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Measurement of non-Abelian gauge fields using multiloop amplification
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Non-Abelian gauge field plays a central role in understanding the geometrical and topological phenomena in
physics. Here we experimentally induce a non-Abelian gauge field in the degenerate eigensubspace of a double-
� four-level atomic system. The non-Abelian nature of the gauge field is detected through the measurement
of the noncommutativity of two successive evolution loops. Then we theoretically propose and experimentally
demonstrate a scheme to measure the non-Abelian gauge field through multiloop evolution and robust holonomic
quantum gates. The demonstrated scheme offers the advantage of detecting the non-Abelian gauge field with
amplification through multiloop evolution. Our results pave the way for an experimentally feasible approach to
achieving high-resolution and high-precision measurements of the gauge fields.
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I. INTRODUCTION

The coupling between quantum systems and gauge fields
gives rise to a plethora of physical phenomena, includ-
ing topological insulators and topological semimetals in
condensed-matter systems, as well as the Aharonov-Bohm
(AB) effect and geometric phases in quantum systems [1–4].
Novel physics involving non-Abelian gauge fields, such as
the θ vacuum and the non-Abelian AB effect, have also been
discovered [5–8]. To rigorously study these theories, it is
necessary to manipulate the degenerate wave functions under
the non-Abelian gauge potentials [9–16]. Additionally, accu-
rately measuring the localized gauge fields, which remains a
challenging task, is crucial for investigating the geometrical
and topological phenomena in physics.

Linear response is one of the methods to measure the
geometric quantum tensor in parameter space [17–24]. The
imaginary component of this tensor is the gauge field (Berry
curvature), while the real component is the metric [25]. By
quenching the parameters, the deflection of the evolution
trajectory can be used to measure the gauge field. This ap-
proach has been successfully demonstrated in cold atomic
systems, including the non-Abelian version [26,27]. The lin-
ear response method offers the advantage of enabling the
determination of field strength in a small quench region,
thereby facilitating high-resolution measurements. However,
breaking adiabaticity is necessary to achieve observable
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effects, which weakens the robustness against deviations in
the control parameters. Cyclic evolution is another method
for measuring gauge fields and it is resistant to both random
noise and systematic errors, owing to the geometric nature
of geometric phases. By traversing a closed path in param-
eter space, a quantum system acquires a geometric phase
that is determined by the integral of the Berry curvature
[4,15,28–31]. However, it has low resolution in parameter
space since the enclosed area should be sufficiently large
to accumulate an observable effect. The noncommutative
Wilczek-Zee phases are measured in cold atomic systems [32]
and in a classical system constructed by noncommutative opti-
cal elements [31]. However, the local non-Abelian field cannot
be retrieved from the Wilczek-Zee phase in common cases due
to the path-ordered integral. Therefore, precise measurement
of non-Abelian gauge fields is still lacking in experimental
studies.

In this paper we report an experiment on the measure-
ment of non-Abelian gauge fields with double-� four-level
cold atoms. In contrast to the conventional tripod systems
[33–36], the degenerate subspace utilized in our experiments
corresponds to the system’s lowest eigenvalue, resulting in
a longer coherence time for the exploration of non-Abelian
gauge fields. We demonstrate that non-Abelian gauge fields
can be measured from multiloop evolution with tiny loops in
the parameter space since the multiloop evolution can enhance
the accuracy of measurement results, enabling measurements
to be taken within a smaller loop while maintaining the
same level of precision. We significantly simplify the process
of measuring non-Abelian gauge fields in parameter space.
There is a gap between the use of dressed states in defining
the gauge fields and measurement of only bare states. This
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(a) (b) (c)bb))

FIG. 1. (a) Measurement of non-Abelian gauge fields through the use of small loops in parameter space. (b) Experimental setup and
coupling scheme. The double-� four-level Hamiltonian is realized in a cold 87Rb atomic system: |1〉 = |F = 2, mF = −1〉, |2〉 = |F = 1,

mF = −1〉, |3〉 = |F = 2, mF = 0〉, and |4〉 = |F = 1, mF = 0〉. (c) Measurement of non-Abelian gauge fields in a square loop of B-B′-C′-C-B
is carried out by analyzing the difference in evolution between two triangles A-B-C-A and A-B′-C′-A

presents a significant challenge in experimental settings. We
devise a scheme to measure the gauge field by utilizing the
difference between two triangle loops that enclose the square
loop. Both triangle loops originate and terminate at the pole
of the Bloch sphere and the dressed states match the bare
states at the beginning and end of the evolution. Consequently,
the projective measurement of dressed states can be converted
to bare states. We establish a connection between holonomic
quantum gates and non-Abelian gauge fields and thus our
method is robust against systematic errors and random noise.
Therefore, our work provides a practical experimental method
for attaining accurate and precise measurements of gauge
fields.

