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Quantum scattering states in a nonlinear coherent medium
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We present a comprehensive study of stationary states in a coherent medium with a quadratic or Kerr
nonlinearity in the presence of localized potentials in one dimension for both positive and negative signs of
the nonlinear term as well as for barriers and wells. The description is in terms of the nonlinear Schrödinger
equation and hence applicable to a variety of systems, including interacting ultracold atoms in the mean field
regime and light propagation in optical fibers. We determine the full landscape of solutions in terms of a potential
step and build solutions for rectangular barrier and well potentials. It is shown that all the solutions can be
expressed in terms of a Jacobi elliptic function with the inclusion of a complex-valued phase shift. Our solution
method relies on the roots of a cubic polynomial associated with a hydrodynamic picture, which provides a
simple classification of all the solutions, both bounded and unbounded, while the boundary conditions are
intuitively visualized as intersections of phase space curves. We compare solutions for open boundary conditions
with those for a barrier potential on a ring, and also show that numerically computed solutions for smooth barriers
agree qualitatively with analytical solutions for rectangular barriers. A stability analysis of solutions based on
the Bogoliubov equations for fluctuations shows that persistent instabilities are localized at sharp boundaries and
are predicated by the relation of the mean density change across the boundary to the value of the derivative of
the density at the edge. We examine the scattering of a wave packet by a barrier potential and show that at any
instant the scattered states are well described by the stationary solutions we obtain, indicating applications of our
results and methods to nonlinear scattering problems.
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I. INTRODUCTION

Scattering by a localized potential is one of the
fundamental paradigms of quantum mechanics, defining
the dynamics and interactions of many-body systems [1].
The linear problem that defines scattering of noninteracting
particles in one dimension is part of any introduction to
quantum physics [2]. On the other hand, the nonlinear
problem of scattering of interacting particles is a substantially
more complex problem and a comprehensive picture is
lacking. A close formal analog to the linear problem can
be found in the mean field description of the scattering
of interacting bosons in terms of a nonlinear Schrödinger
equation (NLSE), where the effect of interparticle interactions
appears in the form of an added quadratic nonlinear term [3].

The nonlinear Schrödinger equation arises in multiple
contexts, its initial applications in 1D propagation being in the
context of self-focussing of light [4], and thereafter many of
the subsequent studies were in the field of nonlinear and fiber
optics [5,6]. In the last few decades, with the creation of Bose-
Einstein condensates (BEC) [7,8], it took on a revitalized role
as the Gross-Pitaevskii equation, which dominated the early
theoretical description of BEC and continues to be relevant
in the mean field regime that captures many of the stationary
and dynamical properties of large condensates [9].

There is a vast literature on the NLSE and its solutions
[10,11]. However, with some notable exceptions we discuss
below, in the context of both optical and matter waves, prior
works fall into two categories: Analytical and numerical

stationary solutions obtained assuming a uniform system,
without a potential [12–16] or with a periodic lattice [17–21];
or time-dependent problems focused on the propagation,
dispersion, and, occasionally, scattering of localized soliton
wave packets. The latter is largely driven by applications
in optical communications with influential theoretical work
[22–25] supported by experiments [26–30]. The creation of
BEC provided a new paradigm for soliton studies with the
intrinsic quantum nature and massive character of matter
waves driving interest in scattering dynamics of solitons by
local potentials, in theory [31–37] as well as in experiments
[38,39]. Active interest continues with possibilities of probing
quantum nonlocality with macroscopic superpositions
involving soliton pairs [40–42] and with recent realization
of matter wave counterparts of breathers [43,44] previously
studied only in optical systems [45].

In contrast, there are few studies of the stationary solutions
of the NLSE in the presence of a localized potential, analo-
gous to the linear scattering problem, and they are generally
limited by different constraining assumptions. The delta po-
tential along with the step potential were examined in [46],
and the dynamics in the presence of delta potential impuri-
ties in [47,48]; bound states in a square well were examined
in [49,50]; resonant transmission without the complications
of reflection successfully utilized stationary solutions to de-
scribe scattering is found in [49,51]; solutions that neglect
nonlinearity outside the potential were studied in [52]; and
a perturbative study in the limit of weak nonlinearity was
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done in [53]. Although the superposition principle does not
apply in the nonlinear problem, an approximate form was
assumed in the studies in [52,53], but not in some subsequent
studies of stationary solutions that specifically examined rect-
angular barriers for repulsive interactions [54,55]. In addition
to the limiting assumptions indicated, the studies were also
restricted to solutions that were bounded at infinity, with one
notable exception [55] which considered a specific type of
bilaterally symmetric unbounded ones in the context BEC
flow through a weak link. This, as we show here, leaves out
a large class of solutions. Furthermore, certain assumptions
were made about the parameters involved that are at best
incomplete, as we will describe in the relevant sections.

The purpose of this paper is to provide a comprehensive
landscape of analytically obtained solutions in the presence
of a localized rectangular potential in one spatial dimension
for a system describable by a quadratic nonlinear Schrödinger
equation, for both positive and negative interactions and for
barriers and wells; this includes solutions that are bounded as
well as unbounded at infinity, the latter allowed within a finite
width potential. All previously studied cases can be obtained
as subsets or limiting cases of our solutions. Notably, typical
descriptions of single solitons in terms of hyperbolic functions
are limiting cases of our solutions in terms of Jacobi elliptic
functions [56].

Such stationary solutions will provide the basis for de-
scribing diverse nonlinear dynamical phenomena, including
the scattering of soliton and solitonic trains in optical or cold
atomic systems, and the relative motion of a potential through
a superfluid [38,39]. The latter has garnered much recent
interest in the context of persistent currents in BEC in ring
configurations [57,58] due to sustainable superfluidity. We
also find solutions for a potential localized along the azimuth
here for such ring configurations in this paper; elsewhere we
have found analogous solutions in the presence of a lattice
[59,60]. Using separate, numerical simulations we also show
here that our analytical solutions are in qualitative agreement
with solutions for smooth barriers with profiles similar to
those associated with focused lasers used in experiments on
persistent flow.

A significant outcome of this work is to demonstrate that
our stationary solutions can have direct utility in the de-
scription of scattering of even nonuniform wave packets, by
numerically scattering a wave packet on a rectangular barrier
and mapping out the resulting transmitted and reflected den-
sities in terms of a finite range of analytical solutions. This
establishes a more reliable approach to applying analytical
solutions to scattering problems in the absence of the super-
position principle.

The paper is organized as follows: Sec. II presents the
physical model and defines the general form of the solutions
and the roots-based approach we will utilize, with Sec. III
defining the physically imposed constraints on those roots.
Section IV defines the crucial impact of boundary conditions
at the potential edges. The effects are contrasted with the lin-
ear limit of zero nonlinearity in Sec. V, which helps us under-
stand how the density changes across the potential boundary
when the nonlinearity is introduced in Sec. VI. In Sec. VII we
show the solutions can have a complex phase shift, and we
describe the significant effects and constraints accompanying

such shifts for both positive and negative nonlinearities. Sec-
tions VIII and IX determine the allowed solutions for a step
potential for positive and negative nonlinearities, respectively.
These are then applied to barrier and well potentials in Secs. X
and XI, respectively. In Sec. XII we study the limitations on
the solutions arising from having a ring structure. Section XIII
compares our solutions with those obtained via numerical
simulations for a smooth barrier. We conduct a general sta-
bility analysis for our solutions in Sec. XIV based on the
Bogoliubov equations [7] for fluctuations. In Sec. XV we use
our solutions to analyze the scattering of a wave packet on a
localized barrier. We summarize our conclusions and future
outlook in Sec. XVI. Two Appendixes provide details of our
calculations and derivations.

II. PHYSICAL MODEL

We consider the nonlinear Schrödinger equation:[− 1
2∂2

x + V + g|ψ |2]ψ = −i∂tψ. (1)

In the context of ultracold atoms which motivates this study,
this is a mean field equation for the expectation of the bosonic
field operator 〈�̂〉 = ψ [7,8]. The 1D description can be con-
sidered an effective picture with transverse degrees of freedom
integrated out due to tight confinement [61]. Taking that to
be cylindrical and harmonic, the trap frequency ω can be
taken to set our units l = √

h̄/(mω), ε = h̄ω, and τ = ω−1,
and the effective 1D interaction is g = 2a defined by the scat-
tering length a. Assuming infinite extent typical of scattering
problems, |ψ |2 defines the number density. The stationary
solutions ϕ(x) = ψ (x, t )eiμt satisfy the time-independent ver-
sion of Eq. (1) with i∂t → μ where the eigenvalues μ define
the chemical potential.

The behavior of the physical observables can be under-
stood best by writing the mean field stationary state in the
polar amplitude-angle form, referred to as the hydrodynamic
picture, ϕ(x) = √

ρ(x)eiφ(x), leading to an equation for the
density ρ,

1
8 (∂xρ)2 − 1

4ρ∂2
x ρ + 1

2α2 + V ρ2 + gρ3 − μρ2 = 0, (2)

and a phase equation that provides an integral of motion,

ρ∂xφ − �ρ = α,

φ(x) = φ(x) − φ(0) = �x +
∫ x

0

α

ρ(x′)
dx′. (3)

This sets the current density J = α, the superfluid velocity
v = α/ρ(x), and angular momentum per particle L = h̄� +
2π h̄α. We include an optional � to allow for rotation in the
case of a finite-sized ring with periodic boundary condition
that we also consider [59].

A first integration of Eq. (2) yields

∂xρ = ±
√

f (ρ), f (ρ)

= 4gρ3 − 8(μ − V )ρ2 + 8βρ − 4α2 (4)

with integral of motion β which can be written in terms of the
integrated expression

β = 1

8ρ
(∂xρ)2 + 1

2ρ
α2 − 1

2
gρ2 + (μ − V )ρ. (5)
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FIG. 1. Features of phase space curves are illustrated with upper panels for positive nonlinearity g > 0 and lower panels for negative
nonlinearity g < 0. (a), (b) Schematics of the cubic function f that sets the density variation, for the case of all three real roots {ri}; the dotted
parts lie in the shaded forbidden region. (c), (d) Corresponding phase space plot of ρ ′ = ±√

f vs ρ, showing the wing-loop structure; the
orientation of the wing depends on the sign of the nonlinearity g. (e), (f) Intersection of curves from different potential regions (labeled “left”
and “right”) determines the matching of solutions at their boundary.

