dimensional lattice of rings with alternating distances.
This geometry mimics the Su-Schrieffer-Heeger (SSH) model
[18,19], which was initially proposed to describe solitons in
polyacetylene, and was latter revealed as the simplest instance
of a topological insulator. Each local potential has eigenstates
with orbital angular momentum (OAM) l with winding num-
bers ±l . The particles are loaded into the states with l = 1
providing each site of the lattice with two internal states. The
interacting two-particle SSH model was previously studied
for both on-site and nearest-neighbor interactions [15,20–22].
Here, the additional degree of freedom in each site leads to a

richer array of bound states, edge bound states, and strongly
interacting subspaces. Ring potentials can be generated ex-
perimentally with a wide range of techniques (see [23] and
references therein), while the l > 0 states can be excited using
a rotating weak link [24,25], by photon-to-atom OAM transfer
[26,27], or by a temperature quench [28]. Alternatively, the
physics described here can also be observed in the p band of
a conventional optical lattice [29–32].

The rest of the article is organized as follows. In Sec. II,
we introduce the physical system and discuss the coupling
strengths that appear between the different winding numbers.
We analyze the single-particle case in Sec. III, defining a basis
rotation that decouples the system into two SSH chains that
allow for a topological characterization of the system. We
calculate their energy spectra and topologically protected edge
states for different distances. In Sec. IV, we explore the two-
boson case by introducing on-site Hubbard-like interactions
in each site. We analyze the doublon bands in the energy
spectrum in terms of a strong-link model. Additionally, we
derive the effective Hamiltonians for the bound states in the
regime of strong interactions, which lead to effective SSH and
Creutz ladder models. Finally, we present our conclusions in
Sec. V.

II. PHYSICAL SYSTEM

We consider bosons loaded into a one-dimensional lattice
of ring potentials with alternating distances d and d ′. Each
unit cell, m, includes the sites Am and Bm, as depicted in
Fig. 1, where we define the local polar coordinates for each
site, (ρ jm , ϕ jm ) with j = A, B. The ring potential at each site is
formed by a displaced harmonic potential in the radial coor-
dinate, V (ρ jm ) = 1

2 Mω2(ρ jm − ρ0)2, where ω is the frequency
of the radial potential, M the mass of the atoms, and ρ0 the
radius of the ring. All the local potentials are identical, they
have the same frequency ω and radius ρ0. The distances d (′)
are measured from one potential minima to the next, such that
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FIG. 1. Representation of the considered one-dimensional lattice
of rings. Each unit cell consists of two sites, Am and Bm, formed
by identical ring potentials where (ρ jm , ϕ jm ) are the local radial and
azimuthal coordinates at each site. The distance between adjacent
sites alternates between d for consecutive sites within a unit cell and
d ′ for the sites in adjacent unit cells.

the distance that separates the unit cells is D = d + d ′ + 4ρ0

(see Fig. 1).
The eigenstates of an isolated ring potential have well-

defined OAM, l , and winding numbers ν = ±l . These sets
of local eigenstates with different OAM l are well separated
in energy. In a lattice structure, the states of a given manifold
l are only resonant to states of the same manifold. Thus, the
manifolds l are effectively decoupled and one can study them
separately [33,34]. The total field operator for a given OAM
l can be written as a linear combination of the local OAM
eigenstates at each site of the lattice,

�̂l (r) =
Nc∑

m=1

∑
ν=±l

φν
Am

(ρAm , ϕAm )âν
m + φν

Bm
(ρBm , ϕBm )b̂ν

m, (1)

where Nc is the number of unit cells and âν
m and b̂ν

m are the
annihilation operators of the local OAM states | jνm〉, where
j = A, B denotes the site and m labels the unit cell. We con-
sider an integer number of unit cells Nc throughout this work.
The wave functions of each state | jνm〉 are given by

φν
jm (ρ jm , ϕ jm ) = 〈r | jνm〉 = ψ (ρ jm )eiν(ϕ jm −ϕ0 ), (2)

where ψ (ρ jm ) is the radial part of the wave function and
eiν(ϕ jm −ϕ0 ) is the complex phase due to the nonzero OAM,
where ϕ0 indicates an arbitrary phase origin.

The total Hamiltonian that describes the bosonic system is
Ĥl = Ĥ0

l + Ĥint
l , with a single-particle Hamiltonian

Ĥ0
l =

∫
d2r �̂

†
l (r)

[
− h̄2∇2

2M
+ V (r)

]
�̂l (r), (3)

where the potential V (r) is the sum of the truncated harmonic
potentials of each site and an interaction term

Ĥint
l = g

2

∫
d2r �̂

†
l (r)�̂†

l (r)�̂l (r)�̂l (r), (4)

where g is proportional to the s-wave scattering length.
The tunneling processes between OAM states of identical

coplanar rings were thoroughly studied in [33] by analyzing
the mirror symmetries of the single-particle case. The authors
found that there are only three distinct tunneling amplitudes
that govern the dynamics: a J1 term that couples the opposite
circulation states within a single ring, a J2 term that couples
same circulation OAM modes in adjacent rings, and a J3

term that couples opposite circulation modes in adjacent rings.
Complex tunneling amplitudes naturally arise in this system
due to the nonzero OAM for certain geometries. However, for

a lattice of inline rings, one can always choose the origin of
the phase ϕ0 along the lattice direction such that all couplings
are real [33].

In this work, we study the states with OAM l = 1 and
winding numbers ν = ±1, which we will denote by the circu-
lation labels α = ±. The tunneling strengths can be computed
as follows. Consider a two-site lattice populated with the
states l = 1. The total field operator (1) for this system in-
cludes the two circulation states for each ring, left and right.
Thus, the dynamics of the system are well captured by a
four-state model with four eigenvalues {Ei}. The tunneling
amplitudes can then be obtained from the eigenvalues as [35]

J1 = 1
4 (E1 − E2 − E3 + E4),

J2 = 1
4 (−E1 + E2 − E3 + E4),

J3 = 1
4 (−E1 − E2 + E3 + E4).

