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Variations of the Kibble-Zurek scaling exponents of trapped Bose gases
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We study the vortex nucleation dynamics in inhomogeneous atomic Bose gases quenched into a superfluid
phase and investigate the dependence of the Kibble-Zurek (KZ) scaling exponent on the underlying trap con-
figuration. For samples in a number of different inhomogeneous traps, we observe the characteristic power-law
scaling of the vortex number with the thermal quench rate, as well as an enhanced vortex suppression in the outer
regions with lower particle density, in agreement with the causality effect as encapsulated in the inhomogeneous
Kibble-Zurek mechanism (IKZM). However, the measured KZ scaling exponents show significant differences
from the theoretical estimates, and furthermore their trends as a function of the underlying trap configuration
deviate from the IKZM prediction. We also investigate the early-time coarsening effect using a two-step
quench protocol as proposed in a recent study and show that the interpretation of the measurement results
without including the causality effect might be misleading. This paper provides a comprehensive study of
vortex formation dynamics in quenched Bose gases confined in inhomogeneous trapping potentials and calls
for a refined theoretical framework for quantitative understanding of the phase transition and defect formation
processes in such inhomogeneous systems.
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I. INTRODUCTION

The Kibble-Zurek mechanism (KZM) provides a frame-
work for understanding the universal, nonequilibrium dynam-
ics of a system undergoing a second-order phase transition
[1–3]. Such a process is accompanied by the formation of
independent phase domains as a system crosses the critical
point of the transition. The merging of these domains leads
to the formation of topological defects in the system. One of
the ways in which this universality manifests itself is through
the dependence of the defect number density on the rate at
which the system is quenched through the critical point [4,5].
The KZM predicts a power-law scaling of the defect number
density with the sample quench rate, as observed in many
experimental studies using superfluid helium [6–9], liquid
crystal [10], superconductors [11,12], ion chains [13–15], and
ultracold atomic gases [16–22].

The original predictions for the Kibble-Zurek (KZ) scaling
exponent consider homogeneous systems in which the entire
sample simultaneously undergoes phase transition. Ultracold
atomic gas experiments often use inhomogeneous trapping
potentials for confining and cooling the thermal sample. This
leads to inhomogeneous particle density distributions. There-
fore, although the defect number density displays a power-law
dependence on the quench rate, a quantitative comparison
with theory necessitates that the inhomogeneity of the system
be taken into account.
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Spontaneous defect formations in inhomogeneous and ho-
mogeneous systems differ in two crucial respects. First, in
inhomogeneous samples, not only the critical temperature but
also the relative thermal quench rate acquires a local depen-
dence, with different parts of the system undergoing phase
transition at different times. Second, the defect formation is
causally determined by the competition between the spread
of the local order information and the speed of propaga-
tion of the phase transition front. When the phase transition
front propagates significantly slowly, the corresponding slow
growth of the ordered phase may lead to defect suppression.
We call this the causality effect [23]. Such considerations
lead to the inhomogeneous Kibble-Zurek mechanism (IKZM)
which accounts for the phase transition dynamics in systems
with density inhomogeneities [24], and in power-law trapping
potentials with appropriately chosen quench rates it predicts a
larger scaling exponent for a system with the same universal-
ity class as the analogous homogeneous case.

Recent developments in large-area sample production in
ultracold atomic gas experiments have enabled in-depth
studies of the KZM, where the normal-to-superfluid phase
transition is driven by controlled evaporative cooling and
quantum vortices are created as effective topological point
defects. Using strongly interacting 6Li Fermi gases, the uni-
versal power-law scaling behavior was demonstrated in the
BCS–Bose-Einstein condensate (BEC) crossover regime [21],
where the microscopic character of the pairing mechanism
changes from loosely bound Cooper pairs to tightly bound
molecules. In subsequent experiments with large-area 87Rb
samples, saturation of defect numbers for rapid quenches was
observed and investigated. Such saturation behavior, which
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lies beyond the conventional KZ scenario, has revealed the
possible significance of early-time coarsening of the order
parameter during the initial stages of condensate growth [19].
Moreover, the large-area samples allow for statistical anal-
ysis of the defect position distribution within the quenched,
inhomogeneous samples, where an increase of the KZ scaling
exponent was observed in the outer regions with higher atomic
density gradient, compared to the central region [23]. This
qualitatively corroborates the causality effect.