For a constant potential V , the density solution is a Jacobi
elliptic function

ρ(x) = r1 + (r2 − r1)sn2(
√

g(r3 − r1) x + x0, m), (6)

where sn is the elliptic sine function, expressed here in terms
of the roots of the cubic polynomial f = 4g(ρ − r1)(ρ −
r2)(ρ − r3). Those roots determine most of the relevant pa-
rameters

m = r2 − r1

r3 − r1
, μ − V = g

2
(r1 + r2 + r3),

α2 = gr1r2r3, β = g

2
(r1r2 + r1r3 + r2r3). (7)

The additional parameter x0 represents translations nec-
essary to match the boundary conditions at the interface of
different potential regions. The general form of the solution
is given by Eq. (6) for the density and Eq. (3) for the phase.
Solutions that satisfy the physical constraints and boundary
conditions are determined by the cubic function f (ρ) in
Eq. (4), illustrated in Figs. 1(a) and 1(b) for positive and neg-
ative nonlinearity, respectively. Since it needs to be positive
definite, the dotted segments are forbidden. On plotting ρ ′ =
±√

f , the positive and negative branches match up smoothly
along ρ = 0 to create the shapes shown in the adjacent panels
Figs. 1(c) and 1(d).

These phase space plots of ρ ′ vs ρ plots have a character-
istic structure that will guide much of our analysis. They can
typically have a closed loop and an open boomerang shape
which we will refer to as the “loop” and “wing,” respectively.
Alternately, when f (ρ) intersects the axis at only one point,
the loop and the wing merge to create a conjoined profile.
There are concrete physical implications of these segments
that we will discuss at length, but the most basic one is that the
loop signifies oscillating solutions, whereas the wing or the
conjoined parts correspond to solutions that do not oscillate
and can be unbounded.

If the derivative ρ ′ > 0, then the density ρ has to increase,
and if ρ ′ < 0, then ρ has to decrease. This means that the
variation in density can follow the loop only in the clock-
wise orientation. This is true for both positive and negative
nonlinearities. However, as shown in Figs. 1(c) and 1(d), the
wing opens in opposite orientations for positive and nega-
tive nonlinearities. This means that for g > 0, the density
associated with the wing varies such that it approaches the
horizontal axis (ρ ′ = 0) from below and moves away from
it above; while for g < 0, the behavior is opposite. This will
have important implications when there are intersections of
phase space curves from different potential regimes at their
boundary, as sketched for loop segments in Figs. 1(e) and 1(f).

III. CONSTRAINTS ON ROOTS

There are several factors that restrict the allowed space
of solutions. We start with some general considerations. The
ordering r1 < r2 < r3 will always be assumed when the roots
are real. The definition of the parameter α2 = gr1r2r3 and the
requirement that α has to be real to be physically relevant both
constrain the allowed roots.

For positive nonlinearity, when g > 0, there are three cases:
(1) real roots have to be either all nonnegative r1, r2, r3 � 0
or (2) one can be nonnegative and the other two negative or
zero, r3 � 0 and r1, r2 � 0; (3) alternatively, there can be one
nonnegative root and two complex conjugate roots, r1 � 0
and r2 = r∗

3 . The last case has been often disregarded in prior
studies [53,54], since the existence of complex conjugate roots
implies both a complex elliptic modulus and a complex coef-
ficient of the squared Jacobi elliptic function in Eq. (6), but
we will show here that they still provide physical solutions.
Together, these three combinations define the space of the
possible types of solutions for the density in a given region.
Notably for g > 0, since at least one root has to be positive,
the wing or conjoined structures of the phase space curve must
always intersect the ρ axis at ρ � 0. Furthermore, because
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they open on the right as shown in Fig. 1(c), they must lie in
their entirety in the ρ > 0 regime; the loop part has no such
restrictions.

For negative nonlinearity, g < 0, at least one root has to be
less than or equal to zero, but two roots cannot be negative
and three negative roots have no physical meaning. Complex
roots are not allowed since a conjugate pair would have a
positive norm. This means that the only possibility is for all
the roots to be real with r1 � 0 and r2, r3 � 0, and r1 marks
the intersection of the wing with the ρ = 0 axis. Since the
wing opens on the left, shown in Fig. 1(d), this also means for
g < 0, the entirety of the wing lies in the ρ � 0 regime.

Notably, if one of the three roots is zero in any region, with
or without potential, then all of the regions of the system will
necessarily have a zero root. This simply means that α, which
is a measure of the current, needs to be conserved across the
system.

IV. BOUNDARY CONDITIONS

We will consider both step potentials and rectangular po-
tentials. In order to keep the notation consistent, we will label
the region of the nonvanishing potential with subscript P and,
for a rectangular barrier or well, the left and the right of it
with subscripts L and R, respectively, while for a step potential
we will only have L and P regions. The basic element of our
system is a potential step, and matching the boundary condi-
tions at the edge of a step determines the complete solutions.
Without loss of generality, such a potential can be described
by V (x) = V0�(x) where �(x) is the Heaviside step function
and V0 can be either positive or negative.

The chemical potential and current density are conserved
throughout the system, across segments with and without a
potential. In contrast, the parameter β is fixed only within each
region but changes as the potential changes from one region
to the next. Since V = 0 for fL and V �= 0 for fP, from Eq. (4)
it follows

βP = βL − V0ρ0,

 f = fP(ρ) − fL(ρ) = 8V0ρ(ρ − ρ0) (8)

with the values in the different regions set by the density at
the boundary ρL(x = 0) = ρP(x = 0) = ρ0. The edge of the
potential is taken as our coordinate origin. At the boundary,
clearly fL(ρ0) = fP(ρ0) = f0, which serves as the definition
of f0 as the common value at the boundary.

Equation (8) implies that fP = fL at only two points: at
ρ = 0 and at ρ = ρ0. Therefore the functions fP and fL in the
regimes with and without the potential can intersect only at
those two points, which will therefore set the boundary con-
ditions. Figure 2 illustrates this for different scenarios we will
consider. The difference  f = fp − fL is a parabolic function
of the density ρ, represented by a thick green line; it is concave
upwards for V0 > 0 in Figs. 2(a), 2(b), 2(e), and 2(f) and
concave downwards for V0 < 0 in Figs. 2(c) and 2(d). Fur-
thermore, Figs. 2(a), 2(c), and 2(e) have positive nonlinearity
g > 0, whereas Figs. 2(b) and 2(d) have negative nonlinearity
g < 0. Since f (ρ) � 0, the shaded region below the ρ axis is
not allowed; therefore, in most cases, only one intersection is
physical. The physically relevant intersections between fP and

f(ρ
)
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fP

Δf

Density, ρ

Δf
fL

fP

Δf

fP

fL

fP

fL

Δf

Δf
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fP

(e)

(a) (b)

(c) (d)

V� > 0, g > 0, (Zero root)

V� > 0, g > 0

V� < 0, g < 0V� < 0, g > 0

V� > 0, g < 0

V� > 0, g = 0  (Linear)

Δf

fP

fL

(f)

FIG. 2. (a)–(e) The cubic function f (ρ ) is plotted for both side
of a potential boundary, fL with V0 = 0 and fP for V0 �= 0, along
with their difference  f , for various combinations of repulsive g > 0
or attractive g < 0 nonlinearity and potential barrier V0 > 0 or well
V0 < 0. The f from the two regimes generally intersect at two points,
one being always at ρ = 0. The physically relevant intersections are
marked by circles, shaded regions being forbidden. (f) In the linear
case V0 = 0, the function f is quadratic; here a special case is shown
where both intersections are physical.

fL are marked by black circles in Fig. 2. A second intersection
can be seen in all the panels and always occurs at ρ = 0, but
it is unmarked if it occurs in the nonphysical shaded region.

The intersections in f manifest as intersections in “loop-
wing” or “conjoined” structures appearing in the square root
ρ ′ = ±√

f0 as illustrated earlier in the phase space plots in
Figs. 1(e) and 1(f). We can conclude that the phase space
curves for the two regimes can intersect only at a maximum of
three points, with two of them being the positive and negative
roots of ±√

f0, appearing symmetrically above and below
the ρ axis as shown Figs. 1(e) and 1(f). A possible third
intersection can occur at ρ = 0, not shown in that figure, but
corresponding to allowed intersections such as in Fig. 2(e).

When there are three intersections, the density at the
boundary can never be ρ0 = 0 because then the r.h.s. of Eq. (8)
becomes 8V ρ2, and that corresponds to a single point of
intersection of the two curves only at ρ = 0. So, although it is
possible that the density can vanish at the boundary, ρ0 = 0,
that can occur only if that is the sole intersection in the phase
space plots.

Clearly, there can be intersections between the loop, wing,
or conjoined structure of ρ ′ of one regime with any one of
those from the other regimes, leading to different pairings of
solutions across the potential boundary. But, as our analysis in
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the following sections will demonstrate, not all combinations
are physically possible.

V. LINEAR LIMIT

It is interesting to consider a linear system for comparison.
With g = 0, f (ρ) is a quadratic with a parabolic shape, and
the two roots of the equation yield

α2 = 2(μ − V0)r1r2, β = (μ − V0)(r1 + r2), (9)

and μ is a free parameter and identical to the total energy.
When μ > V0, the parabola opens downward, like fL in
Fig. 2(f), and when μ < V0 it opens upwards as assumed for
fP in that same figure.

For μ < V0 physically relevant α requires either (1) r1 <

0, r2 > 0 or else (2) r1 = r2 = 0. Complex conjugate pair of
roots are not possible, their product being always positive,
ruling out cases with a minimum at fP > 0. Case (2) for fP is
shown in Fig. 2(f) and corresponds to solutions that decay in
the region of the potential as e−κx with κ = V0 − μ. The more
general case (1) where the minimum is at fP < 0 corresponds
to linear combination of Ae−κx + Beκx within the potential.
These are ruled out for a step potential since they blow up as
x → ±∞ but are valid solutions for a finite width potential, a
trend we will see often for the nonlinear problem.

When μ > V0 even in the potential region, both parabolas
are downward-facing, and we have oscillatory solutions in
both regions, with at least one physical intersection of fp and
fL at some ρ0 > 0 similarly to the nonlinear case. If there is
a second intersection at ρ = 0, one of the roots r1 = 0, and
so the current vanishes with α = 0 and the oscillations have
nodes. When r1 = r2 �= 0 the solutions are plane waves. Plane
wave solutions for nonzero degenerate roots are impossible
with an upwards parabola since they need to satisfy r1r2 � 0.