The paper is organized as follows. In Sec. II we introduce
our scheme to extract information about non-Abelian gauge
fields from evolution operators. In Sec. III we illustrate a
four-lever system with a twofold-degenerate eigensubspace
and calculate the related non-Abelian gauge fields, which is
a typical example of how these fields can emerge within a
particular system. In Sec. IV we show a method to detect the
non-Abelian gauge fields in a square loop process. In Sec. V
we discuss the implications of our measurement effects of
these gauge fields amplified by a multiloop evolution. This
has an impact on the accuracy and validity of our measure-
ments. In Sec. VI we study and visually demonstrate the
change in population dynamics resulting from multiloop evo-
lution. In Sec. VII we describe the measurement results of
non-Abelian gauge fields. A brief summary is presented in
Sec. VIII. In the Appendix we address the noncommutative
nature of non-Abelian gauge fields and describe the experi-
mental procedures and techniques utilized in our study to add
transparency to our research.

II. NON-ABELIAN GAUGE FIELDS IN TINY LOOPS

We begin by addressing how to measure non-Abelian
gauge fields with cyclic evolution. Considering a Hamiltonian
H (R(t )), with a doubly degenerate eigensubspace labeled by
{|D1〉, |D2〉}, the non-Abelian gauge fields are given by Fμν =
∂μAν − ∂νAμ − i[Aμ, Aν], where the gauge potential Ajk

μ =
i〈Dj |∂μ|Dk〉 ( j, k = 1, 2) and μ and ν are the components of
driving parameter R(t ) [9]. When the system controlled by

the Hamiltonian H (R(t )) evolves adiabatically along a closed
path, the evolution operator U is given by a path-ordered
integral

U = 1 −
∫ s

0
Aμdμ +

∫ s

0

∫ s′

0
AμAνdμ dν + O(μ3), (1)

where s and s′ (s′ � s) are upper bounds of integral. Here
we have omitted a global dynamical phase under the adia-
batic assumption [9,28]. By considering a small loop R(t ),
R(0) → R(0) + lμ → R(0) + lμ + l′ν → lμ + l′ν → R(0), in
the parameter space, as shown in Fig. 1(a), we obtain

U ′ ≈ 1 − iFμνδS, (2)

using the second-order approximation, where δS = (lμl′ν −
l′ν lμ)/2 is the enclosed area [37]. Hence, measuring the evolu-
tion operator of tiny loops allows us to obtain the gauge fields.

III. NON-ABELIAN GAUGE FIELDS IN A FOUR-LEVEL
SYSTEM

Non-Abelian gauge fields can be induced in a four-
level system through a double-� configuration with four
microwaves, as shown in Fig. 1(b). The coupling Rabi
frequencies between |1〉, |2〉 and |3〉, |4〉 are set to �, while
those between |1〉, |3〉 and |2〉, |4〉 are set to g. Under the
bare state basis {|1〉, |2〉, |3〉, |4〉} and rotating-wave approx-
imation, the Hamiltonian reads

H (t ) = h̄

2

⎛
⎜⎜⎝

� �e−iϕ 0 −g
�eiϕ −� −g 0

0 −g � −�eiϕ

−g 0 −�e−iϕ −�

⎞
⎟⎟⎠, (3)

where � are the detunings defined by the difference between
the microwave frequencies and the corresponding coupling
levels and ϕ are the relative phases [38]. Here we have adopted
the four-photon resonant condition [38]. The Hamiltonian (3)
can be experimentally realized in a 87Rb cold atomic system,
where we encode four Zeeman sublevels in the ground states
by |1〉 = |F = 2, mF = −1〉, |2〉 = |F = 1, mF = −1〉, |3〉 =
|F = 2, mF = 0〉, and |4〉 = |F = 1, mF = 0〉, respectively. A
magnetic field about 0.5 G is applied to resolve the degeneracy
of the Zeeman levels. Here |1〉, |2〉 and |3〉, |4〉 are coupled
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by the π -transition microwaves while |1〉, |4〉 and |2〉, |3〉 are
coupled by the σ - and σ+-transition microwaves, respectively.
The Rabi frequencies, frequencies, and phases of microwaves
are all adjustable, which offers a fully controllable Hamilto-
nian. The system is initialized to state |4〉, which is realized
by optically pumping atoms to |3〉 and then transferring to |4〉
by microwaves with a π pulse. A more detailed description of
the experimental setup can be seen in Ref. [38].

The Hamiltonian (3) yields two twofold-degenerate eigen-
values: λ1 = λ2 = −�0 (=−

√
�2 + g2 + �2), with the cor-

responding eigenstates |D1〉and|D2〉, and λ3 = λ4 = �0, with
the corresponding eigenstates |B1〉and|B2〉. By parametrizing
� = �0 sin θ cos φ, g = �0 sin θ sin φ, and � = �0 cos θ , the
eigenstates of the Hamiltonian (3) corresponding to the eigen-
values λ1 = λ2 = −�0 are given by

|D1〉 = sin
θ

2
|1〉 − cos

θ

2
(cos φeiϕ |2〉 − sin φ|4〉),

|D2〉 = − sin
θ

2
|3〉 − cos

θ

2
(sin φ|2〉 + cos φe−iϕ |4〉),

(4)

while the eigenstates corresponding to the eigenvalues λ3 =
λ4 = �0 are given by

|B1〉 = − sin
θ

2
|2〉 − cos

θ

2
(cos φe−iϕ |1〉 − sin φ|3〉),

|B2〉 = sin
θ

2
|4〉 − cos

θ

2
(sin φ|1〉 + cos φeiϕ |3〉). (5)