Although a power-law scaling of the defect number within
a relatively slow quench regime was observed in all of these
experiments, a quantitative understanding of the measured KZ
scaling exponent for inhomogeneous atomic gases has not
been fully established yet. In the study with strongly interact-
ing inhomogeneous Fermi gases of 6Li in a harmonic trapping
potential, the measured KZ scaling exponent [αKZ = 2.24(9)]
showed a decent agreement with the theoretical estimate of
≈7/3 from IKZM [21]. However, in an elongated sample of
Bose gas of 87Rb, with a quartic density profile along the axial
direction [25], the measured value of the KZ scaling exponent
[αKZ = 2.6(1)] was observed to be significantly larger than its
estimated value of ≈16/9 under the power-law trap assump-
tion [19]. This discrepancy necessitated a study of the trap
geometry dependence of the different mechanisms involved in
the vortex formation process. In addition, a subsequent study
examining the role of the above-mentioned early-coarsening
effect in vortex number suppression highlighted its implica-
tions not only for the saturation of vortex numbers at high
quench rates but also for the resultant changes to the KZ
scaling exponent [26].

As a natural extension, in this paper, we present a study of
spontaneous defect formation in a number of inhomogeneous
samples of quenched Bose gas of 87Rb. In a range of different
trap configurations, we observe the characteristic power-law
scaling of the defect number with the thermal quench rate, as
well as the universal saturation behavior of vortex numbers at
rapid quenches. However, we find that the measured values
of the scaling exponents αKZ, as well as their trends as a
function of the trap configuration, significantly differ from the
theoretical estimates based on the IKZM. This is in contrast
to our analysis of the position dependence of the quench
dynamics, which supports the causality effect in IKZM [23].
Subsequently, by adopting the two-step quench protocol [26],
we extend the study to investigate the effect of early-time
coarsening of the order parameter on vortex suppression. In
a harmonic trap, we observe that the vortex suppression factor
also exhibits a power-law dependence on the quench rate after
passing the critical temperature, but surprisingly, this scaling
exponent is comparable to the measured αKZ. This indicates
the limitation of our current treatment of the two-step quench
measurement results for inhomogeneous samples, where the
causal interactions at the boundary of the initial seed conden-
sate are assumed to be insignificant.

Overall, this paper examines various aspects of the phase
transition process and their dependence on the underlying
trap configurations, and emphasizes the need for a refined
theoretical framework for a quantitative understanding of the
observed variations of the KZ scaling exponents.

The rest of the paper is organized as follows. We
first describe our experimental setup and the different trap

FIG. 1. Inhomogeneous BECs in four different trapping poten-
tials, referred to as trap A, B, C, and D, respectively. η = Ry/Rx

denotes the sample aspect ratio, with Rx(y) being the Thomas-Fermi
radius of the trapped condensate for the x(y) direction. Traps B and C
are obtained by focusing a truncated Gaussian laser beam [25]. The
images were taken after a time of flight, showing BECs produced in
the respective traps along with quantum vortices marked by white
dots.

configurations in Sec. II. In Sec. III, we present and discuss the
measurement results of the power-law scaling and saturation
of the vortex number, the position-dependent suppression ef-
fect, and the two-step quench experiment. Section IV provides
some concluding remarks.

II. EXPERIMENTAL SETUP

In order to study the effect of the trap geometry on the
phase transition dynamics, we exploit the tunability of the
clipped Gaussian optical dipole trap (ODT), where a slit
with an adjustable width is used for truncating the incident
Gaussian ODT beam and modifying the resultant oblate ODT
profile. The use of this slit for generating a large-area BEC
in a clipped Gaussian ODT was described in Ref. [25]. As
the original Gaussian ODT is successively clipped, the axial
trapping potential changes from a harmonic trap to a trap
with a quartic confinement. We also note that the elongation
along the axial direction due to clipping results in an increased
aspect ratio of the trap.