We now anticipate the considerations of the next section by
first illustrating them with the linear case. Leaving aside the
case of exponential decay, the solutions are sinusoidal or
plane waves, so the average density is given by 〈ρ〉 = r1+r2

2 ,
with plane waves corresponding to degenerate roots. Using
the expression for β above in Eq. (9) in conjunction with the
variation of the β across a potential step in Eq. (8) we obtain
a relation between the mean densities in the regions with (P)
and without (L) the potential

2μ(〈ρP〉 − 〈ρL〉) = V0(2〈ρP〉 − ρ0). (10)

It is obvious that the density at the boundary ρ0 has to have
a value between the maximum and minimum values of the
density in either region, which means that for a plane wave
or oscillating solutions 2〈ρP〉 � ρ0, so for V0 > 0, r.h.s. of
Eq. (10) � 0 in the above relation. Since μ � 0, being the
kinetic energy, it follows that 〈ρP〉 � 〈ρL〉. The mean value of
the density therefore increases in the region of higher poten-
tial. This is consistent with current conservation: In a region of
higher potential, the net velocity is lower, therefore the mean
density must be higher.

For solutions that decay within the potential, the average
density would approach zero in the limit of infinite extent
of a step. Even for a finite width barrier, when the average
density does not vanish, the current would vanish within the
potential since both roots are zero. This is consistent with

current conservation because, as Fig. 2(f) shows, the function
fL outside the potential also has a zero root, so that the density
oscillations have a node implying vanishing current.

VI. DENSITY CHANGE ACROSS BOUNDARY

Given a solution on one side of a step boundary, we would
like to determine the solution on the other side. Since the
solutions are determined by the roots of f (ρ), we need to
understand how the roots migrate across a potential boundary,
specifically the relation of the roots {r1L, r1L, r1L} on the left
with V0 = 0 with the roots {r1P, r1P, r1P} in the region of the
potential V0 �= 0.

We now track the migration of the roots across the bound-
ary for the nonlinear problem to predict the change of the
mean density. Unlike in the linear case in the previous section,
now μ as well as α and β are fixed by the roots as shown in
Eq. (7). Using those expressions, we rewrite the relation in
Eq. (8) for β as

α2

grnL
+ rnL

(
2μ

g
− rnL

)

= α2

grnP
+ rnP

(
2μ

g
− rnP

)
+ 2V0

g
(ρ0 − rnP ). (11)

Due to symmetry with respect to the exchange of the roots
in the expressions for α, β and μ, here rn represents any one
of the three roots. Thus, the boundary condition above can be
expressed in terms of a function

B(ρ;V0) = α2

gρ
+ ρ

(
2μ

g
− ρ

)
+ 2V0

g
(ρ0 − ρ) (12)

as B(rnL;V0 = 0) = B(rnP;V0 �= 0) = β0, where we can inter-
pret β0 as the constant of integration for V0 = 0. Considered
as two separate equations, the roots in any region of constant
potential are determined by B(ρ) = β0. This is illustrated in
Figs. 3(a) and 3(b), where the function B for each region is
plotted. The intersections of the horizontal dotted line, mark-
ing a specific value of β0, with each curve determine the roots
in the corresponding potential regime. Note the two curves
mutually intersect at ρ0, as should be apparent from Eq. (12).

As the function B(ρ;V0) shifts with changes in the po-
tential, like in Figs. 3(a) and 3(b), the value of the roots, as
set by the intersections of B(ρ;V0) curves with the line of
constant β0, will shift as well. For oscillating functions, we
can easily predict which way the roots will shift, because
r1P � ρ0, r1L � r1P, and likewise for r2P and r3P, we must
have r2L � r2P and r3L � r3P, as shown in Fig. 3(a). At a
critical V0 there is only one intersection with the β0 line,
corresponding to one real root and two complex roots. In-
creasing V0 further leads to negative density regimes, where
the curves B(ρ < 0;V0) migrate upwards to intersect the β0

line leading to two negative roots and one positive root, as
shown in Fig. 3(b).

Consider oscillating solutions on both sides such as in
Fig. 3(a). The nonlinear functions are no longer sinusoidal, so
we can no longer assume the mean density to be the average of
the roots. However, for g > 0, the Jacobi elliptic function that
defines the density Eq. (6), becomes more “flat-topped” [see
Fig. 9(b) below for an example], and the mean value increases
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FIG. 3. The function B(ρ ) is plotted with solid red line for the left region V0 = 0 and blue dashed line for the region of the potential
V0 > 0. Any horizontal slice set by a value B = β0 (thin dotted line) here marks the roots at points of intersections and shows their migration:
Transition of an oscillating to another oscillating function is shown in (a) and to a wing solution in (b) where the negative part of the function
rises to meet the β0 line as the potential V0 increases. (c) Fixing parameters on the left for V0 = 0, except for one root r3L , as the potential
V0 > 0 increases the density transitions from being oscillatory (I, green) to nonoscillatory first on a conjoined phase space curve (II, blue) and
then on the wing of a loop-wing structure (III, red). (d) The transition of the solutions when g is varied at fixed V0, with same legend as in (c).

with the elliptic parameter m, so the linear limit m = 0 when
the density is sinusoidal marks the minimum 〈ρ〉 � 〈ρ〉min =
r1+r2

2 . As the migration of the roots dictates, m = r2−r1
r3−r1

will
be larger within the potential, so 〈ρP〉 − 〈ρP〉min � 〈ρL〉 −
〈ρL〉min and 〈ρP〉min > 〈ρL〉min. Together they imply that the
mean value increases under the influence of a positive poten-
tial step, 〈ρP〉 > 〈ρL〉. The opposite trend is seen for a negative
step, V0 < 0; r1 and r2 decrease while r3 increases within a
potential well, 〈ρP〉 < 〈ρL〉.

If we fix the parameters on the left and increase the po-
tential V0 on the right, the density within the potential step
will transition from being oscillatory on the loop part of phase
space curve to being nonoscillatory first on a conjoined curve
then on the wing of a loop-wing structure. Those phases are
marked in Fig. 3(c) as a function of V0 and r3L for fixed
r1L, r2L. As V0 increases, r2, r3 eventually merge and become
complex conjugates, creating the conjoined structure; further
increase causes a new loop to emerge on the left as in Fig. 3(b),
so the sole real root r1P → r3P now lies on a wing. The oppo-
site trend is seen in Fig. 3(d) for the solutions on increasing
nonlinear strength g keeping V0 fixed.

VII. EFFECTS OF A COMPLEX PHASE SHIFT

We now turn to a parameter that appears almost arbitrary
and is often treated as such, but which, as we now show,
actually plays a significant role in defining the solutions. This
is the phase shift x0 in Eq. (6), which sets the density at the
origin,

ρ0 = r1 + (r2 − r1)sn2(x0, m), (13)

where sn is the elliptic sine function; crucially x0 can in
general be complex-valued, a fact generally overlooked, with
x0 being tacitly assumed to be real for a solution of this
structure [10]. We plot real and imaginary parts of x0 vs ρ0 in
Fig. 4. The Jacobi elliptic function sn(u, m) is double periodic
[56] and the density depends on its square. Thus, the values
of x0 are plotted modulo those periods, mod (Re{x0}, K (m))
and mod (Im{x0}, K (m′)), where m′ = 1 − m and K (m) is

an elliptic integral of the first kind and defines the periodicity
of the elliptic functions. The structure of the function is
revealing, establishing that there are indeed strong constraints
on x0, contrary to what has been stated in previous papers on
this same topic [54]. The value of ρ ′(x = 0) simply changes
sign of x0 as shown, so our discussion will be in the context
ρ ′ > 0 in Fig. 4(a).

The values of x0 are constrained by the necessity of having
real ρ0 value. Specifically, we notice the real and imaginary
parts each varies alternately while the other remains constant,
as we illustrate with Fig. 4(a): when ρ0 � r1, Re{x0} = 0 and
Im{x0} steadily decreases to zero at ρ0 = r1. In the inter-
val r1 < ρ0 � r2, we have constant Im{x0} = 0 while Re{x0}
steadily increases to K (m). Then for r2 < ρ0 � r3, we have
constant Re{x0} = K (m) while Im{x0} steadily decreases from
zero to −K (m′). Beyond that, when ρ0 � r3, the imaginary
part remains constant Im{x0} = −K (m′) while the real part
asymptotically approaches zero.

We can now examine how this plays into the density solu-
tions with ±g. For positive g, with all real roots, we know
from our discussions earlier that physical solutions require
r1 � ρ0 � r2 (oscillatory, loop) or ρ0 � r3 (nonoscillatory,

FIG. 4. The real and imaginary values of the phase shift x0 at
edge of the potential step, as a function of ρ0 the density at the
edge. The real and imaginary parts never vary simultaneously over
any density range. As seen, they alternate: one varies while the other
remains constant, at either zero or ±K (m) for Re{x0}, and zero or
±K (m′) for Im{x0}. The two panels also show that the sign of x0

depends on the derivative ρ ′(ρ0) at the step boundary.
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wing). In the oscillating region we find that in Im{x0} = 0 the
x0 is just the phase shift of the sn2 function. On the wing,
a nonzero Re{x0} still corresponds to a phase shift, but the
Im{x0} being an odd multiple of K (m′) provides an alternate
picture of the how the solution can become unbounded in that
region. We use the identity for sn with a complex argument
shown in Eq. (B1) in Appendix B and use the expressions in
Eq. (B3) for the Jacobi elliptic functions evaluated at K (m),
the sn to obtain

sn(u − iK (m′), m) =
√

m′sn(u, m)

1 − dn2(u, m)
, (14)

where dn is the delta amplitude function; we denote
u = √

g(r3 − r1) x + Re{x0} and we need necessarily have
Im{x0} = K (m′) to make the imaginary part vanish in
Eq. (B1). Clearly the expression above is unbounded as
dn2(u, m) → 1. Notably, unphysical negative densities are
naturally excluded since the range of dn for 0 � m � 1 is
given by

√
1 − m � dn(u, m) � 1.

For negative g, Fig. 1 indicates that for real roots, solutions
can lie only between r2 and r3. Technically there is a wing
ρ0 � r1, but the density cannot be negative. In Eq. (6), for
negative g, the coordinate-dependent part of the argument
becomes imaginary. In the oscillating region between r2 and
r3, the Im{x0} corresponds to a phase shift while the constant
real part actually ensures that the density is oscillating. This is
not so obvious in Eq. (6), since naively the function appears to
oscillate between r1 and r2. We once again use Eq. (B1) and
Eq. (B3) from Appendix B to transform the elliptic function
to get

sn(K (m) + iv, m) = dn(v, m′)
1 − m′sn2(v, m′)

. (15)

Here v = √|g|(r3 − r1) x + Im{x0} and we need necessar-
ily have Re{x0} = K (m) for the imaginary part to vanish in
Eq. (B1). This, however, still does not alter the limits of os-
cillation in Eq. (6). We can remedy that with some additional
identities and transformations for the Jacobi elliptic functions
detailed in Appendix B; we can actually transform the solution
in Eq. (6) for negative g to take a more transparent form

ρ(x) = r3 + (r2 − r3)sn2(
√

|g|(r3 − r1) x + x̃0|m̃), (16)

where x̃0 = K (m) + Im{x0} is a real phase shift and m̃ = r3−r2
r3−r1

This expression has intuitive consistency: In the case of
positive g, we know an oscillating solution takes the form of
Eq. (6) and that x0 is entirely real, corresponding simply to
a phase shift in the density function. We can make the argu-
ment that g → −g simply reflects the function f (ρ) across a
vertical line through the middle root r2, so that {r1, r2, r3} →
{r3, r2, r1} so that r1 lies on the wing and loop occurs between
r2, r3. We see that swapping r1 ↔ r3 in Eq. (6) yields exactly
the same expression as in Eq. (16).