(5)

Each tunneling amplitude can be obtained for a particular ring
separation d by performing imaginary time evolution of the
single-particle Hamiltonian (3) on the two-ring system to find
the exact eigenstates [35]. The magnitudes of the couplings
|J2| and |J3| decay with the separation d between the two
rings, and while |J3| > |J2| for small values of d , they become
equal for large distances [34]. The coupling |J1|, is approx-
imately one order of magnitude smaller than the other two
couplings for any distance d , so that it can be safely neglected
in our analysis.

For the considered lattice of rings, the relevant tunneling
amplitudes are J2 and J3, which correspond to the intracell
distance d , and J ′

2 and J ′
3, which correspond to the inter-

cell distance d ′ (see Fig. 1). We introduce the total bosonic
field operator (1) in Eq. (3), use the above assumptions, and
use harmonic oscillator units for the distances and energies,
σ = √

h̄/Mω and h̄ω, respectively. Then, one arrives at the
following single-particle Hamiltonian in terms of the creation
and annihilation operators of the local OAM eigenstates:

Ĥ0
l=1= J2

Nc∑
m=1

∑
α=±

âα†
m b̂α

m + J ′
2

Nc−1∑
m=1

∑
α=±

b̂α†
m âα

m+1

+ J3

Nc∑
m=1

∑
α=±

âα†
m b̂−α

m + J ′
3

Nc−1∑
m=1

∑
α=±

b̂α†
m â−α

m+1 +H.c.

(6)

We also consider on-site interactions, so that, introducing the
total bosonic field operator restricted to l = 1 with ν = ±1 (1)
into Eq. (4), one obtains [35]

Ĥint
l=1 = U

2

∑
j=a,b

Nc∑
m=1

[n̂+
jm

(n̂+
jm

− 1) + n̂−
jm

(n̂−
jm

− 1) + 4n̂+
jm

n̂−
jm

],

(7)
where n̂α

jm
= ĵα†

m ĵαm are the number operators for each site
j, unit cell m, and circulation α, and U ≡ g

∫
d2r|ψ (ρ jm )|4

is the interaction strength. Besides the conventional Bose-
Hubbard-like interaction terms for each circulation, there is
an additional cross-circulation term with a greater strength.
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III. SINGLE PARTICLE

A. Band structure

Let us explore the single-particle case. One can obtain
the Hamiltonian in momentum space by considering the
limit Nc → ∞ and expanding the creation and annihilation
operators in the Hamiltonian (6) as a Fourier integral,

ĵαm = 1√
Nc

√
D

2π

∫ π
D

− π
D

dk e−ikxm ĵαk , (8)

where ĵαk = âα
k , b̂α

k , the distance that separates the unit cells is
D = d + d ′ + 4ρ0, and xm is the position of the unit cell m.
Then, the Hamiltonian in Eq. (6) can be written in terms of
the Hamiltonian in k space as

Ĥ0
l=1 =

∮
BZ

�̂
†
k Ĥk�̂kdk, (9)

where �̂
†
k = (â+†

k , â−†
k , b̂+†

k , b̂−†
k ). For our system, the Hamil-

tonian Ĥk reads⎛
⎜⎜⎝

0 0 J2 + J ′
2e−ika J3 + J ′

3e−ika

0 0 J3 + J ′
3e−ika J2 + J ′

2e−ika

J2 + J ′
2eika J3 + J ′

3eika 0 0
J3 + J ′

3eika J2 + J ′
2eika 0 0

⎞
⎟⎟⎠,

(10)

and has the following eigenvalues:

ε1,2 = ±
√

t ′2
a + t2

a + 2t ′
ata cos (ka),

ε3,4 = ±
√

t ′2
s + t2

s + 2t ′
sts cos (ka),

(11)

where

t ′
a = J ′

2 − J ′
3, ta = J2 − J3,

t ′
s = J ′

2 + J ′
3, ts = J2 + J3.

(12)

The system presents two sets of energy bands, ε1,2 and ε3,4,
that are symmetrical with respect to zero energy. The en-
ergy bands ε1 and ε2 tend to degeneracy at zero energy for
large intertrap separations d (′), for which J (′)

2 = J (′)
3 . A direct

topological characterization of the system does not respect
the bulk-boundary correspondence, due to the presence of
a unitary symmetry defined by the exchange of circulations
+ ↔ − in each site, which we will discuss later. In the next
section we perform a basis rotation that leaves the Hamil-
tonian in block diagonal form, allowing for a topological
characterization of the system within each block.

B. Mapping into two decoupled SSH chains

We consider the symmetric (s) and antisymmetric (a) su-
perpositions of the positive and negative circulations in each
site:

|As(a)
m 〉 = 1√

2
(|A+

m〉 +
(−) |A−

m〉),

|Bs(a)
m 〉 = 1√

2
(|B+

m〉 +
(−) |B−

m〉). (13)

In this new basis, the single-particle Hamiltonian in (6) can
be block diagonalized into two decoupled SSH chains. The
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FIG. 2. Couplings t (′)
a and t (′)

s as a function of the separation
distance d (′) between rings for ρ0 = 2.5σ and ρ0 = 5σ , where σ =√

h̄/Mω is the harmonic oscillator length.

symmetric chain is described by the Hamiltonian

Ĥs = ts

Nc∑
m=1

âs†
m b̂s

m + t ′
s

Nc−1∑
m=1

âs†
m+1b̂s

m + H.c., (14)

where âs
m and b̂s

m are the annihilation operators of the symmet-
ric states defined in Eq. (13) and the couplings t (′)

s (12) define
the energy bands ε3,4 of Eq. (11). Similarly, the antisymmetric
chain is described by the Hamiltonian

Ĥa = ta

Nc∑
m=1

âa†
m b̂a

m + t ′
a

Nc−1∑
m=1

âa†
m+1b̂a

m + H.c., (15)

where âa
m and b̂a

m are the annihilation operators of the anti-
symmetric states defined in Eq. (13) and the couplings t (′)

a (12)
define the energy bands ε1,2 of Eq. (11). Thus, each SSH chain
contributes two energy bands to the whole system.