In this paper, we present experimental results from four
different trap configurations (referred to as trap A, B, C, and
D, respectively) that result in the condensate samples shown
in Fig. 1. For a given trap configuration, the experiment begins
with a thermal sample of Rb atoms trapped in a 1070-nm
ODT. The details of the sample preparation are similar to
what was described in Ref. [19]. The sample is evaporatively
cooled by linearly lowering the trap depth from Ui > Uc to
Uf < Uc in a variable time tq, where Uc is the critical trap
depth at which a BEC emerges in the system. While we set
Ui = 1.15Uc, Uf ranges from 0.27Uc to 0.36Uc for the four
traps. We define a quench rate rq characterizing how fast the
system passes through the critical point as rq = Ui−Uf

Uc

1
tq

. After
the sample is quenched to its final temperature, it is held for a
hold time of th = 1.25 s in order to facilitate both the growth
of the condensate fraction and the formation of vortices.
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TABLE I. Typical trap parameters for the four trap configurations
used in this paper. The trapping frequencies ωx,y,z, the Thomas-Fermi
radii Rx,y,z, and the condensate healing length ξ at the trap center are
shown.

Trap configuration ωx,y,z/2π (Hz) Rx,y,z (µm) ξ (µm)

A 7.6, 5.3, 98 76, 87, 6.1 0.20
B 7.8, N/A, 197 75, 129, 2.9 0.21
C 6.8, N/A, 164 65, 244, 2.6 0.27
D 8.2, 3.2, 27 57, 153, 17 0.25

The condensate is then imaged after a time-of-flight time of
40.9 ms.

Except for the degrees to which the ODT beam is clipped
by the adjustable slit, traps A, B, and C share the same optical
setup. Trap B is obtained by slightly clipping the Gaussian
beam, while trap C is created by clipping the beam even
further until a maximally elongated condensate is obtained.
Trap C is identical to the trap used in our previous works in
Refs. [19,26]. The traps are also labeled by the aspect ratio of
the condensate, η = Ry/Rx, where Rx(y) is the Thomas-Fermi
radius along the x(y) direction. In order to explore the role
of the trap aspect ratio on the defect formation dynamics,
we include trap D in our paper. It is created by focusing an
unclipped Gaussian beam and has the harmonic axial confine-
ment as trap A, but with a much larger aspect ratio. The beam
waist along the z direction at the focus of the ODT beam, and
therefore the trap center, is 25% larger for trap D compared to
trap A, resulting in a slightly weaker trap and consequently a
larger condensate.

Table I shows the relevant trap parameters and typical sam-
ple conditions for the four different trap configurations. We

note that although the trap is less tightly confined along the z
direction in trap D compared to the other traps, we assume that
it is still well within the quasi-two-dimensional (2D) regime,
as suggested by the appearance of highly visible vortex cores
over the entire sample area (Fig. 1). However, even in the case
of a three-dimensional (3D) sample with vortex line defects,
the ensuing discussions about the results of experiments in this
trap configuration still hold. Since the KZ power-law scaling
exponent depends on the difference between the dimensions
of the system D and the defect d , a 2D sample (D = 2) with
vortices (d = 0) has the same D − d value as a 3D sample
(D = 3) with vortex lines (d = 1), and therefore the same KZ
scaling exponent [27].

As is seen in Fig. 1, we observe multiple quantum vortices
in the condensate images. For fast quenches, the maximum
vortex numbers in each of the trap configurations easily
exceed 20. In order to reduce the time taken to count
these vortices and to accurately record them, we rely on a
machine-learning-based vortex counting algorithm developed
and optimized for our system, and adapted from Ref. [28].