It is important to note that the degenerate eigenstates pre-
viously proposed to generate non-Abelian gauge fields in
three-level atoms do not correspond to the lowest energy level
[33–36]. In contrast, here we demonstrate that non-Abelian
gauge fields Fμν , where μ, ν = θ, φ, ϕ, can be obtained from
the lower eigenstates |D1〉and|D2〉. One will obtain the non-
Abelian gauge potentials as A = (Aθ , Aφ, Aϕ ), with

Aθ = 0,

Aφ = −i cos2(θ/2)κφ · σ, (6)

Aϕ = i cos2(θ/2) cos φκϕ · σ,

where σ = (σx, σy, σz ), with σx,y,z the Pauli matrixes.
The unit vectors κφ = (− sin ϕ, cos ϕ, 0) and κϕ =
(− sin φ cos ϕ, sin φ sin ϕ, cos φ). Components of the
non-Abelian gauge fields along two of the coordinates θ ,
ϕ, and φ are given by

Fθϕ = −i sin θ cos φκθϕ · σ/2,

Fθφ = sin θκθφ · σ/2, (7)

Fφϕ = 2 cos2(θ/2)[1 − cos2(θ/2)] cos φκφϕ · σ,

where the unit vectors κθϕ = (sin φ cos ϕ, sin φ sin ϕ, cos φ),
κθφ = (sin ϕ,− cos ϕ, 0), and κφϕ = (cos φ cos ϕ, cos φ sin
ϕ, sin φ). Similar results can be found in the upper
eigensubspace {|B1〉, |B2〉}. Without loss of generality, we will
focus on the gauge field with the parameters θ and ϕ. We note
that Fθϕ is associated with the infinitesimal dθdϕ in Cartesian
coordinates. When we switch to spherical coordinates with
an infinitesimal area sin θdθdϕ, the non-Abelian gauge field
is given by

F S
θϕ = Fθϕ/sin θ = −i cos φκθϕ · σ/2, (8)

which is obviously an SU(2) monopole.
The non-Abelian nature of gauge fields can be identified by

the noncommutativity of two successive loops in parameter
space, as shown by C1 and C2 in Fig. 1(a). If we denote the
evolution operator of C1 (C2) by U1 (U2), the evolution oper-
ator of composite paths with order C1C2 (counterorder C2C1)
will be given by Uo = U2U1 (Uco = U1U2). In Sec. 1 of the
Appendix we demonstrate that the inequality U2U1 �= U1U2

can be verified through experimental data obtained by measur-
ing nondiagonal matrix elements |U 12 (21)

o |2 �= |U 12 (21)
co |2 [28].

These matrix elements are determined by the population trans-
fers after evolution and can be detected in our experiments. As
a result, we have experimentally confirmed the existence of a
true non-Abelian gauge field in this four-level atomic system.

IV. DETECTING NON-ABELIAN GAUGE
FIELDS IN SQUARE LOOPS

As shown in Fig. 1(c), we present our method for measur-
ing the gauge field within the region δS′ = �θ�ϕ enclosed by
the square loop B-B′-C′-C-B. However, it should be noted that
the gauge fields are defined in the eigensubspace {|D1〉, |D2〉},
which cannot be directly measured. To reduce the experi-
mental challenge, it would be more convenient to measure
the population of bare states {|1〉, |2〉, |3〉, |4〉}. We employ
two triangle loops [as labeled by A-B-C-A and A-B′-C′-A
in Fig. 1(c)] to extract the non-Abelian gauge field in the
loop B-B′-C′-C-B, with the following parameter settings: For
θ (t ), 0 → θ0 → 0, and for ϕ(t ), ϕ0 → ϕ0 + �ϕ. In the Ap-
pendix we demonstrate that the eigenstates coincide with the
bare states at the starting and ending points, based on the
aforementioned parameter settings. As a result, the tomog-
raphy of the eigenstates can be transformed to that of the
bare states. Additionally, due to the gauge potentials along the
longitude line always vanishing and not contributing to the
line integral in Eq. (1), i.e., Aθ = 0, one can select appropriate
paths with a sufficiently large area to accumulate a consider-
able observable effect. In this case, the effective gauge field of
the square loop is given as

F̄θϕ (θ0, ϕ0) =
(

F̄ 11
θϕ F̄ 12

θϕ

F̄ 21
θϕ F̄ 22

θϕ

)
≈ U2 − U1

iδS′ , (9)

where U1 (U2) is the evolution operator of the triangle loop
A-B-C-A (A-B′-C′-A). The second-order approximation in
Eq. (2) is valid when the angle �ϕ � π .

