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Impurities in quasi-one-dimensional droplets of binary Bose mixtures
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Recently created self-bound quantum droplets of binary Bose mixtures open intriguing possibilities for the
study of impurity physics. We show that the properties of impurities embedded in quasi-one-dimensional
droplets are determined by the interplay between back-action and quantum fluctuations. Due to such back-action,
repulsive impurities may form a metastable quasi-bound state inside the droplet. In contrast, attractive impurities
remain bound to the droplet, leading to the hybridization of droplet and impurity excitations, as well as to peculiar
scattering resonances. Interestingly, impurity trapping may result solely from the effect of quantum fluctuations.
These results may readily be probed experimentally by doping the currently available droplets of binary mixtures.
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I. INTRODUCTION

A remarkable manifestation of zero-point quantum fluctu-
ations was recently observed in the formation of self-bound
droplets of ultracold atomic systems. The droplet formation
due to beyond mean-field quantum correction, commonly
known as the Lee-Huang-Yang (LHY) term, was originally
considered in binary mixtures of Bose condensates [1] and
subsequently demonstrated in experiments [2,3]. Moreover,
in recent experiments it was found that LHY-type quantum
fluctuations can prevent the collapse of a dipolar condensate
leading to the generation of arrays of elongated droplets [4–7].
Usually quantum fluctuations are small in dilute quantum
gases, however, in certain situations, it can become compara-
ble with the mean-field interactions, and self-bound droplets
with flat density are produced as a result of competition
between them. The nucleation of such quantum droplets as
well their properties and excitations constituted the focus
of intense research in recent years [8–13]. The experimen-
tal observation of the crossover from droplet to soliton in
a quasi-one-dimensional trap [14] has generated impetus to
study droplets in lower-dimensional geometries [15–18]. Such
a crossover from droplet to soliton has also been investigated
theoretically in quasi-one-dimensional dipolar condensates by
tuning the relative strength of attractive dipolar and repulsive
short-range interactions [16].

In a different context, quantum fluctuations become impor-
tant when mobile impurity atoms in a condensate strongly
interact with the phonon modes leading to the formation
of heavier quasi-particles known as polarons [19–31]. Lo-
calization and self trapping of polarons is a long-standing
issue, which has been investigated for dilute condensates
[19,32–34]. Interestingly, impurities in a quantum droplet may
probe the droplet properties [35–37]. In this work, we consider
the droplet phase of quasi-one-dimensional two-component
Bose-Bose mixtures in the presence of impurities, and investi-
gate the formation of their bound states for both repulsive and
attractive interactions, a problem that resembles the bosonic

version of a quantum dot [38]. Incorporating quantum fluctu-
ations, we also study the collective excitations and dynamics
of this composite system.

The rest of the paper is organized as follows. In Sec. II,
we describe the model for a bosonic impurity interacting with
a droplet formed by a binary Bose mixture. Section III is
devoted to the quasi-bound states of repulsive impurities. In
the case of attractive impurities, a true bound state is formed,
for which the collective excitations and intriguing resonance
phenomena are discussed in Sec. IV. We study the quench
dynamics for both the attractive as well as repulsive impurities
in Sec. V. The trapping of impurities solely due to quantum
fluctuations is discussed in Sec. VI. Finally, we summarize
our results in Sec. VII.

II. MODEL AND FORMALISM

We consider a two-component Bose mixture with short-
range interactions in the presence of bosonic impurity atoms
in a quasi-one-dimensional (1D) geometry, which is provided
by a strong harmonic confinement with frequency ω⊥ in the
transverse direction. Within the single-mode approximation,
the above-mentioned quasi-1D system is described by the
Hamiltonian Ĥ = ĤB + ĤI + ĤIB, with

ĤB =
∑
i=1,2

∫
dx �̂

†
i (x)

[
Ĥi

0 + gi

2
�̂

†
i (x)�̂i(x)

]
�̂i(x)

+ g12

∫
dx �̂

†
1(x)�̂1(x)�̂†

2(x)�̂2(x), (1a)

ĤI =
∫

dx �̂
†
I (x)

(
− h̄2

2mI

d2

dx2

)
�̂I (x), (1b)

ĤIB =
∑
i=1,2

λi

∫
dx �̂

†
i (x)�̂i(x)�̂†

I (x)�̂I (x), (1c)

where Ĥi
0 = − h̄2

2mi

d2

dx2 − μi with mi (μi) being the mass
(chemical potential) of the ith species (i = 1, 2). The
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Hamiltonians ĤB and ĤI represent the two-component mix-
ture and impurity atoms (with mass mI ), described by the
bosonic field operators �̂i(x) and �̂I (x), respectively. In terms
of the s-wave scattering length ai (a12), the inter (intra)species
interaction strength is given by gi = 2aih̄

2/mil2
⊥ (g12 =

a12h̄2/mrl2
⊥), where l⊥ = (h̄/mrω⊥)1/2 is the transverse con-

finement length and the reduced mass mr = m1m2/(m1 +
m2). The Hamiltonian ĤIB describes the interaction between
the bosonic species and impurity atoms with strength λi =
aI

i h̄2/mI
ril

2
⊥, where aI

i and mI
ri = mimI/(mi + mI ) denote the

associated s-wave scattering length and reduced mass, respec-
tively. We consider a low concentration of impurity atoms
nI � ni, where nI and ni correspond to the density of im-
purity atoms and bosonic species, respectively. We consider
ai/l⊥ � 1, aI

i /l⊥ � 1 and |μi|/h̄ω⊥ � 1 which ensure the
validity of the single-mode approximation in such a quasi-1D
regime. In the rest of the paper, as well as in all the figures,
we set h̄ = 1 and scale the energies, time, and lengths by ω⊥,
1/ω⊥, and l⊥, respectively.