III. RESULTS AND DISCUSSION

A. Power-law scaling and saturation

In Fig. 2(a), we show the measurement results of the de-
fect number as a function of the quench rate for the four
different trap configurations. A couple of key observations
can be made. First, we see that the vortex number exhibits
a power-law scaling with the quench rate in a slow quench
regime for all the trap configurations. Second, as the quench
rate increases, the vortex number shows the characteristic
saturation behavior, as was reported previously [19,21,22]. To
characterize the power-law scaling and saturation behavior of
the defect number, we fit a phenomenological model to our

FIG. 2. Spontaneous vortex nucleation in inhomogeneous Bose gases quenched into a superfluid phase. (a) Log-log plot of the vortex
numbers Nv as a function of the quench rate rq for the four different traps A to D. Each data point is the average of 20 measurements and its error
bar represents the standard error of the mean. The dashed lines are saturation-model fits to the data used for extracting the saturation quench
rate rsat and saturated vortex number Nsat [see the text for details and the insets in (b) and (c), respectively]. (b) Normalized saturation quench
rates rsatτel for the four different trap configurations, where τel is the respective elastic collision time of the samples at critical temperature. The
dashed line is the mean of the four data points and the gray band indicates the 1σ uncertainty bound. (c) Normalized saturated vortex densities
nvξ

2
v , where nv = Nsat/(πRxRy ) is the saturated vortex density and ξv is the characteristic vortex core size. The dashed line indicates the mean

value of the four data points. (d) Nv/Nsat as a function of rq/rsat. The dashed lines show the same saturation-model fits as in (a). Inset: β value
for the different trap configurations.
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data of the form Nv = Nsat[1 + (rq/rsat )−βδ]−1/δ [22]. This
allows us to extract the saturation vortex number Nsat, the
saturation quench rate rsat, and the scaling exponent β. The
δ parameter describes the saturation behavior.

In the inset of Fig. 2(b), we plot the saturation quench
rates rsat obtained for each of the trap configurations. In
our previous studies, defect saturation has been associated
with the finite time required for a condensate to grow in the
system [19,26,29]. The elastic collision time at the critical
temperature, τel,1 provides a characteristic time scale of the
system’s dynamics. Figure 2(b) shows the saturation quench
rates multiplied by the respective elastic collision times τel

for the condensate samples at their respective critical tem-
peratures Tc. We note that the normalized saturation rates for
the different trap configurations are consistent with each other,
suggesting a universal value of rsatτel = 2.6(4) × 10−4, as in-
dicated by the dashed line. This highlights the significance of
universal dynamics of quenched Bose gases in understanding
the defect saturation behavior.

As another probe for examining the universality of de-
fect saturation, we consider the normalized saturated vortex
density ñv = nvξ

2
v [19,21], where nv = Nsat/(πRxRy) is the

saturated vortex density and ξv = h̄/mcs gives the average
vortex core size, where cs = √

2μ/3m is the speed of sound in
a condensate of oblate geometry with a chemical potential μ

and particle mass m. As shown in Fig. 2(c), ñv is consistently
obtained to be in the range of 1–2.5 × 10−4 for our trap con-
figurations, with a mean value of 1.6 × 10−4, indicated by the
dashed line. Compared to a Fermi gas confined in a harmonic
trap [21], the normalized saturated vortex density is roughly a
factor of 2 larger in a Bose gas confined in a similar trapping
potential geometry. The inset shows the corresponding Nsat

values for each trap configuration.
In Fig. 2(d), we plot the normalized vortex number as a

function of the normalized quench rate, where the two axes
are scaled by the saturated vortex number Nsat and the satura-
tion quench rate rsat of the individual traps, respectively. The
dashed lines indicate the normalized saturation-model fits to
the data. They clearly show the variations in the KZ scaling
behavior for the four different trap configurations, which is
the main subject of this paper. As indicated earlier, the β

parameter in the saturation-model fit also characterizes, at
least qualitatively, the power-law scaling observed in these
data. As shown in the inset, the trend in the central value of
this parameter with respect to the trap configuration further
highlights the trap dependence of the scaling behavior.