V. AMPLIFYING THE EFFECT OF NON-ABELIAN GAUGE
FIELDS BY MULTILOOP APPROACH

The distinction between U1 and U2 may not be detectable if
the gauge field within the loop B-B′-C′-C-B is not sufficiently
large. However, a significant advantage of the current method
is that we can enhance the influence of the gauge field by
iterating the progression of the loop A-B-C-A (A-B′-C′-A),
resulting in a more precise measurement. By utilizing the mul-
tiplicity, the evolution operator for N loops can be expressed
as UN = (U ′)N . Hence, if UN can be measured, the evolution
operator for a single loop can be derived as U ′ = U 1/N

N , en-
abling the retrieval of non-Abelian gauge fields. Furthermore,
the evolution operator of the triangle loop can be analytically
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obtained by solving the Schrödinger equation, which is given
by

U g =
(

cos κeiβ i sin κe−iβ

i sin κeiβ cos κe−iβ

)
. (10)

Substituting Eq. (10) into the Schrödinger equation and ex-
panding the quantum state by |�〉 = c1|D1〉 + c2|D2〉, we
have

U̇ g = −Aϕϕ̇U g, (11)

where the overdot means derivation over time t . By adopting
the triangle loop model in Fig. 1(c), we will obtain

β = −α = cos2 φ

∮
cos2(θ/2)dϕ = cos2 φ�ϕ,

κ = cos φ sin φ

∮
cos2(θ/2)dϕ = cos φ sin φ�ϕ,

(12)

where �ϕ is the angle of the triangle loops. One can further
deduce

U g = eiη	h·σ , (13)

where 	h = (sin χ cos ξ, sin χ sin ξ, cos χ ), ξ = β, tan χ =
tan κ/ sin β, and sin η =

√
sin2 κ + cos2 κ sin2 β. The evolu-

tion can be viewed as the quantum state circling around
the axis 	h by an angle of η once (and Nη for N triangle
loops). When �ϕ � π , we have sin κ ∼ κ and cos κ ∼ 0;
thus Eq. (10) can be modified as

U g =
(

1 − iβ iκe−iβ

iκeiβ 1 + iβ

)
. (14)

Meanwhile, according to Eq. (2), we have U ′ = 1 −
F̄θϕ (�ϕ)�S = 1 − ∫∫

Fθϕdθ dϕ, which can easily recover
the result of Eq. (10) for �ϕ � π and φ � π . Therefore, by
measuring the evolution of the triangle loops model, specifi-
cally the geometric gate, we can detect the non-Abelian gauge
field. It can be found that U ′ = U g when �ϕ � π . Further-
more, U g is a geometric gate utilized in adiabatic Holonomic
quantum computation [39–45], which rotates the quantum
state along a specific axis in the Hilbert space. As a result, the
N th root of the evolution operator UN can be comprehended
as extracting a rotation angle from N consecutive rotations.
We thus establish a connection between holonomic quantum
gates and non-Abelian gauge fields.

VI. EXPERIMENTAL CONTROL
AND THE AMPLIFICATION EFFECT

We conduct experiments on a four-level atomic system,
as depicted in Fig. 1(b). The atoms are confined within an
optical dipole trap and cooled to a temperature of 10 µK
via evaporation. A magnetic field is applied along the z axis
to establish the quantization axis, resulting in a frequency
difference of 700 kHz between the Zeeman levels. The ex-
perimental parameters are chosen to be �0 = 2π × 50 kHz
and T = 450 µs, satisfying the adiabatic condition �0T =
45π � 2π . To introduce intermediate coupling g, we keep
φ = π/8. The Allen-Eberly scheme [46] is used to drive θ (t ),

which has the form

θ (t ) =
{
θ0{1 + tanh[b(t − T/4)]}/2, t ∈ [0, T/2)

θ0{1 − tanh[b(t − 3T/4)]}/2, t ∈ [T/2, T ],

(15)

where b = 10/T . Here �ϕ = 0.1π is chosen to meet the
second-order approximation.

We will now discuss the amplification effect resulting
from multiloop evolution. The experiments are conducted
as follows. First, an initial state of |�〉i = |4〉 is prepared.
The system is then driven to evolve along the closed path
A-B-C-A (A-B′-C′-A) and the final population P4 remaining
in |4〉 is measured and the results are plotted in Fig. 2(a).
The experimental data agree well with the theoretical calcu-
lations. Although the control parameter θ (t ) returns to the
initial value at the end, the population does not revert to its
initial state. This is due to the non-Abelian geometric phase
induced in the degenerate subspace. The population decline is
more rapid when θ = 0.6π compared to θ = 0.5π because
the former has a larger enclosed area. In our experiments,
the standard deviation of the experimental data approaches
0.011 after 20 iterations of averaging. To better visualize
the amplification effect of multiloop evolution, we plot the
population of P4 at the end of each loop in Fig. 2(b). For
the case of θ0 = 0.5π , the value of P4 at the end of the first
loop (N = 1) is almost indistinguishable from 1. However, as
the loops progress, P4 decreases to 0.94(3) by the fifth loop,
which is easily detectable in our experimental system. Similar
results are observed for the case of θ0 = 0.6π . Hence, the
impact of non-Abelian gauge fields can be magnified through
a multiloop approach. Nonetheless, the maximum number of
loops is constrained by the coherent time and flight time of
the atomic system upon release. In our particular system, the
Zeeman levels have a coherence time of approximately 4 ms.
Consequently, we have established a maximum of five cycles,
in accordance with the evolution period of T = 450 µs.