Similar arguments can be made for the complex roots cor-
responding to conjoined solutions. The satisfying and perhaps
surprising conclusion here is that the general form of the
solution Eq. (6) works for all scenarios, regardless of the sign
of g, and x0 plays an essential role in determining whether the
density is on a bounded or unbounded branch. Other solution
forms used [55,62] can be reduced to this by simply allowing

for complex-valued x0. An important point to be stressed in
this context is that regardless of the sign of g, the imaginary
and real parts of x0, respectively, cannot be chosen arbitrarily.
For positive g, Im(x0) = 0 corresponds to an oscillating solu-
tion, and Im(x0) = −K (m′) corresponds to a wing solution.
For negative g, Re(x0) = K (m) gives oscillating solutions,
with no other feasible solutions.

VIII. STEP: POSITIVE NONLINEARITY

The potential step V0 for a medium with positive nonlin-
earity (g > 0) presents the broadest set of possible solutions.
Using our convention in Sec. IV, the step boundary is at
x = 0, with V0 > 0 in region P : x � 0, and V0 = 0 in region
L : x < 0. In a scattering problem, regions with no potential
necessarily have bounded solutions, since they can extend to
infinity. In those regimes we will assume oscillatory solutions
apart from some limiting cases we will consider separately.
Within the potential we will also consider solutions that are
unbounded as x → ±∞, because of their relevance for finite
width potentials, even though unphysical for an infinite extent
potential step. In the context of phase space plots, ρL(x) will
therefore always lie on a loop or asymptotic structure, while
ρP(x) may lie on a loop, a wing, or a conjoined curve. The
last two cases contain solutions unbounded at infinity. We
will determine the distinct classes of allowed solutions by
representing the boundary conditions as intersections between
different types of phase space curves in the two regions.

A. Oscillatory within the potential

We first consider solutions that are oscillatory everywhere,
so that the density lies on the loop portion of the phase space
curves for both regions, and all the roots of f (ρ) are ri � 0.
As discussed in Sec. IV, the phase space curves of the two
regimes can intersect at a maximum of three points. Due to
the symmetry across the ρ axis on the phase space plots,
intersections will generally come in pairs, (ρ0,±

√
f0). The

exception is when ρ0 is a common root for fL and fP in which
case f0 = 0, and that would correspond to the minimum or
maximum of the loop. Based on this, we have the following
distinct types solutions, that we label with “O” for oscillating,
the number of intersections, and indicate whether they occur
at a minimum or maximum: O1 Min, O1 Max, O2, O3, or O2
MM, where MM ≡ Min Max.

Figure 5 illustrates the last three cases. The most common
case is O2 when there are only two intersections shown in
Figs. 5(a) and 5(b), which correspond to oscillatory solutions
of different amplitudes but none with nodes. Cases O1 Min
and O1 Max are not shown since they are limiting cases of
O2, when f0 = 0 and the two intersections shown in Fig. 5(a)
merge into a single point of intersection that coincides with
one of the extremes of the phase space loops. In Fig. 5(b) the
boundary density would then correspond to a minimum or a
maximum. The next most restricted is the case O3 shown in
Figs. 5(c) and 5(d), where the loops intersect at three points
with one of them necessarily being at zero density. But, as
noted in Sec. IV, in this case the density at the boundary
cannot vanish, ρ0 �= 0, so one of the intersections ± f0 �= 0
marks the boundary between the regions.
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FIG. 5. Distinct classes of solutions for a positive potential step
V0 > 0 with positive nonlinearity g > 0, that are oscillating (O) in all
regimes. Left panels show phase space plots with red solid line for
fL and blue dashed line for fP, with the intersections corresponding
to the potential boundary marked by circle. Right panels show the
corresponding density profiles, with the region with the potential
shaded gray. The most general scenario with two intersections O2 is
shown in (a) and (b), and more restricted ones with three intersections
O3 in (c) and (d) and with two intersections O2 MM at both the
minimum and the maximum in (e) and (f).

The most constrained oscillating solution O2 MM occurs
when the loops intersect at zero as well as their mutual max-
imum, shown in Figs. 5(e) and 5(f). This can be viewed as a
limiting case of O3, when the two intersections at ± f0 merge
at the maximum of the two loops. Both O3 and O2 MM cases
have nodes and therefore cannot carry current. The latter is
particularly special because the density oscillations have the
same amplitudes in the L and P regions, but generally different
shapes, as can be seen in Fig. 5(f). This makes it useful for
comparing the effective potential (V0 + g|�|2). Note if the
loop for L has a zero root, current conservation ensures that
there has to be an intersection there since the loop for P has to
have a zero root as well, as noted at the end of Sec. III.

B. Unbounded within the potential

We now examine another large class of solutions where
the density is unbounded ρP(x) → ∞ as x → ∞ which were
previously considered only for certain limiting cases [55] or
omitted entirely [53,54]. With oscillatory behavior in the L
region, there are two subclasses of unbounded density profiles
in the P region: Those that lie on a conjoined curve corre-
sponding to a single real root, and those that lie on a wing
while a loop exists as well. Distinct solutions of both types
are shown in Fig. 6.

In a conjoined curve ρP(x) has only one real root which
has to be nonnegative. As in the previous subsection, the loop
in the L region can intersect the conjoined curve of the P

FIG. 6. Similar to Fig. 5, but showing the distinct cases with
unbounded (U) solutions in the region with the potential. (a–f) Sce-
narios where fP has a pair of complex roots and (g–j) scenarios where
intersections occur on the wing segment of fP. For complex roots,
panels (a) and (b) correspond to U1 Max with intersection at the
maximum point of the fL loop, (c) and (d) the general case U2 of
two points of intersection, and (e) and (f) the special case U3 of three
points’ intersections. For intersections on the wing of fP, panels (g)
and (h) show a general case U2 with two intersections and all roots
positive and (i) and (j) when fP has one positive and two negative
roots.

region at one, two or three points, and we label the solutions
accordingly with “U” denoting unbounded: U1 Min, U1 Max,
U2, and U3. With one of the curves being open, the case of
two-point intersections at both minimum and maximum of
a loop is clearly not possible in this case. The case of one
intersection at the maximum of the loop U1 Max is shown
in Figs. 6(a) and 6(b), and that with two intersections where
ρ0 lies at some intermediate value on the loop is shown in
Figs. 6(c) and 6(d). The case of a single intersection at the
minimum U1 Min is simply a limiting case of this and not
shown. A case with three intersections U3 is possible as in the
previous subsection, when the single real root of the conjoined
curve is at zero, as shown in Figs. 6(e) and 6(f), and for
the same reasons mentioned in the previous subsection, the
density at the boundary ρ0 �= 0 for this case. Qualitatively, the
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FIG. 7. Similar to Fig. 5, limiting cases are shown where two
roots are degenerate for either fL or fP. Panels (a) and (b) show the
case of r1L = r2L for fL , yielding a plane wave; the reverse is possible
as well with plane wave in the potential with r1P = r2P for fP. (c), (d)
r2P = r3P �= 0 and the intersection occurs on the loop part of fP the
density approaches finite constant value. (e), (f) r2P = r3P = 0 for
fP with the relevant intersection on negative derivative ρ ′ < 0 of the
wing leading to a decay solution.

density profiles for all of these solutions are the same except
for the U3 case, when solutions have a node.

The second class of unbounded solution have the density
on the wing when a loop is present as well. Solutions with
two intersections U2 are possible both when all the roots are
positive as shown in Figs. 6(g) and 6(h), and when there are
two negative roots and one positive root shown in Figs. 6(i)
and 6(j). U1 Max solutions can occur as a limiting case of
the former and U1 Min solutions as a limiting case of the
latter, when f0 = 0 corresponds to the sole nonnegative root
of fP(ρ). However, U3 solutions where all three intersections
are on the L loop analogous to Fig. 6(e) do not seem to be
available, since as the P wing gets closer to the zero it tends
to get steeper and less likely to intersect again with the L
loop. In principle, the loops from L and P could meet at zero
in a variation of that plot with the wing still intersecting at
two points, yielding a U3 case, but with the P loop in the
unphysical negative density regime, it is not relevant.

C. Degenerate roots

When any two roots are equal, we obtain limiting cases of
oscillating or unbounded solutions discussed above, depend-
ing on where intersections occur on the phase space curve of
P. Relevant cases are shown in Fig. 7.

When the lower two real roots are equal r1 = r2, the so-
lutions are plane waves, as shown in Figs. 7(a) and 7(b). The
plane wave can be in either region; here we show it to be on the
L side. Clearly the derivative at the edge of the potential must

be zero, hence these solutions can be considered the limiting
cases of O1 Min and O1 Max cases, where L/P collapses to
a point that coincides with the minimum or the maximum of
the P/L loop.

When the two upper roots are degenerate r2 = r3, we have
asymptotic solutions that approach a constant value away
from the step boundary. Since such solutions are by definition
bounded, they can occur in all segments of a phase space curve
including wing or conjoined, and they are valid for an infinite
extent step potential. Asymptotic solutions can occur in either
region, with or without a potential. An example is shown in
Figs. 7(c) and 7(d) with the degeneracy within the P region.
Figure 2 implies that increasing the potential brings the loop
and the wing closer together to create the degeneracy. This de-
termines what type of density solutions across the step would
be compatible with such asymptotic behavior. For g > 0 and
V0 > 0, if ρL is an asymptotic solution on either the loop or the
wing, ρP will be unbounded. If ρP is an asymptotic solution on
either the loop or the wing, ρL must be an oscillating solution.