B. KZ scaling exponents

While the β parameter, extracted from the saturation-
model fit, is suggestive of the power-law scaling behavior, in
order to extract the scaling exponent αKZ reliably, it is neces-
sary to properly determine the range of rq within which KZ
scaling is valid. Evidently, the fast quench regime should be

1The elastic collision time is given by τel = (nσ v̄)−1, where n is
the particle density, σ = 8πa2 is the collisional cross section with
an s-wave scattering length of a, and v̄ = 4

√
kBTc/πm is the mean

particle velocity.

FIG. 3. KZ scaling region. The KZ scaling exponent αKZ was
determined from a power-law fit to the data in a restricted region
given by rl < rq < rh. (a) αKZ from the data of trap D for various
fitting regions with (left) rh = 0.4 s−1 and (right) rl = 0.12 s−1. The
corresponding χ 2

ν values for the fits are also shown. (b) Vortex num-
ber measurement results for trap D [the same data as in Fig. 2(a)].
The blue-shaded region indicates the KZ scaling region suggested by
the observed trends in αKZ and the corresponding values of χ 2

ν in (a).
The dashed line is the KZ power-law fit to the scaling region. The
dotted black line is a saturation-model fit to the whole data.

excluded due to vortex number saturation. The extremely slow
quench regime should also be excluded due to the “finite-size
effect” which results in vortex number suppression [13,24].
Here we outline the method used in this paper for determining
the appropriate KZ scaling regime.

To obtain the proper scaling region, we fit a power-
law function of the form Nv = N0rαKZ

q to various subsets of
the entire dataset and study the variations in the values of
the χ2

ν of the fit and the corresponding αKZ. The results of the
vortex quench data obtained in our sample in harmonic trap D
are shown in Fig. 3(b). The subset of the data that minimizes
the χ2

ν and results in a stable value of αKZ is chosen as the
appropriate KZ scaling region, indicated by the blue-shaded
region. In Fig. 3(a), the left subfigure shows the effect of
including low rate data points into our fit on the values of the
scaling exponent αKZ and the fit χ2

ν . The right subfigure shows
the corresponding effects of including high rate data points
into our fit on these values. As indicated by the plot of the
χ2

ν value for different low and high rate cutoffs, excluding the
two lowest and the three highest rate data points from our KZ
scaling regime is justified as evidenced by the diverging values
of the χ2

ν and the resultant values of αKZ. With this choice of
the KZ scaling region, indicated by the blue-shaded region
in Fig. 3(b), we obtained a scaling exponent of αKZ = 1.8(1).
The KZ scaling regions for all the other trap configurations are
determined using the same strategy. Using this method, we
observed that slow quench rates with Nv < 1 were excluded
from the fit region. This is not surprising since the finite-size
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FIG. 4. KZ scaling exponents αKZ of inhomogeneous Bose gases
for different trapping potentials. The error bars indicate the uncer-
tainties obtained from the fit to the KZ scaling region for each trap
configuration, determined using the scheme described in Fig. 3. Two
horizontal dashed lines show the estimates from IKZM for samples
trapped in power-law potentials with {nx, ny} = {2, 2} and {2, 4},
respectively. The dotted line indicates the value of the KZ scaling
exponent predicted for a homogeneous system.

effect becomes significant in the slow quench regime. We
also find that the optimal high rate cutoff rh is approximately
0.84rsat. Alternatively, this allows us to approximate the KZ
scaling regime by setting the low cutoff rate rl to the lowest
rate with Nv > 1, and the high cutoff rate to rh = 0.84rsat.

Figure 4 displays the KZ scaling exponent as measured in
the four different trap configurations. As observed in traps B
and C, as trap A is elongated along the axial (y) direction by
clipping the incident Gaussian beam, the value of the scaling
exponent increases. We also observe that despite the larger
condensate size in trap D, the measured scaling exponent is
consistent with what is measured in trap A, which is also a
harmonic trap. We also note the similar trend displayed by
the β values for the saturation-model fits to the data for the
different trap configurations, as shown in Fig. 2(d).