Figure 2 shows the couplings t (′)
a and t (′)

s as a function
of the separation distance between two rings d (′) obtained
numerically using Eqs. (5) and (12). We represent the cases
of two ring radii, ρ0 = 2.5σ and 5σ , where σ = √

h̄/Mω is
the harmonic oscillator length. All couplings decay with the
separation distance, but due to the dependence of t (′)

s and t (′)
a

on the couplings J (′)
2 and J (′)

3 , t (′)
a remains much smaller than

t (′)
s regardless of the ring radius ρ0 and frequency ω.

In the SSH model [36], the topological phase of the sys-
tem is determined by the ratio of the couplings, t/t ′, which
determines the value of the Zak phase in each energy band p,

Zp = i
∮

BZ

〈
up

k

∣∣∂k

∣∣up
k

〉
dk, (16)

where |up
k 〉 are the eigenstates of the bulk Hamiltonian Ĥk

and the integral is computed over the first Brillouin zone. For
t < t ′ the Zak phase is Z1,2 = π and the system is in the topo-
logical phase, while for t > t ′ the Zak phase is Z1,2 = 0 and
the system is in the trivial phase [see Figs. 3(a) and 3(b)]. As
predicted by the bulk-boundary correspondence, the system
with open boundary conditions presents two edge states in
the topological phase that are not present in the trivial phase,
shown in the next section.
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FIG. 3. Phase diagram of the (a) symmetric, Ĥs, and (b) antisym-
metric, Ĥa, chains as a function of the separation distances between
rings, d (′), for ρ0 = 5σ , where σ = √

h̄/Mω is the harmonic oscilla-
tor length. Color represents the ratios (a) ts/t ′

s and (b) ta/t ′
a; the black

line separates the trivial phases with Z1,2 = 0 (warm colors) and
the topological phases with Z1,2 = π (cold colors). The dashed blue
lines and dotted yellow lines bound the nearly dimerized regimes of
the trivial and topological phases, respectively.

One might try to compute the Zak phase using the eigen-
states of the nonrotated Hamiltonian, Eq. (10), which presents
four energy bands and three energy gaps. In that case, the
presence of edge states at each gap would be given by the sum
of the Zak phases of all the bands below that gap. However,
those results do not fulfill the bulk-boundary correspondence,
as they do not correctly predict the presence of edge states.
This is due to the fact that the Hamiltonian presents a unitary
symmetry that exchanges the circulations + ↔ − at each site.
As a result, the Hamiltonian can be block diagonalized such
that each pair of bands arising from each symmetry sector
have independent Zak phases associated with them.

Figure 3 shows the phases of the symmetric, Ĥs, and
antisymmetric, Ĥa, chains as a function of the separation
distances d and d ′ for ρ0 = 5σ . The color represents the ratios
(a) ts/t ′

s and (b) ta/t ′
a, and the solid black lines separate the

trivial (above) and topological (below) phases. We define the
nearly dimerized regimes of the trivial and topological phases
by their lower boundaries at t/t ′ = 10 (dotted blue line) and
upper boundaries at t/t ′ = 0.1 (dashed yellow line), respec-
tively. In the nearly dimerized regime, the SSH model is well
approximated by a set of decoupled dimers that correspond to
the dimerized limit. Both chains are in the topological phase
for d > d ′ and in the trivial phase for d < d ′, but the ratio
t/t ′ varies for the symmetric and antisymmetric chains, as it
is determined by the dependence of the couplings ta, ts on J2

and J3, Eq. (12). Thus, it is subject to their constraints, namely
(i) the couplings decay with the distance d , (ii) J3 > J2 with
J3 ≈ J2 for d � 1, and (iii) J2, J3 > 0, valid for the considered
range of distances.

Decoupled SSH chains also emerge in other physical plat-
forms, such as the polariton micropillar system supporting the
excited photonic modes px and py studied in [37]. The zigzag
configuration of the micropillar structure gives rise to two
decoupled SSH chains corresponding to the px and py modes,
with a glide reflection symmetry between the chains [38],
which are in opposite topological phases due to the geometry
of the structure. In contrast, here both SSH chains are in the
same topological phase for any pair of distances d and d ′.
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0.5

1

1.5

0 10 20 30 40 50 60 70 80

-0.06
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20 30 40 50 60

E
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Eigenstate number

d1 = 4
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FIG. 4. Single-particle energy spectrum for a chain of Nc = 20
unit cells with ρ0 = 5σ , distances d ′ = 3.6σ , d = 4σ (black dots)
and d = 5σ (blue crosses). The inset shows the inner bands given by
Ĥa and the zero-energy edge states.

C. Exact diagonalization results

We consider a lattice of rings of Nc = 20 unit cells with
ρ0 = 5σ , d ′ = 3.6σ and the two cases d = 4σ and 5σ . Fig-
ure 4 shows the energy spectrum of the system for d = 4σ

(black dots) and d = 5σ (blue crosses). The outer bands cor-
respond to the symmetric chain Ĥs [ε3,4 in (11)], while the
inner bands correspond to the antisymmetric chain Ĥa [ε1,2

in (11)]. This correspondence can be deduced from the values
of ts and ta [see Eq. (12) and Fig. 2], as they fulfill ts > ta.
Additionally, the condition ts > ta also makes the outer bands
more dispersive than the inner bands for both distances d [see
ε1,2 and ε3,4 in Eq. (11)]. For both cases, the two chains are
in the topological phase, which leads to the presence of four
edge states, two for each chain. The dispersion of both models
is reduced considerably for d = 5σ compared to d = 4σ , as
both chains enter the nearly dimerized regime.