For the quasi-1D bosons described by ĤB, the weakly
interacting regime for uniform Bose gases (with density
ni) can be achieved when the dimensionless parameter
γi = 2ai/nil2

⊥ � 1 [39,40]. In general, within the Bogoliubov
approximation, the field operators �̂i(x) can be decomposed
as

�̂i(x) = φi(x) +
∑
j,ν �=0

u j,ν (x)α̂ j,ν − v∗
j,ν (x)α̂†

j,ν , (2)

where j = 1, 2; φi(x) represents the wave function of the
quasi-condensate and the quantum fluctuations are described
in terms of annihilation (creation) operator α̂ j,ν (α̂†

j,ν ) of
Bogoliubov excitations with energy E±,ν [41]. Up to the
quadratic fluctuations, the total Hamiltonian can be written as

Ĥ =
∑
i=1,2

[ ∫
dx φ∗

i (x)

(
− h̄2

2mi

d2

dx2
− μi + gi

2
ni(x)

)
φi(x)

+ λi

∫
dx ni(x)n̂I (x)

]
+ ELHY + ĤI + ĤF

+
∑
ν �=0

(
E+,ν α̂

†
1,ν α̂1,ν + E−,ν α̂

†
2,ν α̂2,ν

)
, (3)

where ni(x) = |φi(x)|2 and n̂I (x) = �̂
†
I (x)�̂I (x). The Hamil-

tonian ĤF describes the phonon impurity interaction in the
weak coupling regime, known as the Fröhlich term [28–30].
For homogeneous Bose gases with density ni, the Bogoliubov
modes can be written in terms of plane wave basis (ν ≡ k) and
the Fröhlich term ĤF reduces to

ĤF =
∑
i,k �=0

λi
√

ni ρ̂I,k (âi,k + â†
i,−k ), (4)

where ρ̂I,k = ∫
dx n̂I (x)eıkx/

√
L and âi,k (â†

i,k ) denotes the an-
nihilation (creation) operator for bosonic species which can
be written in terms of the Bogoliubov operators α̂i,k (see
Appendix A 1 for details). The Lee-Huang-Yang (LHY) cor-
rection [1–3] to the ground-state energy due to the zero-point
fluctuations of the Bogoliubov modes of the binary mixture is

given by

ELHY

L
= 1

2

∫
dk

2π

[
E+,k + E−,k −

∑
i=1,2

(
k2

2mi
+ gini

)]
, (5)

where the Bogoliubov excitation branches E±,k are given by

E±,k = E2
1,k + E2

2,k

2
±

√(
E2

1,k − E2
2,k

)2

4
+ g2

12

n1n2

m1m2
k4, (6)

with Ei,k = [ k2

2mi
( k2

2mi
+ 2gini )]1/2. For simplicity, we consider

equal density profiles n1(x) = n2(x) = n(x) with same in-
traspecies coupling g1 = g2 = g and masses m1 � m2 = m,
and hence the binary mixture reduces to an effective single-
component system with density n(x) = |φ(x)|2 [15,17]. In this
case, the correction to the chemical potential due to the LHY
term reduces to

�μLHY = −
√

g3nm

2π

∑
±

(1 ± √
η)3/2, (7)

where η = g2
12/g2. Here we consider purely 1D LHY correc-

tion, which may, however, undergo a dimensional crossover
for sufficiently large niai [42]. By treating ĤF perturbatively,
the second-order correction to the ground-state energy due
to NI impurity particles can be computed (see Appendix A 2
for details) and the corresponding correction to the impurity
chemical potential is given by

�μI = −
√

(n/g)m

2π
�(α)

∑
±

(λ1 ± λ2)2(1 ∓ √
η)1/2

√
1 − η

, (8)

where �(α) = sin−1(
√

1 − α2)/
√

1 − α2 and α = m/mI . For
a dilute gas of noninteracting impurity atoms, we can
neglect the higher-order corrections �μ

(i)
I arising from them,

as �μ
(i)
I � �μLHY. Treating the above corrections within the

local density approximation (LDA), we can write the effective
Gross-Pitaevskii equations (GPE) for the single-component
condensate and impurities with wave functions φ(x, t ) and
ψI (x, t ), respectively (see also Appendix B),

i∂tφ =
(

− 1

2m

∂2

∂x2
+ δgn + �μLHY + λ̃

2
nI

)
φ, (9a)

i∂tψI =
(

− α

2m

∂2

∂x2
+ λ̃n + �μI

)
ψI , (9b)

where δg = g + g12 and λ̃ = λ1 + λ2. For a quasi-1D Bose
gas, the LHY correction is attractive [15,17], whereas the
mean-field contribution is repulsive for 0 < δg � g. By tun-
ing δg/g sufficiently close to zero, the mean-field part can
become comparable with the LHY correction, and the com-
petition between them gives rise to a self-bound droplet with
flat density for a sufficiently large number of bosons, which is
the main focus of the present work.