Within the framework of IKZM, some of these observa-
tions are quite surprising. As noted earlier, as an important
consequence of the density inhomogeneity of the sample, dif-
ferent parts of the system undergo phase transition at different
times. The probability of vortex formation is governed by the
competition between the speed of the spread of the phase
transition front and the local speed of sound. As a result, one
should expect greater suppression of vortex formation in a
more inhomogeneous sample, and therefore a decrease in the
scaling exponent as the trap becomes more flattened. In other
words, as the trap configuration changes from trap A to trap
C, αKZ should approach the KZ scaling exponent for a 2D
homogeneous sample given by αKZ,Hom = 2/3 and indicated
by a dotted line in Fig. 4. However, the measured values of
the scaling exponents do not agree with this expectation.

According to the IKZM, assuming a power-law trapping
potential of the form V (x, y) ∝ |x|nx + |y|ny , the scaling expo-
nent is expected to have the following dependence on the trap

parameters: αKZ = ( 1
nx−1 + 1

ny−1 )(1+ν)+2ν

1+νz , where ν and z are the
static and dynamic critical exponents of the phase transition,
respectively [24]. With ν = 2/3 [30] and z = 3/2 [20], this
predicts for {nx, ny} = {2, 2} (trap A and D) αKZ = 7/3, and

FIG. 5. Vortex position analysis in trap D. The sample is divided
into two regions: an inner region DI, and an outer region DII. (a) The
vortex number in each region is plotted against the quench rate rq.
The blue and red curves represent the vortex numbers in region
DI and DII respectively. The black curve represents the total vortex
number [the same data as in Fig. 2(a)]. The shaded area indicates
the KZ scaling region. (b) Scaling exponents in the two regions.
The dashed line represents the scaling exponent obtained for the
entire condensate area and the gray band is the corresponding 1σ

uncertainty bound.

for {nx, ny} = {2, 4} (trap C) αKZ = 16/9, with the value of
the scaling exponent decreasing with increasing ny. These
estimates are indicated by the dashed lines in Fig. 4, and are
clearly inconsistent with the measured values.

C. Position-dependent vortex suppression

As detailed in Ref. [23], the causality effect, due to the
competition between the speed of the spread of the phase
transition front and the local speed of sound, leads to a sup-
pression of vortices in the outer regions of a condensate in
a power-law trap [4,24]. To study the impact of this effect on
vortex suppression in a sample in a harmonic trap, we examine
the vortex position distribution in samples created in trap D.
As shown in Fig. 5(a), we analyze the quench data by dividing
the sample into two regions, an inner region DI and an outer
region DII, separated by an isodensity curve, indicated by the
dotted line. We fit the data in the scaling region, indicated
by the blue-shaded region, by a power-law fit function and
extract the relevant scaling exponents. As shown in Fig. 5(b),
the scaling exponent increases from 1.2(1) in region DI, to
2.1(1) in region DII. This is consistent with the trend observed
in trap C [23], and with the presumed role of the causality
effect in vortex suppression in such inhomogeneous systems.
Therefore, this further validates the significance of causal
interactions for defect formations in systems where different
parts undergo phase transitions nonsimultaneously.

Nevertheless, we contrast this qualitative agreement be-
tween the observations of position-dependent vortex sup-
pression and the predictions of the causality effect, against
the aforementioned disagreement in the trend in the KZ
scaling exponent for the different trap configurations. These
observations unequivocally point toward the importance of
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FIG. 6. Two-step quench experiment in trap D. (a) Trap depth evolution for the two-step quench (see the text for details). DA (DB) represents
the inner (outer) region that undergoes a phase transition for U > Um (U < Um). (b) Log-log plot of the vortex number Nv as a function of the
quench rate r2 for the second quench step for different former quench rates r1. Each data point is the average of 20 realizations of the same
experiment and its error bar represents the standard error of the mean. (c) Difference function D = Nv (r1, r2) − Nv (rm, r2) with rm = 0.11 s−1

as a function of r2. The markers indicate the same value of r1 as in (b). (d) D(r1, r2) scaled by the mean of its values at the four lowest r2. The
inset shows f (r̃2) obtained by averaging the four scaled curves, where r̃2 = r2/rm. A power-law fit (dashed line) for the region of r̃2 < 6 gives
a scaling exponent of 1.16(7).

the underlying trapping potential geometry for a quantitative
understanding of the vortex formation dynamics.