We subsequently address the minimum detectable area in
our experiments. Given the spherically symmetric nature of
the non-Abelian gauge field and the fact that the enclosed
flux is independent of both position and shape, we specify the
triangle loop [A-B-C-A in Fig. 1(c)] to discuss this issue. By
setting θ0 = 0.5π and scanning �ϕ, we can tilt the enclosed
area δS′. The criterion for determining the minimal area can be
determined by the minimal detectable population difference
of P4, which is 0.011 according to the standard derivation.
When preparing the system for the state |4〉, the population
P4 versus δS′ with N = 1, 3, 5 is plotted in Fig. 2(c). While
the minimum area required for a single loop (N = 1) is ap-
proximately 0.2π , the minimum area required for five loops
(N = 5) is only about 0.05π . Increasing the number of loops
in the evolution process can therefore improve the measure-
ment resolution of gauge fields.

VII. MEASUREMENT RESULTS
OF NON-ABELIAN GAUGE FIELDS

We will now describe a state tomography method to ex-
tract the non-Abelian gauge fields. Since the parameter θ (t )

023316-4



MEASUREMENT OF NON-ABELIAN GAUGE FIELDS USING … PHYSICAL REVIEW A 108, 023316 (2023)

FIG. 2. Performance of the multiloop approach. (a) Population P4 in state |4〉 for N = 5. The data have been averaged over 10 times.
(b) Final population P4 for N = 1–5. The data have been averaged 20 times. The amplification effect is demonstrated since the population
decreases with N . (c) Minimal enclosing area that can be detected. The threshold of minimal population deviation is set to 0.01 according
to the limitation of the error bar calculation from numerous measurements. The minimal enclosing area decreases as the number of loops
increases where the minimal enclosing area of N = 5 loops is 4 times smaller than that of N = 1 loop.

evolves adiabatically with θ (0) = θ (T ) = 0, the initial state
and the final state are restricted inside the subspace spanned
by {|2〉, |4〉}, which can be regarded as a pseudospin F [47].
We define the final state as |�〉 f = a1|2〉 + b1|4〉 (|� ′〉 f =
a2|2〉 + b2|4〉) when the initial state is |�〉i = |2〉 (|� ′〉i =
|4〉); then the N loops evolution operator is given by UN =
(
a1 b1
a2 b2

), where a2 = −b∗
1 and b2 = a∗

1 to keep UN unitary.
As shown in the Appendix, |a1| = 2〈σz〉 − 1 and arg(b1) −
arg(a1) = arctan(〈σy〉/〈σx〉), where arg(x) gives the phase of
the complex number x. Hence, al and bl (l = 1, 2) can be
obtained by taking the tomography of the pseudospin F [48].
In the Appendix we show that our tomograph is based on
nonadiabatic holonomic quantum gates.

In Fig. 3(a) the final state tomography upon evolution along
the triangle loop with θ = 0.5π and �ϕ = 0.1π is plotted. It
can be seen that F rotates around a specific axis determined
by U g. The experimental results of the first five loops are
represented by the black stars in Fig. 3(a), where the data of
the fifth loop are obtained as 〈σx〉5 = 0.334, 〈σy〉5 = 0.299,
and 〈σz〉5 = −0.894. According to the formulation of UN ,
the evolution operator U5(0.5π, 0.1π ) of five loops can be

obtained and the single-loop evolution operator is obtained as
U (0.5π, 0.1π ) = U 1/5

5 (0.5π, 0.1π ).
We continue to compute the matrix elements of the

gauge fields in the loop B-B′-C′-C-B depicted in Fig. 1(c).
We select the parameters �θ = 0.1π and �ϕ = 0.1π . Ac-
cording to Eq. (5), the non-Abelian gauge fields are given
by F̄θϕ (θ0, ϕ0) = [U (θ0 + �θ, ϕ0 + �ϕ) − U (θ0, ϕ)]/δS′, of
which the evolution operators U are traced by a five-loop evo-
lution. The experimental results along the ϕ0 = 0 longitude
line are shown in Fig. 3(b). The experimental data appear to
be sinusoidal and fit well with the theoretical simulation. Here
the nonvanishing nondiagonal elements |F̄ 12

θϕ | clearly show the
non-Abelian characteristic of the measured gauge fields. As
mentioned before, F̄θϕ is defined in the Cartesian coordinates
with δS′ = �θ�ϕ. To recover the characteristic of the SU(2)
monopole (independent of the field angles), we plot the data
of F̄ S

θϕ = F̄θϕ/sin θ which is shown in Fig. 3(c).