Figure 5 shows (i) the amplitudes of the left and right edge
states of Ĥs and Ĥa, and (ii) the real space densities |�|2 of
the left edge state, taking d ′ = 3.6σ , ρ0 = 5σ , and Nc = 20
for all cases. Panels (a) and (c) correspond to the symmetric
chain for d = 4σ and d = 5σ , respectively. Panels (b) and (d)
correspond to the antisymmetric chain for d = 4σ and d =
5σ , respectively. In subfigures (i), each bar represents the am-
plitude of the basis states in Eq. (13) for each site. In all cases,
the edge states only populate one sublattice, either the A or
the B sites, with the population decaying exponentially from
the edge. They are obtained as the symmetric and antisymmet-
ric superpositions of their hybridized counterparts. The edge
states for d = 5σ show an almost complete localization of the
population in the edge site as both Ĥs and Ĥa are within the
nearly dimerized regime. However, for d = 4σ all edge states
penetrate considerably into the bulk. In subfigures (ii) that
show the real space density plots, one can see the difference
between the edge states of Ĥs and Ĥa in the orientation of the
nodes that appear in the density |�|2. These nodes appear due
to the superposition of the positive and negative circulations
of the mode with orbital angular momentum l = 1, Eq. (13).

IV. TWO PARTICLES

In this section we investigate the role of on-site bosonic
interactions by considering the simplest possible interacting
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FIG. 5. Edge states of (a),(c) Ĥs and (b),(d) Ĥa. The distance is d = 4σ , (a) and (b), and d = 5σ , (c) and (d), with d ′ = 3.6σ , ρ0 = 5σ , and
Nc = 20 for all cases. (i) Amplitude of the left (filled black bars) and right (empty blue bars) edge states of the symmetric and antisymmetric
states (13) at each site. (ii) Real space density, |�|2 of the first 15 sites of the left edge state. The edge states arise as the symmetric and
antisymmetric superpositions of their hybridized counterparts.

case, a two-boson system. The total Hamiltonian is Ĥl=1 =
Ĥ0

l=1 + Ĥint
l=1, where the independent-particle term Ĥ0

l=1 [in-
teraction term Ĥint

l=1] is given in Eq. (6) [Eq. (7)]. Figure 6
shows the two-particle energy spectrum in gray lines as a
function of the interaction strength to tunneling ratio U/t ′

s
for a chain of Nc = 15 unit cells with ρ0 = 5σ and the

distances d = 5σ and d ′ = 3.6σ . At zero interaction U/t ′
s =

0, the spectrum presents five scattering continua, which corre-
spond to the different two-particle combinations that occupy
the different energy bands of the single-particle spectrum.
As the particles occupy different sites, the energy bandwidth
of these bands stays constant for any value of U . For a

FIG. 6. (a) Two-particle energy spectrum for a chain of Nc = 15 unit cells with ρ0 = 5σ and distances d ′ = 3.6σ , d = 5σ obtained through
exact diagonalization (gray lines) and eigenvalues of the strong-link Hamiltonian, Eq. (18), for J ′

3 = J in color. (b)–(e) Numerical results for
various sections of the spectrum with the color indicating (b) the expectation value of the bound state population Nb; (c) and (e), the expectation
value of the average distance to the nearest edge Ne, and (d) parity �. The circle indicates a crossing between different doublon bands and the
rectangles indicate the sections of the spectrum depicted in (b)–(e).
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nonzero interaction strength, nine additional bands can be
distinguished, for which the energy depends on the interac-
tion strength U . On top of these bands we plot in color the
eigenvalues of the strong-link Hamiltonian discussed in the
next section. Those bands have contributions of basis states
where two bosons occupy the same site, forming a bound state
referred to as a doublon, that leads to a nonzero interaction
energy [4–8].

In order to characterize the doublon bands, we analyze two
regimes: (i) For the topological dimerized limit of the original
lattice, where d ′ < d and J ′

2, J ′
3 � J2, J3, we derive a strong-

link model that describes the doublon bands at any interaction
strength U , and (ii) for the limit of strong interactions, U �
J (′)

2 , J (′)
3 , we use perturbation theory to describe the effective

subspaces that appear as a result of introducing the couplings
J (′)

2 , J (′)
3 as a perturbation.

A. Strong-link Hamiltonian

In this section we consider the dimerized limit of the real
space SSH lattice. First, we consider the topological dimer-
ization, for which d ′ < d , and such that the corresponding
couplings can be neglected, J ′

2, J ′
3 � J2, J3. Thus, the sym-

metric Ĥs and antisymmetric Ĥa SSH lattices are also in
the dimerized limit. In this regime, the doublon bands can
be described by the reduced two-particle Hamiltonian of a
single strong link in unit cells m and m + 1. This approach was
used in [20] to analyze the doublon bands of the two-particle
conventional SSH model. The basis states of this two-particle
Hamiltonian are the ten two-particle combinations of the sites
A and B in the unit cells m and s = m + 1, namely{∣∣A+

s A+
s

〉
,
∣∣A+

s A−
s

〉
,
∣∣A+

s B+
m

〉
,
∣∣A+

s B−
m

〉
,
∣∣A−

s A−
s

〉
,∣∣A−

s B+
m

〉
,
∣∣A−

s B−
m

〉
,
∣∣B+

mB+
m

〉
,
∣∣B+

mB−
m

〉
,
∣∣B−

mB−
m

〉}
. (17)

In this basis, the strong-link Hamiltonian reads

ĤSL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U 0
√

2J ′
2

√
2J ′

3 0 0 0 0 0 0
0 2U J ′

3 J ′
2 0 J ′

2 J ′
3 0 0 0√

2J ′
2 J ′

3 0 0 0 0 0
√

2J ′
2 J ′

3 0√
2J ′

3 J ′
2 0 0 0 0 0 0 J ′

2

√
2J ′

3

0 0 0 0 U
√

2J ′
3

√
2J ′

2 0 0 0
0 J ′

2 0 0
√

2J ′
3 0 0

√
2J ′

3 J ′
2 0

0 J ′
3 0 0

√
2J ′

2 0 0 0 J ′
3

√
2J ′

2

0 0
√

2J ′
2 0 0

√
2J ′

3 0 U 0 0
0 0 J ′

3 J ′
2 0 J ′

2 J ′
3 0 2U 0

0 0 0
√

2J ′
3 0 0

√
2J ′

2 0 0 U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

To find the eigenvalues and eigenvectors of ĤSL, we consider the regime of large distances where J ′
2 
 J ′

3 ≡ J . In this regime,
the eigenvalues are

E1 = 0, E2 = U, E3 = 2U, E7,8 = U − √
16J2 + U 2

2
, E9,10 = U + √

16J2 + U 2

2
,

E4+q =
⎡
⎣cos

⎛
⎝1

3
arccos

⎡
⎣− U

4
√

2J

(
U 2

8J2 + 2

3

)−3
2

⎤
⎦+ 2πq

3

⎞
⎠ × 2

√
U 2

8J2 + 2

3
+ U

2
√

2J

⎤
⎦2

√
2J for q = 0, 1, 2. (19)

Table I presents the eigenvectors in the limit |U | � J while
the general expressions can be found in Table II of the Ap-
pendix. The strong-link model for the trivial dimerization is
analogous to the topological dimerization model and it can be
obtained by simply replacing the indices s = m + 1 of each
A site in the basis states (17) by s = m. This yields the same
eigenvectors and eigenvalues given in Eq. (19) and Tables I
and II in the regime of large distances.