When the L loop intersects the P curve on the loop section,
as shown in Fig. 7(c), the clockwise circulation along the
curve ensures that the density approaches the asymptote from
below. That also is the reason why the density approaches
a constant asymptotic value: Once it gets to the X -shaped
part in the P curve, it cannot continue on the upper right or
lower left branches because they are discontinuous transitions
within the same region, and the only smooth transition to the
lower right branch is forbidden by the clockwise consideration
because a negative ρ ′ cannot lead to increasing density. On
the other hand, if in Fig. 7(c) the L curve extends farther right
and intersects on the wing of the P curve, then for exactly the
same reasons the density would approach an asymptotic value
from higher values, following the lower right branch of the
X -shaped part of the P curve.

Equation (7) shows that for asymptotic solutions, the
elliptic parameter m = 1, so that wavelength goes to in-
finity implying no periodicity. Asymptotic solutions would
therefore correspond to gray or dark solitons [22,23,26,32–
37,47,55], where in a uniform media one would just have
the P curve with a pair of degenerate roots in Fig. 7(c). The
asymptote in the P region can be extended to the left creating a
dip before it forms another asymptote on the left, creating the
dark soliton. In case of a step potential, depending on whether
the L curve intersects the P curve on the loop or the wing side,
these solutions can be considered limiting cases of O2 or U2
solutions. Only the O2 cases would be allowed in an uniform
medium, with U2 leading to diverging solutions.

A special case of the above can occur when in Fig. 7(c)
the L curve intersects the P curve exactly at the degeneracy
point; in that case the asymptotic solution within the potential
would become a plane wave. Of course, L and P regimes can
be switched to have the plane in the no potential regime. Such
solutions are relevant for example in Ref. [55], where the de-
generate solutions occur outside the potential and unbounded
within it.

When the degeneracy occurs at zero density, r2 = r3 = 0,
and the P loop lies in the negative density regime, we have de-
caying solutions that approach zero asymptotically, as shown
in Figs. 7(e) and 7(f). For g > 0, the decay can occur only on
the side of the higher potential, because as mentioned above
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FIG. 8. Similar to Fig. 5, solutions for a positive potential step
V0 > 0 with negative nonlinearity g < 0 are shown for (a), (b) a
general two-intersection case O2 and (c), (d) the special case O3 with
three intersections. Panels (e) and (f) show a case where ρL (x) has
nodes but ρP(x) does not, impossible with g > 0. (g), (h) A solution
that decays on outside the potential, in contrast with Figs. 7(c) and
7(d) for g > 0 where that can occur only within the potential as with
the linear case.

r2, r3 approach each other to create the required merger as the
potential increases. This is simply an asymptotic solution with
a vanishing limit. Comparing to Figs. 6(i) and 6(j) this can also
be viewed as its limiting case with three intersections instead
of two, U2 → U3.

Decay, asymptotic, and plane wave solutions are all
bounded solutions with similar features. They differ in that in-
tersections for decay solutions will never occur at a minimum
and require a zero root, intersections marking ρ0 for asymp-
totic solutions never occur at whichever extremum the density
asymptote, and plane wave solutions will have intersections
only where the derivative vanishes.

IX. STEP: NEGATIVE NONLINEARITY

With negative nonlinearity, g < 0, as discussed at the end
of Sec. III, complex roots are not allowed, and the wing part
of the phase space curve opens on the left and lies in the
unphysical negative density regimes. So, for a potential step,
the only allowed solutions possible, in any region L or P,
have to lie on the loop part of the respective phase space
curves. Solutions of type O2 with two intersections are shown
in Figs. 8(a) and 8(b), and clearly type O1 Min, O2 Max, and
O1 MM solutions are allowed as limiting cases similarly to the

g > 0 case. Solutions with three intersections, O3, are shown
in Figs. 8(c) and 8(d), where the middle root r2 = 0.

The most interesting case for g < 0, and one not possible
with g > 0, is shown in Figs. 8(e) and 8(f) when solutions can
have nodes in the L regime but are nodeless in the P regime.
Here we do not have to obey the rule as with g > 0 that the
densities in all regions must have a node if one region has
a node. We can still satisfy current conservation condition,
mentioned at the end of Sec. III, which mandates that if one
region has a zero root all regions need have at least one,
because here within the potential the zero root is on the wing
r1P = 0, while the left side has zero root at r2L = 0.

Although not shown here, comparison with Figs. 7(a) and
7(b) confirms that plane waves in either regime are also pos-
sible, since it simply requires the two highest roots to be
degenerate r2 = r3, such that one or both of the loops shrink
to a point. However, asymptotic solutions that require the loop
and the wing meet at a degeneracy point r1 = r2 can occur
only when density decays ρ → 0 because the wing and the
loop lie in negative and positive density regimes, and they can
meet only at r1 = r2 = 0. Such decay solutions may exist in
any potential region, provided it transitions to bounded solu-
tions across the potential boundary; an example with decay
occurring in the L region is shown in Figs. 7(g) and 7(h). Here
r1L = r2L = 0, but to satisfy current conservation r1P = 0.

With negative nonlinearity, these decay solutions would
correspond to a single bright soliton [22,26,32,34–37]: For
example, for a medium without a potential in Fig. 7(g), if
we follow the entire loop in the L region, we would have the
density profile of a single bright soliton, with the return to
(ρ, ρ ′) = (0, 0) marking the asymptotic approach to vanish-
ing density in the other direction.

X. RECTANGULAR POTENTIAL BARRIER

We can construct solutions for the rectangular barrier using
the solutions we have found for the L − P step and their
mirrored counterparts for the P − R step at the right edge
of the barrier. The complete landscape of solutions discussed
above for a step potential are physically relevant for a finite
width barrier. In Fig. 9 we present some examples. With three
regions, there are three phase space curves, depicted with
solid red on the left (L) of the barrier, dashed blue within
the potential (P), and dotted green for the right (R) of the
potential. There are now two points of the intersections mark-
ing the L − P and the P − R boundaries respectively. The
density at the right edge of the barrier at x = a is denoted
ρa in analogy with ρ0 on the left edge, and a is the width of
the barrier.

Figures 9(a)–9(f) assume g > 0 and oscillatory solutions
outside the barrier corresponding to loop segments of the
phase space curves, but illustrate cases for the density lying
on different phase space segments within the barrier: on a loop
in Figs. 9(a) and 9(b), on a conjoined curve in Figs. 9(c) and
9(d), and a wing in Figs. 9(e) and 9(f) when a loop is present
[in this case, on the negative density regime as in Fig. 6(i)].
Outside the barrier, we can also have plane wave or asymptotic
solutions; however, we cannot have decay solutions since they
occur only in the region of higher potential for g > 0, as
discussed in the context of Figs. 7(h) and 7(i).
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FIG. 9. Examples of distinct solutions for a rectangular barrier
are shown, with left panels showing the phase space curves on the
left of (solid red), within (dashed blue). and on the right of (dotted
green) of the barrier shown as gray shaded in the right panels that plot
the density profiles. Panels (a)–(f) have g > 0 and assume oscillating
density, lying on the loop segment of the phase space curve. Within
the barrier, density can be (a), (b) on the loop, (c), (d) the conjoined
form, or (e), (f) on the wing. The two last cases can blow up and set
strong constraints on the width. (g), (h) For g < 0 a bound state can
exist within the barrier, decaying outside; L/R curves coincide in (g)
due to optional symmetry assumed.

For negative nonlinearity g < 0, since the densities have
to lie on the loop segment of the phase space curves in all
regions, all the various types of oscillatory solutions described
in Sec. IX are possible here. The general behavior and ap-
pearance can be surmised from our discussion in the section.
Therefore, in Figs. 9(g) and 9(h) we show only the one ex-
ception to this, and hence the most interesting case, where the
solution decays outside the barrier. Such localization within
a region of higher potential is a curious effect of the negative
nonlinearity and cannot occur in a linear system or for positive
nonlinearity.

There are, however, certain constraints that arise with a
finite width barrier. The primary one is that for those solu-
tions that are unbounded at infinity, the barrier needs to be
sufficiently narrow to intercept only a finite-valued segment
of the density. As apparent from Fig. 6, for such unbounded
solutions the density blows up periodically, and the width
of the barrier has to be less than half of the period. Sec-
ond, since there is only one point with a zero derivative
on wing or conjoined features of the phase space curves, L
and R solutions cannot both have extrema at the boundary

TABLE I. The allowed combinations of solutions at the left (ver-
tical labels) and right step edges (horizontal labels) of a rectangular
barrier. The labels O and U stand for oscillatory and unbounded
solutions, respectively, within the potential. The number represents
intersections between the phase space curves at each edge, and tags
specify if they occur at a minimum, maximum, or both (MM). The
blue shaded cells mark solutions that are not possible due to the
density reaching infinity before reaching the other edge, and the red
crossed cells mark solutions not allowed by current conservation.
Decay, asymptotic, and plane wave solutions are limiting cases of
those listed, when two of the roots are degenerate.

if they are connected by an unbounded solution within the
potential.

Table I depicts all allowed combinations of solutions, using
the labeling we introduced. The solutions outside the barrier
must all be bounded, hence the labels O or U here indicate
the solution type within the potential region P. The numerical
labels and the other tags indicate number of intersections
of the phase space curve of P region with those of the ad-
jacent L and R regions. The column labels represents the
relevant P solution type and phase space intersection on the
left edge of the barrier, and the row labels, the right edge of
the barrier.

The table shows that even when all these solutions for a
step potential satisfy the boundary conditions at on edge, there
are restrictions on those solutions they can pair up with on
the other edge. The blue shaded regions indicate combinations
that are forbidden because the density will go to infinity be-
fore having met the required boundary condition at the other
edge. The red shaded boxes with crossed-out cells in the table
mark combinations that are forbidden by current conservation,
where there would be a zero root on one side of the barrier
but no zero root on the other side. The rectangular barrier
is symmetric, so the solutions put together in this grid are
symmetric across the main diagonal. For example, the element
connecting O1 Min to O1 Max is the same solution as the
element connecting O1 Max to O1 Min, just mirrored about
the center of the barrier. The table does not explicitly list
solutions with degenerate roots, since those are limiting cases
of the solutions shown.
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XI. RECTANGULAR POTENTIAL WELL

When we flip the sign of the potential, changing from a
barrier to a well, V0 < 0 in the P region, we switch to stepping
up in the potential value on the right edge stepping down
on the left edge. This alters the types of solutions allowed
compared to the potential barrier.

The case of attractive nonlinearity, g < 0, is straightfor-
ward, since one root must lie in the unphysical negative
density regime, which also corresponds to the wing part of the
phase space curve. Therefore, the allowed density solutions
are necessarily bound solutions that lie on the loop segment
of the phase space curves and allow only oscillatory or decay
solutions. The behavior is basically the same as for a potential
barrier. So the main takeaway for g < 0 is that the sign of the
potential does not alter the landscape of solutions available.