VIII. CONCLUSION

In summary, we have theoretically proposed and experi-
mentally demonstrated an approach to measure non-Abelian

xσ yσ

zσ
(a) (b) (c)

FIG. 3. (a) Tomographic results of pseudospin F at the end of N loops. Black stars denote experimental results of N = 1–5 and red circles
the theoretical simulation of N = 1–17 loops. Pseudospin F rotates along the axis h determined by the geometric gate Ug. (b) Experimental
results of non-Abelian gauge fields. The black dotted line with circles shows results for |F̄ 11

θϕ | and the red dotted line with triangles shows |F̄ 21
θϕ |.

The experimental data have been average for 20 measurements and the error bars are too small to be shown. (c) Refined gauge field in the
spherical coordinates. The black solid line with circles shows results for |F̄ S11

θϕ | and the red solid line with triangles shows |F̄ S21
θϕ |.
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0.99(1)

(a)

(d) (e)

(c)(b)

0.80(2)

FIG. 4. Measurements of noncommutativity of non-Abelian gauge fields. (a) A quantum system undergoing cyclic and adiabatic evolution
in the parameter space will acquire a Wilczek-Zee phase that is associated with a non-Abelian gauge field Fμν . The commutativity of the
gauge field can be detected by observing the final population difference resulting from changing the order of two successive closed loops.
(b) Population difference versus the parameters θ1 and θ2 in C1 and C2, respectively. The population dynamics is shown for evolutions (c) C1C2

and (d) C2C1 at γ ′ = 1. Pink triangles, blue circles, red squares, and gray diamonds denote experimental results for population at each level
|i〉(Pi ), i = 1, 2, 3, 4, respectively, which have been averaged for five measurements. Solid lines show simulation results. (e) Difference in final
population left in |4〉 between composite loops C1C2(P12) and C2C1(P21). A nonvanishing population difference corresponds to the non-Abelian
characteristic while a vanishing population difference corresponds to the Abelian one. The gauge fields can change from non-Abelian to
Abelian by tilting the parameter γ ′. Red circles with error bars show experimental data which have been averaged by ten measurements and
the red solid line is the simulation curve.

gauge fields. This method offers the advantage of amplifica-
tion through multiloop evolution. Moreover, we can accelerate
the manipulation by incorporating a shortcut to adiabaticity
through the addition of an auxiliary Hamiltonian [49–54]. Our
results have the potential to be applied in various studies of
geometrical and topological phenomena in quantum systems.
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APPENDIX: EXPERIMENTAL DETAILS

1. Testing the noncommutation of non-Abelian gauge fields

The non-Abelian gauge fields can be induced in the
degenerate eigensubspaces. To confirm the generation of non-
Abelian gauge field in this four-level system, it is necessary to
examine its major characteristic, which is noncommutativity.
The noncommutativity of Fμν can be detected by analyzing the
corresponding cyclic evolution operator U c associated with
Aμ [28],

U c =
(

U 11 U 12

U 21 U 22

)
= P̂e− ∮

c Aμdμ, (A1)

where P̂ represents the path-ordered operator. As shown in
Fig. 4(a), two different loops C1 and C2 formed by the vector
R(θ, φ, ϕ) in parameter space are adopted. Assuming that
the evolution operators of C1 and C2 are given by U1 and
U2, respectively, then the evolution operators of composite
paths with order C1C2 and counterorder C2C1 will be given
by Uo = U2U1 and Uco = U1U2, respectively. Here U2U1 �=
U1U2 can be validated by the nondiagonal matrix elements
|U 12 (21)

o |2 �= |U 12 (21)
co |2, namely, the population transfers after

evolution. It should be noted that the starting points of C1

and C2 must coincide; otherwise, two loops with disconnected
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starting points may be treated as two noncommutative gates in
geometric quantum computation.

To realize two different loops in parameter space, the
parameters θ , φ, and ϕ of C1 and C2 can be specified as
θ (1 (2)) = θ1 (2) f (t ), φ(1) = φ(2) = γ f (t ), ϕ(1) = 2πt/T , and
ϕ(2) = 2π f (t )t/T , where T is the evolution period. By setting
f (t : 0 → T ) : 0 → 0, the Hamiltonian (3) satisfies H (0) =
H (T ), which experiences cyclic evolution in parameter space.
Here we choose to tilt θ , φ, and ϕ simultaneously since Fθϕ ,
Fθφ , and Fφϕ are all nonvanishing.

One of the primary challenges in testing noncommutativity
is the need to detect the population of eigenstates, as the gauge
fields are defined within their respective subspaces. However,
this obstacle can be overcome by selecting appropriate param-
eter settings. It is evident from Eqs. (4) and (5) that, with the
provided loops C1 and C2, the association between eigenstates
and bare states can be elucidated as follows:

|D1(t = 0)〉 = |D1(t = T )〉 = |2〉,
|D2(t = 0)〉 = |D2(t = T )〉 = |4〉,
|B1(t = 0)〉 = |B1(t = T )〉 = |1〉,
|B2(t = 0)〉 = |B2(t = T )〉 = |3〉. (A2)

Hence, by detecting the population of the bare states under
suitable conditions, one can easily detect the population of the
eigenstates, thereby significantly reducing the experimental
challenge.