Figure 6(a) shows the eigenvalues (in color) on top of
the exact diagonalization results (in gray) as a function of
the ratio U/t ′

s. The exact diagonalization results correspond
to the distances d = 5σ and d ′ = 3.6σ , which determine the
values of the couplings J (′)

2 , J (′)
3 (see Fig. 2). To compare the

analytical and numerical results, we fix the coupling J of ĤSL

as the largest numerical coupling, J ′
3, which corresponds to

the topological dimerization of the strong-link model. Thus,
we consider the eigenvalues of ĤSL in the regime of large

distances (J ′
2 
 J ′

3 ≡ J), Eq. (19). The analytically obtained
eigenvalues accurately predict the overall energy dependence
of the doublon bands obtained numerically.

Table I gives the eigenvectors vn of the strong-link Hamil-
tonian, Eq. (18), in the regime of strong interactions |U | � J
for two cases, {U > 0,U < 0}, and specifies the correspond-
ing eigenvalues En for the two regimes. The eigenvectors
and eigenvalues n = {1–3} do not depend on the coupling J
and thus they do not change when increasing |U |/J . In both
regimes, the eigenvalues form three groups, with energies 0,
U and 2U . This tendency can be observed even for relatively
small ratios |U |/t ′

s in Fig. 6, where the energy difference
between the different groups of doublon bands diminishes for
increasing values of |U |/t ′

s. The eigenvectors in Table I clarify
the differences between these three groups. The eigenvectors
with energy zero are a superposition of states where the two
particles populate different sites, |Aα

s , Bα′
m 〉. As there are four
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TABLE I. Normalized eigenvectors vn and eigenvalues En of the strong-link Hamiltonian ĤSL in the regime of large distances and the
regime of strong interactions |U | � J . Two cases are considered, {U > 0,U < 0}, and a single number is given when it is the same for both
cases. Note that the eigenvectors and eigenvalues n = 1, 2, 3 are independent of the ratio |U |/J . The third column indicates the parity � of the
eigenstate with respect to the exchange circulation symmetry + ↔ − in each site.

vn En,|U |�J � |A+
s A+

s 〉 |A+
s A−

s 〉 |A+
s B+

m〉 |A+
s B−

m〉 |A−
s A−

s 〉 |A−
s B+

m〉 |A−
s B−

m〉 |B+
mB+

m〉 |B+
mB−

m〉 |B−
mB−

m〉
v1 0 + 0 0 1

2 − 1
2 0 − 1

2
1
2 0 0 0

v2 U + − 1
2 0 0 0 − 1

2 0 0 1
2 0 1

2

v3 2U + 0 − 1√
2

0 0 0 0 0 0 1√
2

0

v4 {2U, 0} + 0 { 1√
2
, 0} {0, 1

2 } {0, 1
2 } 0 {0, 1

2 } {0, 1
2 } 0 { 1√

2
, 0} 0

v5 {0, 2U } + 0 {0, 1√
2
} {− 1

2 , 0} {− 1
2 , 0} 0 {− 1

2 , 0} {− 1
2 , 0} 0 {0, 1√

2
} 0

v6 U + 1
2 0 0 0 1

2 0 0 1
2 0 1

2

v7 {0,U } − {0, 1
2 } 0 0 {− 1√

2
, 0} {0,− 1

2 } { 1√
2
, 0} 0 {0,− 1

2 } 0 {0, 1
2 }

v8 {0,U } − {0, 1
2 } 0 {− 1√

2
, 0} 0 {0,− 1

2 } 0 { 1√
2
, 0} {0, 1

2 } 0 {0, − 1
2 }

v9 {U, 0} − { 1
2 , 0} 0 0 {0, 1√

2
} {− 1

2 , 0} {0,− 1√
2
} 0 {− 1

2 , 0} 0 { 1
2 , 0}

v10 {U, 0} − { 1
2 , 0} 0 {0, 1√

2
} 0 {− 1

2 , 0} 0 {0,− 1√
2
} { 1

2 , 0} 0 {− 1
2 , 0}

possible states, there are four bands with energy zero. In these
states the two bosons do not interact, and their energy, which
is given by the interaction Hamiltonian term (7), becomes
zero. The group with energy U is composed of eigenstates
that are a superposition of states with two bosons in the same
site and the same circulation, | jαm, jαm〉, which also results in
four possible states and four energy bands. Finally, the group
with energy 2U is formed of states where the bosons occupy
opposite circulations in the same site | j+m , j−m 〉. In this case,
there are only two available states and this results in only two
energy bands.