With repulsive nonlinearity, there are two main consid-
erations: first, comparing Figs. 2(a) and 2(c), changing the
sign of V0 leads to opposite migration of the roots, because
the quadratic function  f in Eq. (8) has opposite concavity.
Second, and more crucially, Fig. 3(c) shows that for g > 0,
as V0 increases the solutions transition from being oscillatory
(region I in that figure) to unbounded (regions II and III), with
the boundary between regions I and II marking decay and
asymptotic solutions. This means that unbounded solutions
will not be allowed within a potential well since V0 increases
outside the well and that would mean physically impossible
unbounded solutions in the L and R regions as well. In fact,
the solutions within the well can only be oscillatory in nature,
since if the solution lies on the boundary of regions I and II as
mentioned above, the increase in the potential outside the well
will tip the solutions over to the unbounded regime II. This is
clearly not an issue for a potential barrier, since the potential
decreases outside the barrier, and solutions that lie in regions
II and III within the barrier can transition to bounded solutions
in or on the edge of region I.

An example of a generic solution for a potential well,
which is oscillating in all regimes, is shown in Figs. 10(a)
and 10(b). However, the conditions above do still allow plane
wave, decay, and asymptotic types outside the well; an exam-
ple with an asymptotic solution on the left of the well is shown
in Figs. 10(c) and 10(d).

Differently from a potential barrier, a well can support
bound states for both positive and negative nonlinearities.
They arise in the same way as with the potential barrier. For
g < 0, outside the well, we need to have degenerate roots
r1 = r2 = 0 and a positive third root r3 > 0. An example is
shown in Figs. 10(g) and 10(h), where decaying densities are
symmetric in the L and R regimes, but such symmetry is not
necessary. For g > 0, similar bound states exist within the
well, oscillating within and decaying outside the well, pro-
vided there are degenerate roots outside the well r2 = r3 = 0
and some negative first root, r1 < 0. These classes of bound
state solutions include localized solutions studied in Ref. [50]
and more recently in Ref. [49].

Something interesting occurs uniquely for a potential well
with repulsive nonlinearity g > 0: When the well depth V0 →
−∞, density at both boundaries match ρ0 � ρa as seen in
Figs. 10(e) and 10(f), and the mean value of the density
approaches a finite limit ρ0/2 with the density oscillating

FIG. 10. Similar to Fig. 9, but for potential well with V0 < 0
in 0 < x < a, shown as unshaded region in right panels. The key
difference with a barrier is that only bound solutions are permitted
regardless of the sign the of nonlinearity. For g > 0, an example
of a solution oscillatory everywhere is shown in (a) and (b) and
asymptotic outside the well in (c) and (d). In the limit of a deep well
|V0| → ∞ and g > 0 the density oscillates with increasing frequency
between 0 and ρ0 (e), (f). Bound states, decaying outside the well,
exist for both positive and negative nonlinearity, shown in (g) and (h)
for g < 0 with optional L/R symmetry.

between 0 � ρ � ρ0 with increasingly higher frequency. This
is illustrated in Figs. 10(e) and 10(f) for sufficiently large
|V0|. This cannot occur for g < 0, since as the well depth is
increased, the roots migrate to values that are not physical
as discussed in Sec. III. For potential barriers, V0 > 0 with
repulsive nonlinearity, as the potential increases the density
becomes unbounded as we concluded from Fig. 3(c), while
with attractive nonlinearity the amplitude of density oscilla-
tions blows up.

XII. BARRIER POTENTIAL ON A RING

Changing the boundary conditions to have a barrier po-
tential in a finite ring topology introduces some interesting
changes in the solutions. Clearly, only oscillating solutions
are relevant for outside the barrier, since unbounded ones are
not possible and decay solutions would not be significantly
impacted. Instead of three regions, the potential, its left, and
its right, on a ring there are only two regions: a single region
outside of the potential and the region inside. Thus, for a
symmetric barrier, the density at both edges must be equal to
ρ0, and the derivatives must match, up to a sign. This can be
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FIG. 11. Examples of solutions for a barrier on a ring topology
with (a), (b) a general case of oscillating density within the potential
and (c), (d) an unbounded solution within the potential shown here
for conjoined case, but which applies also to a wing. There are only
two regions, inside and outside of the barrier, and hence only two
phase space curves in (a) and (c) and the same density at both edges
(b), (d), which requires the unbounded densities (c) in the barrier to
have a negative derivative on the left edge.

understood in terms of the phase-space plot in Fig. 11, there
being only one loop (solid red line) for outside the potential,
its intersections with the loop or wing for within the barrier
(dashed blue line) is the same for both edges apart from the
choice of being above or below the ρ = 0 axis. Examples of
analytical solutions for a ring topology have been previously
examined, but only in terms of oscillating solutions in each
region [13,14].

For any given barrier width, there is at least one solu-
tion which fits these criteria. For oscillating solutions, this
means that there is a solution with either an integer number
of wavelengths which matches the width of the barrier, or
some number of wavelengths which intersect at the edge of
the barrier at the same value ρ0 but at the opposite signs of
ρ ′ at the two edges. The latter case is shown in Fig. 11(b).
In the case of extremely narrow barriers, unbounded solutions
are possible but must have ρ ′ < 0 on the left edge and ρ ′ > 0
on the right edge of the barrier and remain finite in between,
as shown in Fig. 11(d). This is the same as our condition in
the open case where oscillating densities hold for any barrier
width, and imaginary and third root solutions hold only for a
sufficiently small barrier width. Asymptotic solutions are not
possible, as they do not satisfy the criteria that the density and
its derivative must be the same on either side of the barrier.

There is a significant additional restriction for solutions on
a ring. For open boundary conditions as we have considered
so far, the phase has not been an issue, since any well-defined
phase is simply defined by Eq. (3) with � = 0 and it is not a
constraint. But, in a ring, the phase and its derivative must sat-
isfy the periodic boundary condition in Eq. (3) [59]. Without
rotation, a solution can exist only if the phase change around
the ring satisfies φ = 2πn with integer n. However, rotation
provides a continuous parameter � that can be adjusted to
meet the phase constraint for any solution that meets the
density criteria specified above. But it is very relevant that
the vast majority of those solutions will not be valid in the
absence of rotation.

XIII. SMOOTH BARRIER

The choice of rectangular barrier or a step potential which
are piecewise constant is dictated by the fact that we can
find analytical solutions, for the same reason that they are
considered in the linear case. As with the linear scattering
problem, such potentials capture the essence of scattering by
more general potentials. We now show that this is the case for
the nonlinear problem as well.

For convenience of numerical simulation, we illustrate this
with a ring potential, but the primary conclusions are gener-
ally applicable. The periodic boundary condition of the ring
makes it convenient to use a momentum space analysis with a
finite basis. We expand the state and the relevant potential as

ψ =
Nh∑

m=−Nh

cmeimx, V (θ ) =
Nh∑

n=−Nh

vneinx (17)

so the time-independent nonlinear Schrödinger equation re-
duces to a set of N = 2Nh + 1 coupled equations

1

2
(m − �)2cm +

∑
n1,n2

vn1 cn2δn1+n2−m

+ g
∑

n1,n2,n3

c∗
n1

cn2 cn3δn2+n3−n1−m = μcm. (18)

We use a basis size of N = 51 and solve the equations with a
generalized Newton’s method [59] to find the coefficients cn

for a specific potential V (x) and nonlinear strength g. As men-
tioned in the previous section, we allow for the appropriate
rotation � essential to match the phase boundary condition,
so that φ(x) = 2πn for a complete circuit of the ring.

We find the solutions analytically for a rectangular barrier
on a ring as in Sec. XII, taking V0 = 0.6, g = 5, with the
roots outside the potential rL = {1; 2; 5} and density at the
boundary ρ0 = 1.5 and its derivative ρ ′ > 0. The ring size
is specified by requiring the number of periods inside and
outside the barrier to be fixed at 6 and 12, respectively. For
comparison with our numerical solutions on a ring we rescale
the system length L → 2π and rescale all the parameters and
the solutions in proportion and specifically ensure that the
density is normalized to unity on the ring.

In the physics of ultracold atoms, localized barriers or wells
can be created with tightly focused blue or red detuned lasers
which present a Gaussian profile [57,63]. We use a similarly
shaped potential of the form Vsin = sin4(x/2), the sinusoidal
form being convenient for our chosen basis. In order to de-
termine whether the analytically obtained solutions for the
rectangular barrier are also applicable for smooth barriers rel-
evant in experiments, we gradually transform the rectangular
potential Vrect of dimensions used in the analytical simulation
into the Vsin potential by ramping up the weight from 0 to 1 in
the composite potential

V (x) = (1 − w) × Vrect(x) + w × Vsin(x) (19)

and determine the solutions numerically. For relevant compar-
ison, Vsin is chosen so that the area of the sinusoidal potential
equals that of the rectangular barrier. The results are shown
in Fig. 12. The left column shows the density profile, while
the right column shows the phase of the solution. From top
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FIG. 12. Numerical solutions (thick red lines) for barrier poten-
tial (shaded) on ring, morphing from a rectangular form constructed
with its Fourier components (a), (b) to a sin4(x/2) profile of equal
area (e), (f) with intermediate form 7:3 mixture of the two limits
(c), (d). Left panels show the density, and the right panels show the
phase. The solutions are superimposed with the analytical solutions
(thin blue line) for a rectangular barrier potential of the same dimen-
sions, with V0 = 0.6. The general features of the analytical solutions
remain applicable to a smooth barrier as well.

to bottom, the weights are w = 0, 0.3, 1, respectively. The
original analytical solution with rectangular barrier is always
shown as thin blue lines for comparison. The numerical solu-
tion is overlaid in thicker red lines. The mixed potential V (θ )
together with the rectangular barrier are also plotted in shaded
profile. The finite [sized basis introduces some wiggles in
representing the rectangular potential, but, as Figs. 12(a) and
12(b) confirm, the numerical solution matches the analytical
solution well.

What stands out is that both the density and phase are not
substantially altered in transitioning from the discontinuous
rectangular barrier in Figs. 12(a) and 12(b) to the smooth
sinusoidal barrier in Fig. 12. With regard to the density, the
period remains the same but the profile is shifted; and the
sudden upsurge of the mean density within the barrier in
the rectangular case is transformed to a gradual ramping up
and down across the smooth barrier. The phase also retains
the same profile and follows the lateral shift in the density
modulation. The more conspicuous vertical shift is effectively
a constant offset that is physically irrelevant.