The experiments conducted to examine noncommutativity
are carried out as follows. First, we prepare the initial state of
the system to be |�〉i = |4〉 = |D2〉. Next we drive the system
to evolve along the closed paths C1 and C2 and measure the
population P12 = |U 12

o |2 transferred to |2〉 = |D1〉. In contrast,
we drive the system to evolve along the closed paths C2 and
C1 and measure the population P21 = |U 12

co |2 transferred to the
state |2〉. For more detailed information on how to measure
the population in the four-level system, refer to Ref. [38]. If
the population difference Pd = P12 − P21 �= 0, then Uo �= Uco.

Just like the theoretical simulation shown in Fig. 4(b),
we have set θ1 = 0.4π , θ2 = 0.415π , and γ = π/16 to
achieve maximum population difference and noncommutativ-
ity. Note that all evolution must be adiabatic to ensure that
the system remains in the lower subspace where the Rabi
frequency �0 = 2π × 50 kHz and T = 400 µs, satisfying the
adiabatic condition �0T = 40π � 2π . The population dy-
namics during the evolution of C1C2 and C2C1 are illustrated
in Figs. 4(c) and 4(d), respectively. The pink triangles, blue
circles, red squares, and gray diamonds represent the experi-
mental data for population Pi at level |i〉, where i = 1, 2, 3, 4.
Meanwhile, the solid lines depict the simulation results. The
final population of |2〉 is 0.80(2) for C1C2 and 0.99(1) for
C2C1.

Hence, it has been established through noncommutativity
that the induced gauge fields must be non-Abelian. Addition-
ally, the properties of the induced gauge fields can be modified
by varying γ ′ = γ /(π/16). In Fig. 4(e) it can be observed that
when γ ′ = 0, the four-level system is reduced to two two-level
systems, constructed by {|1〉, |2〉} and {|3〉, |4〉}, respectively.
Each of the two subsystems induces an Abelian field and thus
there is no population difference. On the other hand, when

FIG. 5. Calibrating the phases and amplitudes of the mi-
crowaves. (a) Electronic circuits of the microwave system. To keep
phase coherence between different microwaves, all eigensources are
synchronized to the same atomic clock: FS725, the atomic clock;
ADF4351, eigenmicrowave sources; and DAX22000, two-channel
arbitrary waveform generator (CH1 and CH2). By mixing the signals
from eigensources and radio sources, the arbitrary time-varying am-
plitude, frequency, and phase of the microwave field can be achieved.
(b) Rabi frequencies of the intermediate coupling g controlled with
σ±. Black circles denote σ+ and blue triangles σ−. The red solid
line is the fitting curve with a polynomial. The Rabi frequencies
of σ+ and σ− can be adjusted to be equivalent at varying control
voltages. The population difference is obtained by scanning the rel-
ative phases between two microwave pulses: (c) σ± versus π and
(d) σ− versus π . Red solid lines are the fitting curves with the
form f (φab) = √

�2
a + �2

b + 2�a�b cos φab, where �a and �b are
the Rabi frequencies and φab is the relative phase. Blue dots with
error bars show the experimental data.

γ ′ = 1, we arrive at the case depicted in Figs. 4(c) and 4(d).
The total variation of Pd during the interval γ ′ ∈ [0, 1] is
illustrated in Fig. 4(e).

2. Experimental setup

The experimental setup is shown in Fig. 1(b). Cold atoms
are trapped in an optical dipole trap and cooled down to a
temperature of 10 µK through evaporation. Three microwave
horn antennas (here the σ−-polarized microwave horn antenna
is omitted, which is used for initial-state preparation and quan-
tum state tomography) are employed to couple different levels
of 87Rb. The two microwaves, which are individually π po-
larized, originate from a single linearly polarized microwave
horn antenna. These microwaves are utilized to realize π tran-
sitions [that is, the transition between |1〉 (|3〉) and |2〉 (|4〉)].
Two additional σ±-polarized microwaves, which stem from
the σ+-polarized microwave horn antenna, are not considered
independent. This is because the antenna is not completely
pure and there is backreflection from the surrounding environ-
ment, resulting in the production of σ−-polarized microwaves
from the same antenna. Therefore, the σ± transition of the
intermediate coupling, which refers to the transition between
|2〉 (|4〉) and |3〉 (|1〉), can be achieved using only one circular
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polarization horn antenna. As shown in Fig. 5(a), the
microwave eigensources are generated by frequency synthe-
sizers (Analog Devices, ADF4351) that are all connected to
the same atomic clock. All horn antennas, including those po-
larized as π , σ±, and σ−, emit microwaves that are generated
from a device (Waveponds, DAX22000-8M) through a pro-
cess of mixing radio frequencies with their eigenfrequencies.