Figure 7 represents the adjacency graph of the strong-link
Hamiltonian ĤSL and its symmetries. Each vertex represents
one of the basis states in Eq. (17) and the edges represent
the off-diagonal (solid blue lines) and diagonal (solid blue
loops) matrix elements of ĤSL. The symmetries of the graph

FIG. 7. Adjacency graph of the strong-link Hamiltonian ĤSL ,
Eq. (18). Each vertex represents one of the basis states in Eq. (17) and
the edges represent the off-diagonal (solid blue lines) and diagonal
(solid blue loops) matrix elements of ĤSL . The dashed lines indicate
the reflection symmetries with respect to the oxz (yellow), oyz (pink),
and oxy planes, where the states |B+

mB−
m〉 and |A+

s A−
s 〉 are located in

the out-of-plane axis z (gray).

become explicit by locating the states |B+
mB−

m〉 and |A+
s A−

s 〉 in
the out-of-plane z axis, which is perpendicular to the plane
where all the other basis states lie (where s = m + 1). Then,
the graph explicitly exhibits three symmetries: (i) a reflection
symmetry with respect to the oxz (yellow) plane that leaves the
states |B+

mB−
m〉, |A+

s A−
s 〉, |A+

s B−
m〉, and |A−

s B+
m〉 invariant; (ii) a

reflection symmetry with respect to the oyz (pink) plane that
leaves the states |B+

mB−
m〉, |A+

s A−
s 〉, |A−

s B−
m〉, and |A+

s B+
m〉 invari-

ant; and (iii) a reflection symmetry respect to oxy plane that
only permutes the states |B+

mB−
m〉 and |A+

s A−
s 〉 located in the

out-of-plane axis z (gray). A single strong link is symmetric
with respect to the exchange of the sites A and B, regardless
of the number of particles. This symmetry is reflected in the
two-particle graph as the combined application of the symme-
tries (ii) and (iii). However, this symmetry disappears when
we move away from the dimerized limit by introducing weak
couplings between the different strong links. In contrast, there
is a symmetry that originates in the total Hamiltonian [Eqs. (6)
and (7)]: the exchange of circulations + ↔ − in each site,
which is inherited by ĤSL. This symmetry can be obtained by
applying the symmetries (i) and (ii) in the two-particle graph.
Both the eigenstates of Ĥl=1 and ĤSL have well-defined pari-
ties � with respect to the exchange of circulations in each site,
and we indicate the latter in Table I.

The spectrum in Fig. 6 shows a large number of intersec-
tions and avoided crossings between the doublon bands and
the scattering continua, as well as between different doublon
bands at U/t ′

s 
 ±0.7 [black circle in Fig. 6(a)]. The presence
of avoided crossings can be understood in terms of the cir-
culation exchange symmetry + ↔ − discussed above. They
can appear for doublon states and extended states of the same
parity that converge in energy. In contrast, states of opposite
parities belong to different symmetry sectors and are therefore
completely decoupled. Below we discuss two examples of
avoided crossings.

Figure 6(b) shows the avoided crossing of the state v3 with
the upper band of extended states. The color represents the
expectation value of the bound state population in each strong
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link Nb = ∑Nc−1
m=1 n̂b

m, where

n̂b
m = n̂+

Am+1
n̂+

Am+1
+ n̂+

Am+1
n̂−

Am+1
+ n̂+

Am+1
n̂+

Bm

+ n̂+
Am+1

n̂−
Bm

+ n̂−
Am+1

n̂−
Am+1

+ n̂−
Am+1

n̂+
Bm

+ n̂−
Am+1

n̂−
Bm

+ n̂+
Bm

n̂+
Bm

+ n̂+
Bm

n̂−
Bm

+ n̂−
Bm

n̂−
Bm

. (20)

The number operators account for the ten state combinations
that form the strong-link Hamiltonian basis in the topological
dimerization. This avoided crossing occurs due to the strong
hybridization between the state v3, which has positive parity,
and extended states of the upper band, where all states also
have positive parity.

In the avoided crossing shown in Figs. 6(c) and 6(d),
the strong resonance involves an edge bound state instead
of the states of the band associated with the state v3. The
color in Fig. 6(c) gives the expectation value of Ne =∑2Nc

o=1

∑
α=± min ((o − 1)/2Nc, 1 − o/2Nc)n̂o,α/2, where n̂o,α

is the number operator at site n, so that it represents the
average normalized distance to the nearest edge. There are
two states below and above the doublon bands with high
edge localization (dark lines), which indicates the presence
of edge bound states associated with that doublon band. For
the same avoided crossing, the color in Fig. 6(d) indicates
the parity � of each eigenstate. Embedded within the band
of extended states, there is an inner band of extended states
with a lower value of 〈Ne〉, which correspond to those states
where a particle occupies the upper single-particle band of the
symmetric SSH spectrum and the other particle occupies an
edge state [21]. Of these states, only some have a positive
parity that allows for the avoided crossing to occur. Such
embedded states are only present in the topological dimeriza-
tion of the original chain, which possesses four topologically
protected single-particle edge states. They are also present in
the zero energy band [dark horizontal lines in Fig. 6(e)], in
which either the two particles occupy an edge state, at exactly
zero energy, or one occupies one edge state while the other
occupies the single-particle bands of the antisymmetric SSH
lattice.

To obtain the strong-link Hamiltonian we consider that
each strong link is completely decoupled from the adjacent
ones, such that every dimer yields exactly the same eigen-
values. This model is strictly valid in the dimerized limit,
where the either the inter- or intracell couplings are ex-
actly zero. As a result of the weak coupling between strong
links, the doublon bands computed through exact diagonaliza-
tion are not exactly degenerate, but present some dispersion
[see Fig. 6(b)]. Additionally, the doublon bands obtained
numerically can present edge bound states above or below
the energy of the corresponding doublon band [dark lines
in Fig. 6(c)]. They can be identified with Tamm-Shockley
states as they are a result of the renormalized couplings at
the edge sites that arise when one introduces the weak cou-
plings as a perturbation [20,39–41]. In the next section we
are going to lift this degeneracy by moving away from the
dimerized limit, and we will consider the regime of strong
interactions to better understand the emergence of the doublon
subspaces.

B. Strong interaction limit

Consider the regime of strong interactions, where the
interactions dominate over the tunneling processes, U �
J2, J3, J ′

2, J ′
3. The available states for U → ∞ can be de-

duced from the three groups of eigenvectors of the strong-link
Hamiltonian for strong interactions (see Table I). The two
bosons can either occupy different sites or occupy the same
site forming a doublon. The bosons can form two possible
bound states: A, where the two particles occupy the same
site and the same circulation, | jαm, jαm〉, with j = A, B and
α = ±; and B, where the two particles occupy the same site
and opposite circulations | j+m , j−m 〉. These bound states have
energies EA = U and EB = 2U , respectively, given by the
interaction term (7).