D. Two-step quench experiments

Possible explanations for this discrepancy should entail
vortex suppression mechanisms that are more pronounced in
certain trap geometries than in others. In this section, we de-
scribe an extension of the study of the early-coarsening effect
[26] to our harmonic trap D to examine any trap configuration-
dependent coarsening during the initial stages of condensate
growth.

The Kibble-Zurek description of the vortex formation dy-
namics rests upon the adiabatic-impulse approximation. As
the system approaches the critical point and when the relax-
ation time exceeds the time it takes to reach the critical point,
the spatial correlation of the system essentially freezes. This is
referred to as critical slowing down. After passing the critical
point and resuming adiabatic evolution, e.g., at t = tfr, the
average length scale of domains with correlated choices of the
broken-symmetry phase is set by the “frozen-in” correlation
length. However, here it is proposed that the system only
exhibits well-defined domains of independent phases at a later
time td > tfr, allowing for further coarsening of the correlation
length during an early stage of the condensate growth defined
by tfr < t < td [26,31]. This is corroborated by the recent
observation of a latency time at which the condensate growth
commences after the system has crossed the critical point in
a harmonically trapped Bose gas [29]. We refer to this as
the early-coarsening effect, a key departure from a purely
KZ theory governing such vortex nucleation. Traditionally,
the power-law scaling exponent αKZ has been solely associ-
ated with the initial “seeding” process as the system passes
through the critical region. Such an early coarsening of the
order parameter inevitably alters this initial phase structure

and the resultant defect density. This can therefore lead to
an overall scaling exponent quantitatively different from the
IKZM estimate.

Following the methodology outlined in Ref. [26] for study-
ing the early-coarsening effect in trap C, we replicate the
study to assess the role of this effect in vortex formations in
trap D. For this, we employ a two-step quench protocol as
shown in Fig. 6(a). The thermal cloud is initially quenched
from a trap depth of Ui = 1.15Uc to Um = 0.8Uc in time t1 at
a rate given by r1 = Ui−Um

Uc
× 1

t1
. This is followed by another

quench to the final trap depth Uf = 0.36Uc in time t2 at a
rate r2 = Um−Uf

Uc
× 1

t2
. Following a hold time of th = 1.25 s, the

resultant condensate is imaged after a time of flight of 40.9 ms.
We measure the average vortex number Nv at different

values of r2 for a given r1, as shown in Fig. 6(b). In an
inhomogeneous sample, the density inhomogeneity results
in a position-dependent critical temperature, with a higher
critical temperature at the trap center compared to the outer
regions. Consequently, after the initial quench step, a central
subregion DA of the sample undergoes phase transition first, as
shown in the inset of Fig. 6(a). The outer region DB undergoes
phase transition during the second quench step. As a result,
we express the resultant vortex number as a sum of the vor-
tices generated in the two regions: Nv = NA(r1, r2) + NB(r2),
where we assume that NB is independent of r1.

Within this two-step quench protocol, the early-coarsening
effect can be investigated by studying the dependence of NA

on r2 [26]. We isolate the contribution of NA to Nv as

D(r1, r2) = Nv (r1, r2) − Nv (rm, r2)

= NA(r1, r2) − NA(rm, r2) (1)

where rm = 0.11 s−1 is the slowest quench rate realized in our
experiment. In Fig. 6(c), we plot the difference D as a function
of r2 for five different values of r1. As seen in Fig. 6(d), upon
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rescaling this difference by the mean value for the four lowest
rates, we note that all the four curves overlap for r2 < 0.5 s−1.
This justifies a factorization of the form D = f (r̃2)D(r1, rm)
with r̃2 = r2/rm. It is reasonable then to assume the relation
NA(r1, r2) = f (r̃2)NA(r1, rm). From this we interpret f (r̃2) as
the suppression factor that accounts for the reduced vortex
number in the central region DA due to the coarsening that
occurs during the early stages of the order parameter growth.