This comparison shows that the analytical solutions deter-
mined in this paper in the context of a rectangular barrier can
be applicable to the broad range of localized potentials cosine
potentials [18,19] or Gaussian potentials typical of lasers in
atomic physics. Of course, any nonsingular potential can be

approximated by a series of adjacent rectangular potentials,
in the nature of a finite Riemann sum. Furthermore, even
solutions for periodic potentials such as Kronig-Penney [17]
or optical grating [20] can build on these solutions for unit
cells in conjunction with Bloch’s theorem.

XIV. STABILITY OF SOLUTIONS

We will now explore the dynamical stability properties of
the solution by considering a small perturbation around the
mean field stationary states:

ψ (x, t ) = ψ0(x) + δue−iμt e−iωt + δv∗e−iμt eiω∗t . (20)

We solve the resulting Bogoliubov equations [3] for the nor-
mal modes of the fluctuations:

(H0 + 2g|ψ0|2 − μ)δu + gψ2
0 δv = wδu

−(H∗
0 + 2g|ψ0|2 − μ)δv − g(ψ∗

0 )2δu = wδu, (21)

where H0 = 1
2 (−i∂x )2 + V . The numerical solutions for the

fluctuations δu and δv are done with same momentum state
expansion used in Eq. (17). We find the normal modes for
fluctuations by diagonalizing the resultant 2N × 2N square
matrix that arises from the Bogoliubov equations. If the angu-
lar frequencies ω of the normal modes have positive imaginary
components Im(ω) > 0, then the fluctuations would grow
exponentially, indicating dynamical instability. For purely
imaginary ω, the eigenstates of fluctuations δu and δv are
identical, but typically not so for complex or real values.

We find that persistent instabilities appear primarily as a
consequence of discontinuous edges and boundaries. Con-
sidering the infinite limit typically assumed in scattering
problems, the boundary effects should be less relevant, but in-
stabilities at potential edges still remain. Our main observation
about the instabilities whether at a boundary or at a potential
is as follows: Solutions are unstable when the derivative of the
density, at an edge of a potential or the whole system, has a
sign opposite to the actual change in the mean value of the
density across that edge. This is illustrated in Fig. 13, where
we plot the unstable modes of the Bogoliubov equations. For
example, if the density has a positive derivative at an edge of
the whole system, that solution will be unstable at that edge,
since the mean value of the density abruptly decreases to zero
outside the system. This can be seen in Figs. 13(a) and 13(b),
with instability localized at one edge but not at the other in
each case. The remaining panels show similar behavior at the
edges of the potential, with the instability localizing at that
edge where the derivative of the density and change in the
mean density are in opposition. For example in Fig. 13(c),
on the left edge of the barrier ρ ′ < 0 going into the barrier
but the mean value increases within the barrier, so there is an
instability localized there, while at the right edge the ρ ′ < 0
going out of the barrier but the density decreases as well, so
there is no instability localized there.

We now examine the trends in the instability as the height
or depth of the barrier changes. In scattering problems, typi-
cally infinite systems are assumed. But, for our simulations,
we have to assume a finite system size, introducing system
edges with accompanying instabilities as mentioned above.
Therefore in order to differentiate the effects of the boundary
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FIG. 13. The eigenstates (thick green lines, left axis label) super-
imposed on images of the density (thin blue lines, right axis label).
Instability is localized in places where the density derivative ρ ′ at an
edge indicates a trend opposite to the change of the actual mean value
of the density. Examples are shown for no potential with instability
localized at the edge of the system (a), (b), a potential barrier at
the barrier edges (c), (d), and a potential well at the edges of the
well (e), (f).

on the stability, we do a comparative study by progressing
from a (1) closed ring with no boundary, to (2) a cut ring,
an open system where the system is adjusted such that the
state at the two extremes match continuously both in density

and phase, and finally to (3) a general open system where the
density and phase of the state at the two edges can be arbitrary
and independent of each other.

The Im(ω) are plotted in Fig. 14 for the three cases. We
comment on the common features before we examine the dif-
ferences. The bulk of the Bogoliubov modes are complex, as
in they have a real and an imaginary part, and they correspond
to a narrow band about zero, apart from a few exceptions we
will identify below. These modes are delocalized and span the
system, and more importantly they go to zero as the system
size is increased. As such, we can reasonably conclude that in
the infinite limit these modes will not be a source of instability.

The most relevant modes are the purely imaginary ones,
and as the strength of the potential V0 varies, they have con-
spicuously the largest absolute value and are separated from
the band of complex eigenvalues. We find that with a few ex-
ceptions, there are always at most one or two conjugate pairs
of such purely imaginary eigenvalues. These modes mark
significant instabilities because they persist with increasing
system size.

In the case of a ring, shown in Fig. 14(a) when V0 = 0,
Im(ω) � 0 there are no instabilities. For V �= 0 apart from
the complex band, there are a series of splitting branches
that increase in magnitude with stronger V0. These mark the
purely imaginary modes: For wells, V0 < 0, there is only one
such pair, while for a barrier V0 > 0 and there are one or
two pairs. The instabilities localized at the potential edge
correspond to the sole imaginary one, or, if a pair, the one
of larger |Im(ω)| with the smaller one being delocalized like
the complex modes. These last are absent with open boundary
conditions, and hence we suspect they are due to the periodic
boundary conditions and the fact that a nonzero rotation �

is necessary to find the stationary solutions for each specific
potential strength. Furthermore, the jagged undulation on the
trend lines on those purely imaginary modes are because
of slight adjustments in potential width as the strength is
changed to ensure identical solutions on either side, which
is necessary for symmetric potential in a ring. As we in-
crease the strength, the instability steadily increases due to the

FIG. 14. Instability of nonlinear scattering solutions of potential barrier or well as a function of the strength (±V0) as gauged by the
imaginary part of normal modes of Bogoliubov fluctuations. The behavior is shown for (a) ring boundary, (b) an intermediate cut ring case
with box boundary condition but matching density and phase at system edges, and (c) box boundary condition. For all, the bulk of the modes
are complex-valued, delocalized, and concentrated on a central band that shrinks with system size. The ring (a) has one pair of outermost
unstable states which branches out from zero at V0 = localized at a barrier edge, also present in the cut ring (b). Additionally, the cut ring has
a pair of constant purely imaginary modes at around ±2 corresponding to instability localized at the system edge. (c) For a box boundary,
instabilities at the edge of the barrier (small loops) and system (large loops) vary periodically with V0 as the ρ ′ at the relevant edges varies with
V0. The sloping curve in (b) is an envelope for the peaks of the smaller loops in (c).
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FIG. 15. Roots associated with stationary solutions are computed for the density and the phase values across the snapshot of a wave
packet (shaded) scattered by a barrier localized at the origin. In the upper panels all the roots are plotted as points: real roots {r1, r2, r3} →
{blue, red, green}, and for a complex root pair {r1, Re{r2, r3}, Im{r2, r3}} → {blue, magenta, cyan}. Four setups are shown: two with packet
width σ = 80 at (a), (b) at some time t f it takes for all of the density to scatter off and through the barrier and 1.4 times that time, and (c), (d)
two with packet width 2σ at t f and 1.15t f . The complex roots appear primarily in regimes of negligible density and hence are not relevant. The
bottom panels are counterparts of the upper row, but zooming into the value of r1 and r2 showing that r1 = r2 (hence only red dots are seen),
which implies plane wave solutions.

progressively sharper variation of the mean density induced
by the potential.

Comparing the ring with a cut ring in Fig. 14(b) confirms
the points made above. To match the phase at the two edges
use the same solution as for a ring, including adjusting �, now
an acceleration and not a rotation for an open ring. Close to the
center there is only one pair of imaginary roots, which match
the localized modes in the ring, while the delocalized branches
are absent. Additionally, there is a pair of purely imaginary
modes |Im(ω)| � 2, separated from the rest of the modes.
These mark instability localized at the boundary. The value
is constant with changing V0 because we keep the endpoints
at the same density and phase.

In the general case, Fig. 14(c), the value of the solutions
at the ends of the system are not necessarily equal, and they
vary with the potential strength. This creates an interesting
periodic variation of the Im(ω) of the mode that corresponds
to the boundary instability as the density at the system edges
change. These are manifest as the large loops seen in the
figure. There is similar variation for the modes corresponding
to the instability at the edge of the potential, seen as smaller
loops. The trace of those modes in Fig. 14(b) forms an enve-
lope for these inner loops confirming their similar origin. We
should stress that both sets of loops are separated by regimes
where those purely imaginary modes appear to be suppressed;
these are regions where the derivative at the edges match the
trend of change of the mean density across the edge of the
potential or the system as a whole, in agreement with our main
observation about the instabilities mentioned at the beginning
of the section.

The instabilities at the system edges will be irrelevant in the
infinite limit, but those at the barrier edges will persist. Even
with finite systems, we conclude that those instabilities can be

suppressed by adjusting the boundary to have density deriva-
tives at the edges following the same trend as the change in the
mean density. The sharpness of the transition accentuates the
instability and will be softened for smoother potentials. Here
we considered instabilities for bounded oscillating solutions
in all the potential regimes. This limits the range of potential
strengths V0 since values even slightly beyond what is shown
in Fig. 14 lead to unbounded solutions.

XV. APPLICATIONS TO SCATTERING

We finally address the question of the relevance of the
stationary states to scattering by barrier potentials. Towards
this end, we scatter a Gaussian wave packet

ψ = 1√
σ
√

π
e−(x−x0 )2/2σ 2

eikx (22)

that is launched towards a rectangular barrier and then exam-
ine the reflected and transmitted fractions after the scattering
is complete, as has been utilized before in studying nonlin-
ear scattering problems [41,61]. We use barrier of width 20,
strength V0 = 0.1, and wave packet with velocity k = 0.5. We
show snapshots of the scattered wave packets in gray filled
silhouettes in Fig. 15.

For the linear Schrödinger equation, this method is very
effective, with the results of the scattering matching analyt-
ical values for transmission and reflection [61]. Qualitative
similarity of wave packet scattering with analytical solutions
was recently established for the case of scattering of a soli-
ton resonant with a bound state [49]. However, in general,
for the nonlinear problem it is more complicated. The lack
of a superposition principle makes it rather meaningless to
define transmission and reflection amplitudes based on any
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stationary solution, although such attempts were made in a
recent work [54]. In general, it is not possible to uniquely
differentiate the incident fraction from the reflected fraction
unlike in the linear problem, making it challenging at best
to define transmission and reflection probability as fractions
of an incident beam. Only when reflection is absent, as in
resonant transmission, has there been meaningful utility of
stationary solutions to describe scattering [49,51]. In general,
scattering problems will include some reflection. So any com-
prehensive description of scattering will necessarily involve
a multitude of stationary solutions. We describe a promising
approach in this section.