If one introduces the couplings J2, J3, J ′
2, J ′

3 as a pertur-
bation, the bound states in adjacent sites become coupled
through second-order hopping processes, which creates an
effective dispersive subspace for each bound state class. As
the bound states are well separated in energy, these subspaces
are decoupled and can be analyzed independently. The matrix
elements of the effective Hamiltonian for each subspace up to
second-order perturbation theory read [42,43]

〈u|Ĥeff |u′〉 = E0
u δuu′ + 1

2

∑
w

〈
u
∣∣Ĥ0

l=1

∣∣w〉〈
w
∣∣Ĥ0

l=1

∣∣u′〉

×
[

1

E0
u − E0

w

+ 1

E0
u′ − E0

w

]
,

(21)

where |u〉, |u′〉 are the bound states, |w〉, |w′〉 are the me-
diating states in each hopping process, and E0 are the
unperturbed energies. Note that the first-order corrections are
always zero. For |u〉 �= |u′〉 one obtains an effective tunneling
term, while for |u〉 = |u′〉 one obtains an effective on-site
potential.

1. B subspace

Let us start with the B subspace, which is composed of
only one bound state per site, | j+m , j−m 〉. The existence of this
bound state is due to the intercirculation interaction term in
the interaction Hamiltonian (7). Thus, it is a consequence of
the ring structure of each site of the lattice [44,45] and cannot
appear in a conventional SSH lattice [20]. When we introduce
the couplings J2, J3, J ′

2, J ′
3 as a perturbation, the bound states

of the B subspace in adjacent sites become coupled through
second-order hopping processes. These yield two effective
couplings: an intracell coupling between the bound states
|A+

m, A−
m〉 and |B+

m, B−
m〉, and an intercell coupling between

|B+
mB−

m〉 and |A+
m+1, A−

m+1〉. Additionally, each bound state
acquires a self-energy term through second-order processes,
yielding effective on-site potentials at each site. Note that in
the edge sites there are half the mediating states present in the
bulk sites [20,21,39]. Thus, the effective on-site potential in
the edge VE is smaller than the on-site potential in the bulk
VB. Using Eq. (21), the resulting effective subspace is an SSH
chain with renormalized couplings and a bulk-edge on-site
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FIG. 8. Two-particle energy spectrum for Nc = 15 unit cells with
ρ0 = 5σ , distances d ′ = 3.6σ , d = 4.5σ , and U/t ′

s = 20 for the (a)
B and (b) A subspaces. (i) Energies as a function of the edge on-
site potential correction V in units of VA(B) and (ii) energies for the
exactly compensated on-site potential mismatch, (aii) V = VB and
(bii) V = VA.

potential mismatch

ĤB =
[

J2
2 + J2

3

U

Nc∑
m=1

âB†
m b̂Bm + J ′2

2 + J ′2
3

U

Nc−1∑
m=1

âB†
m+1b̂Bm

]
+ H.c.

+ J2
2 + J2

3 + J ′2
2 + J ′2

3

U

Nc∑
m=1

(
âB†

m âB
m + b̂B†

m b̂Bm
)

(22)

− J ′2
2 + J ′2

3

U
(âB†

1 âB
1 + b̂B†

Nc
b̂BNc

),

where the creation and annihilation operators âB(†)
m and b̂B(†)

m
correspond to the bound states of the B subspace in the A and
B sites, respectively. This mismatch can be exactly compen-
sated by introducing an on-site potential V in the edge sites
of the real space lattice. Figure 8(a) shows the energy spec-
trum of the B subspace for Nc = 15 unit cells with ρ0 = 5σ ,
distances d ′ = 3.6σ , d = 4.5σ , and U/t ′

s = 20. In Fig. 8(ai),
the spectrum is represented as a function of the edge potential
correction V in units of VB = (J ′2

2 + J ′2
3 )/2U , the value of

the potential that exactly compensates the mismatch. Fig-
ure 8(aii) shows the spectrum for the potential VB. For V = 0,
the spectrum presents only two dispersive bands. The lower
band contains two extra states that arise due to the impurity
potentials at the edge sites of the SSH chain. When increasing
the potential correction V , these Tamm-Shockley states depart
from the lower chain as their energy grows linearly and be-
come localized at the edge. For VB, the potential mismatch
is compensated exactly, thus restoring the chiral symmetry
of the model and yielding two topologically protected edge
states.

2. A subspace

In contrast with the B subspace, the A subspace presents
two bound states per site instead of only one, | jαm, jαm〉 with
α = ±. In the strong interactions regime, the bound states

in adjacent sites become coupled through second-order hop-
pings, which yields four effective couplings between the
adjacent bound states |Aα

m, Aα
m〉 and |Bα′

m′ , Bα′
m′ 〉, thus forming a

Creutz ladder structure [46]. In analogy with the B subspace,
each bound state also obtains an effective on-site potential
that generates a bulk-edge on-site potential mismatch. Using
Eq. (21), the effective model of this subspace reads

ĤA =
∑
α=±

(
Nc∑

m=1

[
2J2

2

U
âAα†

m b̂Aα

m + 2J2
3

U
âAα†

m b̂A−α

m

]
+ H.c.

+
Nc−1∑
m=1

[
2J ′2

2

U
âAα†

m+1b̂Aα

m + 2J ′2
3

U
âAα†

m+1b̂A−α

m

]
+ H.c.

(23)

+ 2
J2

2 + J2
3 + J ′2

2 + J ′2
3

U

Nc∑
m=1

[
âAα†

m âAα

m + b̂Aα†
m b̂Aα

m

]

− 2
J ′2

2 + J ′2
3

U

[
âAα†

1 âAα

1 + b̂Aα†
Nc

b̂Aα

Nc

])
,

where the creation and annihilation operators âAα (†)
m and

b̂Aα (†)
m correspond to the bound states of the A subspace with

two particles in circulation α in the A and B sites, respectively.
The effective model of the A subspace takes the same form as
the original single-particle model in Eq. (6), with additional
on-site potential terms. Figure 8(b) shows the energy spec-
trum of the A subspace for Nc = 15 unit cells with ρ0 = 5σ ,
distances d ′ = 3.6σ , d = 4.5σ , and U/t ′

s = 20 for (bi) an
increasing potential correction V in units of VA and for (bii)
the exactly compensated spectrum at VA = (J ′2

2 + J ′2
3 )/U .