We introduce intermediate couplings between the two sin-
gle qubits (|1〉, |4〉 and |2〉, |3〉) to induce non-Abelian gauge
fields. The σ+ and σ− transitions in the intermediate coupling
should be equal according to the Hamiltonian (3), which can
be realized by regulating the position of the σ± horn an-
tenna. We prepared the system to be in the state |2〉 or |4〉
and measured the Rabi oscillation caused by the σ+ and σ−
transition microwaves, respectively. Based on the measured
Rabi frequencies, we meticulously adjusted the position of
the σ± horn antenna until the σ+ and σ− transitions in the
intermediate couplings were equal. The data for σ+ and σ−
transitions are presented in Fig. 5(b), which clearly illustrates
that the Rabi frequencies of σ+ (represented by black circles)
are equivalent to those of σ− (represented by blue triangles)
across varying control voltages. This confirms the successful
achievement of intermediate coupling.

3. Calibration of the relative phases

To achieve the four-level Hamiltonian (3), precise calibra-
tion of the relative phases among the microwaves is essential.
During the experiment, phase differences may arise due to var-
ious factors such as transport paths, electronic delays, and the
radio frequencies used for initializing the microwave phases.
To address this issue, we detect the relative phases of the
microwaves by observing the interference between the Rabi
frequencies of the corresponding microwaves. We begin by
preparing the system in the initial state |4〉 and tuning two
of the microwaves to be resonant with both |4〉 and |3〉. The
resulting induced population is dependent on the synthetic
Rabi frequency, which is determined by the phase difference
between the Rabi frequencies of the two microwaves. By
measuring the population, we can extract the relative phases
between the microwaves.

In Figs. 5(c) and 5(d) the relative phases between the
π -transition microwave and one of the σ± (σ−) transitions
are presented. The lowest population corresponds to zero
phase difference. The experimental data are represented by
blue circles with error bars, while the theoretical curves

FIG. 6. Quantum state tomography based on nonadiabatic holo-
nomic single-qubit gates. Bare states |1〉, |2〉, and |4〉 form a �

configuration where |1〉, |2〉 and |1〉, |4〉 are coupled by the π - and
σ−-transition microwaves, respectively.

are depicted by red solid curves in the form of f (φab) =√
�2

a + �2
b + 2�a�b cos(φab). The Rabi frequencies are de-

noted by �a and �b and the relative phase is indicated by φab.
Finally, we adjust the phase of one microwave, specifically
the π -transition microwave, and then align the phases of the
σ±- and σ−-transition microwaves to meet the required phase
conditions. We note that the two channels of the π -transition
microwave are produced from the same source and trans-
ported along identical paths, resulting in their phases being
automatically synchronized.

4. Quantum state tomography and measurement errors

In this section we will introduce how to obtain the tomog-
raphy of the pseudospin spanned by |2〉 and |4〉. By utilizing
the complete control of the system through microwaves, we
will utilize the nonadiabatic holonomic single-qubit gates to
achieve quantum state tomography. We consider a three-level
system composed of {|2〉, |1〉, |4〉} as illustrated in Fig. 6.
The interaction Hamiltonian in the rotating frame will take
the form [11].

Hnd = �21(t )eiϕ2 |2〉〈1| + �41(t )eiϕ4 |4〉〈1| + H.c. (A3)

By parametrizing �21 = �nd sin θnd and �41 = �nd sin θnd

with ϕnd = ϕ2 − ϕ4 + π and �nd =
√

�21(t )2 + �41(t )2, the
dynamics can be considered as the resonant coupling
between the states |b〉 = sin(θnd/2)e−iϕ |2〉 − cos(θnd/2)|4〉
and |1〉, while the dark eigenstate |d〉 = cos(θnd/2)|2〉 +
sin(θnd/2)eiϕ |4〉 is decoupled. Hence, when the condition for
cyclic evolution is satisfied (i.e.,

∫ τ

0 �nd dt = π , where τ is the
evolution period), a specific single-qubit gate can be obtained
for the basis states |2〉 and |4〉, as shown by

Utomo =
(

cos θnd sin θnd e−iϕ

sin θnd eiϕ − cos θnd

)
. (A4)

By choosing specific parameters in Eq. (A4), i.e., θnd =
π/2 and ϕnd = 0, the σy operation can be realized, while

FIG. 7. Error bars on the experimental data decrease as the num-
ber of measurements increases. As the number of measurements
approaches a certain threshold, the error bars converge towards a
value of 0.011. This value can be used as a criterion for determining
the minimum detectable signal.
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θnd = π/2 and ϕnd = π/2 correspond to the σx operation.
In our experiment, we need to measure three components of
the Bloch vector, namely, 〈σx,y,z〉. The expectation value of
〈σz〉 can be determined by measuring the atomic population
difference between states |2〉 and |4〉. In order to measure the
expectation value of Bloch vectors 〈σx〉 and 〈σy〉, a π/2 mi-
crowave pulse is applied with a phase of either 0 or π/2. This

pulse is used to rotate the Bloch vector accordingly before the
population difference measurement is taken. We now discuss
measurement errors. As depicted in Fig. 7, the error bars
for population P4 decrease as the number of measurements
increase. Eventually, the error bars converge to a value of
0.011, which can be considered as the threshold for detecting
the smallest possible signal.
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