The nonlinearity is proportional to the local density, which
will vary for a finite width wave packet that would be typical
in experiments, and hence the intrinsic nonuniformity of the
packet poses a challenge. Specifically, to address the latter
issue, we illustrate consistency for our method with two differ-
ent packet widths, σ = 80 and 160, to assess how the features
observed would behave in the limit of an infinite system. For
meaningful comparison, we normalize the packets to unity
and adjust the nonlinear strength g to keep g|ψ (x = x0)|2 the
same so that the nonlinearity at the peak density matches
for the wave packets’ different width. Since the peak density
scales as σ−1 we use g = 2 and g = 4 respectively.

In order for our stationary solutions to be relevant for the
scattering of finite wave packets, we need to check whether
the scattered packets can be represented with a finite set of
those solutions. Since the Jacobi elliptic functions form an
overcomplete basis, we must take a different approach than
deconstructing them into Fourier components [56]. Instead,
we calculate directly the physical parameters α, β, and μ at
each point of the scattered wave packet at any specific instant
of time. We do this by numerically computing the ρ, ρ ′, ρ ′′,
and φ′ at each point, using Eqs. (2), (3), and (4). Then using
Eq. (7), we can find the corresponding three roots {r1, r2, r3}
at every point of the scattered packet.

We plot those roots in Fig. 15, superimposed on the
scattered wave packets, as colored dots, with the three
real roots in ascending order {r1, r2, r3} → {blue, red, green},
and for a pair of complex roots the real root is
in {r1, Re{r2, r3}, Im{r2, r3}} → {blue, magenta, cyan}. We
show all the roots in Figs. 15(a)–15(d), for two different
widths and for each two different instants of time after scat-
tering. What stands out in these panels is that the complex
roots appear predominantly in the regimes of negligible den-
sity ρ � 0, which means that only the real solutions are
relevant.

Figures 15(e)–15(h) zoom into the real solutions r1, r2 with
r3 off the scale, keeping the density profile at the same scale
as in the upper panels. The panels illustrate a key feature: the
two roots are equal r1 = r2, and hence points of only one
color is visible. Furthermore, since the real roots represent
values of the density, our procedure is validated by the fact
the roots follow the shape of the density of the wave packets,
where the density is significant and moderately uniform. It
is not surprising the solutions match plane waves, since even
for linear scattering regime, density oscillations arise only
due to interference between incident and reflected compo-
nents, which is a consequence of a steady flow of an infinite
stream.

As the scattered packets spread with time, density of the
plane waves will continue to decrease. However, as seen in
Fig. 15, the roots we find continue to match the density profile
regardless of the packet width. As the packet gets wider, there
is a broader region of uniform density indicating a narrow
range of solutions that can describe the bulk of the scattered
packets.

We can therefore conclude that with sufficiently wide
packets and with steady stream flow like in a nonlinear
waveguide, the stationary solutions we derive can provide an
adequate description of the scattering process, similarly to lin-
ear scattering. This method of analyzing a nonlinear scattering
problem is more straightforward than previous methods uti-
lized to study the same problem, which are heavily dependent
on splitting solitons into free and trapped portions [31], or
using split-step Fourier methods with a hyperbolic function
as an initial guess to solve the Gross-Pitaevskii equation [33].
This method of understanding scattering problems may shed
light on BEC flow through a penetrable barrier [38] or BEC
behavior with impurities of either a single Gaussian defect or
correlated disorder [39]. The full landscape of solutions we
have determined here can become relevant in situations where
there is incidence from both directions and there is overlap
between the scattered packets leading to density oscillations.

XVI. CONCLUSIONS AND OUTLOOK

We have determined the full landscape of stationary solu-
tions of the quadratic nonlinear Schrödinger equation in the
presence of a rectangular potential with different boundary
conditions. As a preliminary, we determined the solutions at a
potential step. A significant outcome is the inclusion of a class
of solutions unbounded at infinity that have been generally
left out in prior works but are certainly relevant for finite
width barriers as shown here. We also find a simple unified
expression in terms of a Jacobi elliptic function that describes
the full spectrum of solutions, including those unbounded at
infinity. In these regards, allowing for a complex phase shift
is crucial, and that phase shift comes with some significant
constraints required for physical solutions, both of which were
overlooked previously.

Here we developed an approach based on using the roots
and intersections of curves in phase space that provides an
intuitive way to construct and understand the solutions and
the impact of boundary conditions. This method has allowed
us to determine physical solutions and discard nonphysical
ones simply based on the location and features of those curves
and their intersections. This method can find utility in under-
standing nonlinear systems and scattering problems with more
generalized potentials and higher dimensionality.

The broad utility of the analytical solutions is established
by our comparison with numerically computed solutions for a
smooth barrier. The close qualitative agreement of both the
density and the phase shows that the results obtained here
would be relevant in experiments where smooth potentials are
used, as in stirring of a BEC by a sharply focused laser beam,
which would have a Gaussian profile similar to the one we
used in our comparison.

We did a stability analysis of our solutions and found
that persistent instabilities appear at the edge of the sharp
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boundaries of either the potential or the system as a whole.
Specifically, the unstable modes localize at edges where the
density derivative is correlated inversely to the actual trend of
the density across the boundary.

On the motivating question of how stationary solutions
are relevant in nonlinear scattering problems, considering the
breakdown of the quantum superposition principle, we pro-
vide a definitive answer based on direct comparison with a
numerically simulated scattering of a wave packet. Instead of
simply identifying density ratios as a measure of transmission,
which has meaning only in the linear problem and only in
the steady state, we take a practical approach, where we find
the stationary solutions at each point of the scattered wave.
The close agreement of our solutions with the density profile,
along with the finite range of such solutions needed at any
instant in time, shows that the dynamical nonlinear scattering
can indeed be described with stationary solutions. We expect
that the full landscape of our stationary solutions can be used
in future works to construct descriptions of more complex
scattering scenarios that will included multiple input and out-
put streams.
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APPENDIX A: METHOD FOR ANALYTICAL SOLUTIONS

To generate the analytical solutions for step, barrier, and
well potentials, we utilized Mathematica. The input parame-
ters are the nonlinearity g, the potential height V0, the barrier
width w, the value of the density at the barrier ρ0, and the three
roots of fL satisfying the constraints discussed in Sec. III.
Generally, when we want an oscillating solutions outside of
the potential region, the value of ρ0 is constrained to be
between the two roots defining the loop in the L region. In
exceptional cases for a positive nonlinearity g where asymp-
totic or decay solutions are permitted in the regions outside
of the potential, ρ0 is a value on the wing. Using the input
parameters, Eq. (6) is solved to determine ρL(x), with the
phase shift x0L determined by ρ0 and a choice of the sign
of the derivative. Using fL(ρ) as given in Eq. (8), we find
fP(ρ) and solve for the center roots. Knowing the value of the
density at the edge of the potential, given by ρ0, we then solve
for x0P by inverting Eq. (6). We now have all the parameters
needed to construct ρP(x). A piecewise combination of the
densities in both regions produces the solution for a step
potential.

We follow similar steps to solve for the solution past the
right barrier edge, ρR(x), for a barrier or well potential. To
find fR, we use

fR = fP − 8V0ρ(ρ − ρw ) = fL + 8V0ρ(ρw − ρ0), (A1)

where ρw = ρP(x = w). Using the value of the density at the
right boundary ρw to find x0R and the roots of fR, we have all
of the information necessary to construct ρR(x). A piecewise
combination of the densities in all three regions produces the
full solution for a barrier or well potential.

Based on Eq. (3), we see that since the density is contin-
uous, the phase will also be continuous. The phase may be
solved for directly by substituting the solutions for the density
in the appropriate regions. On a ring, the periodic boundary
condition creates another constraint; an additional linear term
involving rotation ensures that the phase is continuous and
differentiable at all points on the ring.

APPENDIX B: JACOBI ELLIPTIC FUNCTIONS
WITH COMPLEX ARGUMENTS

In this Appendix we will derive Eq. (16) from Eq. (6) with
the only assumption that g < 0. We utilize Jacobi elliptic iden-
tities as given in [56]. Consider a sn function with a complex
argument

sn(u + iv, m) = 1

1 − sn2(v, m′)dn2(u, m)
· · ·

× [sn(u, m)dn(v, m′) · · ·
+ icn(u, m)dn(u, m)sn(v, m′)cn(v, m′)].

(B1)

Since g(r3 − r1) is negative, the only real component is that
of x0. The imaginary part must vanish, else the density will
be imaginary or negative, and we can ensure that provided the
real part of x0 is an elliptic integral of the first kind,

Re(x0) = K

(
r2 − r1

r3 − r1

)
. (B2)

This ensures that only arguments with v remain. When our
argument u is given by an elliptic integral of the modulus used,
we obtain the following values:

sn(K (m), m) = 1,

cn(K (m), m) = 0,

dn(K (m), m) =
√

m′. (B3)

where cn is the elliptic cosine function.
These limiting values, combined with the identity

dn2(u, m) + msn2(u, m) = 1, (B4)

reduce our expression to

sn(K (m) + iv, m) = dn(v, m′)
1 − m′sn2(v, m′)

= 1

dn(v, m′)
. (B5)

Squaring both sides and again using Eq. (B4) we obtain

sn2(K (m) + iv, m) = m′sn2(v, m′) + dn2(v, m′)
dn2(v, m′)

= 1 + m′sd2(v, m′). (B6)

Inserting this back into Eq. (6), we obtain

ρ = r2 + (r2 − r1)(r3 − r2)

r3 − r1

× sd2

(√
|g|(r3 − r1)x + Im(x0),

r3 − r2

r3 − r1

)
. (B7)
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Then we use the relation

cn(u + K, m) = −
√

m′sd(u, m) (B8)

and redefine x0 = K (m) + Im(x0), to write the density
as

ρ = r2 + (r3 − r2)cn2

(√
|g|(r3 − r1)x + x0,

r3 − r2

r3 − r1

)
.

(B9)

Finally, using the identity

sn2(u, m) + cn2(u, m) = 1 (B10)

we arrive at the form used in Eq. (16):

ρ = r3 + (r2 − r3)sn2

(√
|g|(r3 − r1)x + x0,

r3 − r2

r3 − r1

)
.

(B11)

This is a far more intuitive equation for the density, as the
argument is real and elliptic modulus is between zero and one.
From this, we see that 0 � sn2 � 1, and the density oscillates
between r2 and r3. We could also have derived this same
equation through a symmetry argument. Looking at Eq. (6),
we make the argument that flipping the sign of g is simply
like reversing the behaviors of the roots, so that r1 takes on
the role of r3 and vice versa. By simply swapping r1 and r3 in
Eq. (6), we recover Eq. (B11).
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