The inset of Fig. 6(d) shows the vortex suppression
function f (r̃2) determined by averaging the values for the
five curves. As was observed in trap C [26], in trap D,
f (r̃2) also exhibits a power-law dependence on r̃2 of the
form f (r̃2) ∝ r̃β2

2 . Surprisingly, the resultant scaling expo-
nent β2 = 1.16(7) is also consistent with the measured
value of β2 = 1.3(2) in trap C. The early-coarsening ef-
fect, quantified in this manner, shows no significant trap
configuration dependence, and therefore does not address
the puzzling variation of the overall KZ scaling expo-
nent with the underlying trap configuration. Nevertheless,
given these observations, it is certainly worth investigat-
ing the universality of the early-coarsening dynamics as
quantified above, particularly in the homogeneous density
regime.

On the other hand, we note that the measured value of
β2 is surprisingly large and comparable to the overall KZ
scaling exponent αKZ = 1.8(1). It is therefore unclear as to
how β2 and αKZ relate to each other. Here, it is also worth
questioning the validity of the key assumption inherent in our
current analysis; by setting NB independent of r1, we ignore
the role of any causal interactions at the boundary of the initial
seed condensate in region DA in the growth of condensate
in region DB. In inhomogeneous systems, where presumably
both the causality effect and the early-coarsening dynamics
play a significant role in vortex suppression during the early
stages of condensate growth, it is not so clear how one would
disentangle their effects. This further justifies the need for
similar investigations in a homogeneous system, where the en-
tire sample undergoes phase transition simultaneously and the
role of causally driven vortex suppression can be minimized.

IV. CONCLUSION

We have presented a study of vortex formation dynamics in
inhomogeneous samples of Bose gases of rubidium in differ-
ent trap configurations. The vortex numbers in these samples
show the characteristic power-law scaling with the thermal
quench rate as predicted by the IKZM. We also observe vortex
number saturation at high quench rates, as seen in earlier
studies. The analysis of the saturation quench rates and satu-
rated defect densities for various trap configurations suggests

that the defect saturation can be understood as a result of the
universal dynamics of quenched Bose gases.

We note the qualitative agreement between our obser-
vations of position-dependent vortex suppression and the
causality effect as incorporated in IKZM. However, we also
highlight quantitative as well as qualitative discrepancies be-
tween theoretical predictions for the scaling exponents αKZ
and what is measured in our experiments. These suggest the
need for incorporating vortex suppression mechanisms that
are trap configuration specific.

We study one such potential mechanism by extending our
prior investigations into the early-time coarsening of the order
parameter in an elongated sample (trap C) to our harmonic
sample (trap D). With a two-step quench protocol, we find in
trap D, as was observed in trap C, that the early-coarsening
dynamics can be described by a power-law suppression factor
that depends only on the rate of the second quench step. We
also note that the measured value of the scaling exponent of
the suppression factor is consistent with the value measured
in trap C, suggesting that this mechanism is insensitive to
the underlying trapping potential geometry. Moreover, we
observe that this value is significantly large and comparable
to the overall KZ scaling exponent in trap D, reemphasiz-
ing the need to incorporate such early-coarsening effect into
our understanding of vortex formation dynamics beyond the
initial seeding process. It should nevertheless be noted that
the above study of the early-coarsening dynamics, based on
the division of the condensate into two regions, neglects any
causal interactions at their interface and the resultant effects
on the coarsening process. Similar studies in the future should
probe the validity of this assumption and prescribe ways for
incorporating such boundary effects into such an analysis.

This paper would also benefit from applications to other
inhomogeneous systems, as well as to vortex formation stud-
ies in homogeneous samples, where the underlying dynamics
are significantly different. Most crucially, in homogeneous
samples, the role of the causality effect in vortex suppression
is greatly reduced, therefore simplifying the interpretation
of the observations and their connections to the underlying
mechanisms. A direct measurement of the evolution of the
correlation length of the condensate at different time scales,
similar to what was presented in Ref. [20], would also add to
these vortex number studies and shed a complimentary light
on the underlying coarsening dynamics.
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