Figure 8(bi) shows four bands, with the outer ones presenting
a larger dispersion than the inner ones, and also four Tamm-
Shockley states for which the energy increases linearly with
the potential correction V . As in the B subspace, the impurity
states coincide in energy with the dispersive band due to
the edge-bulk potential mismatch, but here two of them are
located within the bulk. The fact that these two states, in the
absence of any edge potential compensation, naturally appear
within a bulk continuum while remaining localized at the edge
suggests that they may be regarded as bound states in the con-
tinuum [47]. Once the on-site potential mismatch is exactly
compensated, introducing VA, the single-particle [Eq. (6)] and
two-particle [Eq. (23)] models become completely analogous.
Then, one can apply the single-particle basis rotation (13) for
the A bound states that transforms the system into two decou-
pled SSH chains with the following renormalized couplings:

tAs = 2
J2

2 + J2
3

U
, t ′A

s = 2
J ′2

2 + J ′2
3

U
,

tAa = 2
J2

2 − J2
3

U
, t ′A

a = 2
J ′2

2 − J ′2
3

U
. (24)

The spectrum in Fig. 8(bii) is equivalent to the single-particle
one shown in Fig. 4 with renormalized and shifted energies.
The outer bands, which show a greater dispersion, belong
to the symmetric chain, while the inner ones belong to the
antisymmetric chain. As both models are in the same topo-
logical phase, both lattices contribute with two topologically
protected edge states.
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V. CONCLUSION

Here we have studied a system of one or two bosons loaded
into states with OAM l = 1 in a lattice of rings, with alternat-
ing distances d and d ′. By selecting the states with a given
OAM l , each site of the lattice presents two internal states
given by the two circulations + and −. At the single-particle
level, this system presents non-trivial topological characteris-
tics, that can be properly analyzed by resolving the exchange
symmetry between the circulations + and −. This leads to
two decoupled SSH chains whose associated Zak phases de-
termine the topological phase of the system. We analyze the
parameter space in terms of the distances d and d ′, finding
that both chains are always in the same topological phase but
show different dispersion in their bands. Thus, the system can
present four topologically protected edge states.

Second, we study the case of two bosons with on-site in-
teractions, which generate a rich landscape of doublon bands
and edge bound states. In these bands, the two particles oc-
cupy the same site, and we analyze them analytically in two
limits. In the dimerized limit, one can reduce the system to a
single strong link. The eigenvalues of the associated Hamil-
tonian accurately predict the overall energy dependence of
the doublon bands obtained using exact diagonalization in
the nearly dimerized regime. The strong-link eigenvectors are
analyzed in the strong interactions limit, where we find that
they form three distinct groups. They either tend to states
where the two particles are in distinct sites, with energy zero,
or to the same site in the same circulation (with energy U )
or opposite circulations (energy 2U ). Additionally, we show
that the avoided crossings between the doublon bands and the
bands of extended states can only arise between eigenstates
of the same exchange parity sector. In order to be able to
capture the subspaces created by these doublon states away
from the dimerized limit, we consider the strong interactions
limit using second-order perturbation theory. The two dou-
blon subspaces are well separated in energy and thus can
be studied independently. We find effective models that map
to an SSH model and a Creutz-like model with a bulk-edge
on-site potential mismatch. We show how this mismatch can
be corrected by introducing a potential at the edge sites, thus

recovering the chiral symmetry that topologically protects the
doublon edge states. The effective models are benchmarked
using exact diagonalization.
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APPENDIX

The eigenvectors of the strong-link Hamiltonian discussed
in Sec. IV A are given in Table II. These correspond to the
eigenvalues in Eq. (19), where we consider the limit of large
distances where J ′

2 
 J ′
3 ≡ J . We have defined the factors

A+(−) = U (−)
+ √

U 2 + 16J2

2
√

2J
, V = U

2
√

2J
, (A1)

and the norms of the eigenvectors ṽ7,8,9,10 take the following
simple forms:

‖ṽ7‖ = ‖ṽ8‖ = (8 + 4V 2 + 4V
√

V 2 + 2)1/2,

‖ṽ9‖ = ‖ṽ10‖ = (8 + 4V 2 − 4V
√

V 2 + 2)1/2. (A2)

TABLE II. Eigenvectors vn of the strong-link Hamiltonian ĤSL in the regime of large distances. The normalized eigenvectors are vn =
ṽn/‖ṽn‖ and we use the factors A+(−) and V defined in Eq. (25).

vn |A+
s A+

s 〉 |A+
s A−

s 〉 |A+
s B+

m〉 |A+
s B−

m〉 |A−
s A−

s 〉 |A−
s B+

m〉 |A−
s B−

m〉 |B+
mB+

m〉 |B+
mB−

m〉 |B−
mB−

m〉
v1 0 0 1

2 − 1
2 0 − 1

2
1
2 0 0 0

v2 − 1
2 0 0 0 − 1

2 0 0 1
2 0 1

2

v3 0 − 1√
2

0 0 0 0 0 0 1√
2

0

ṽ4 1
√

2(E 2
4 − E4V − 1) E4 − V E4 − V 1 E4 − V E4 − V 1

√
2(E 2

4 − E4V − 1) 1

ṽ5 1
√

2(E 2
5 − E5V − 1) E5 − V E5 − V 1 E5 − V E5 − V 1

√
2(E 2

5 − E5V − 1) 1

ṽ6 1
√

2(E 2
6 − E6V − 1) E6 − V E6 − V 1 E6 − V E6 − V 1

√
2(E 2

6 − E6V − 1) 1

ṽ7 1 0 0 −A+ −1 A+ 0 −1 0 1

ṽ8 1 0 −A+ 0 −1 0 A+ 1 0 −1

ṽ9 1 0 0 −A− −1 A− 0 −1 0 1

ṽ10 1 0 −A− 0 −1 0 A− 1 0 −1
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