III. QUASI-BOUND STATE FOR REPULSIVE IMPURITIES

We investigate in the following the properties of impurities
embedded in the self-bound droplet of a binary mixture, using
the effective GPE in Eq. (9). We consider first the case of
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FIG. 1. Droplet-embedded impurities for λ1,2 = λ. Variation of
the additional energy cost �E [σ ] with the impurity width σ in case
for (a1) repulsive (λ > 0) and (a2) attractive (λ < 0) coupling for
N = 500. (b) Density profiles of the droplet n (left axis) and impurity
nI (right axis) for a repulsive coupling strength λ = 0.005. The inset
shows the effective potential Veff (x) zoomed at the peak of the droplet
with (solid blue line) and without (red dashed line) quantum correc-
tion, with the horizontal lines (blue and red, respectively) denoting
the lowest energy of the quasi-bound states. (c1), (c2) Transmission
coefficients T (E ) for different values of λ. (d) Variation of the scat-
tering resonance width �0 with λ for different values of N . The inset
contains the color-scaled plot of �0 in the parameter space (N, λ). In
all the figures we employ g = 0.1, g12 = −0.95g, and α = 0.1.

a repulsive impurity. Although the formation of polaronic
bound states [19] of repulsive impurities in homogeneous
condensates has been considered [32–34], it remains unclear
in the case of a self-bound droplet with finite size since the
impurity atoms can separate out from the droplet due to re-
pulsion. Here, we investigate the possible formation of bound
states of repulsive impurities using a Gaussian variational
wave function localized at the center of the droplet

ψ (x) = (1/σ
√

π )
1
2 e−x2/2σ 2

, (10)

where the width σ is considered as the variational parameter.
We numerically compute the stationary state of the droplet
using Eq. (9a), which, in turn, yields the effective potential
for the impurity [see Eq. (9b)]. Following this, we compute the
additional energy cost �E [σ ] of these impurity-droplet con-
figurations due to the presence of impurities, as a function of
σ . Interestingly, the appearance of a local minimum in �E [σ ]
for small σ indicates a metastable bound state of impurities
at the center of the droplet, as depicted in Fig. 1(a1). Such a
metastable state is protected by an energy barrier, above which
�E [σ ] decreases with increasing σ , exhibiting unbinding of
the impurity. Intuitively, the impurity in such a state would
remain localized as long as fluctuations are not strong enough
to overcome such an energy barrier. As shown in Fig. 1(b), a
dip in the density profile at the center of the droplet gives rise
to a well-like structure in the effective potential experienced

by the impurities

Veff = λ̃n(x) + �μI . (11)

The stationary states of this potential well correspond to the
quasi-bound states of the impurities, which can decay into
the continuum of states outside the droplet. The ground-state
wave function of the impurity can be obtained by solving
Eqs. (9a) and (9b) in a self-consistent manner considering
only the local effective potential at the center of droplet.
Numerically, a rapid convergence to the quasi-bound state in
the local effective potential is possible, as long as it is well
separated from the scattering continuum. We also verify that
such an impurity quasi-bound state remains a stationary solu-
tion for sufficiently long time by evolving Eqs. 9(a) and (9b).

An important characteristic of such a metastable quasi-
bound state is its lifetime, which can be computed from the
scattering of impurity particles in the presence of the effective
potential Veff obtained self consistently as mentioned above.
The transmission coefficient T (E ) exhibits a series of shape
resonances due to the quasi-bound states of Veff , as shown
in Figs. 1(c1) and 1(c2). The resonance peak with width �0

at the lowest energy corresponds to the quasi-bound impurity
state with lifetime τ = 1/�0. The stability of such an impurity
state in terms of its lifetime is shown in Fig. 1(d). Increasing
the repulsive strength λ of the impurities makes the effective
potential well Veff deeper, supporting the formation of quasi-
bound states. The stability is further favored when the number
of bosons N grows due to the larger droplet size, which leads
to an enhanced separation of the quasi-bound states from
the continuum. Dynamical unbinding of such a quasi-bound
impurity can occur by squeezing of the droplet under a suffi-
ciently strong quench in the interspecies interaction strength,
which we discuss later in Sec. V.

IV. ATTRACTIVE IMPURITY AND COLLECTIVE MODES

Unlike the repulsive case, attractive impurities form true
bound states with the droplet. The energy cost �E [σ ] shows
a global minimum [see Fig. 1(a2)], which corresponds to
the localized ground state of the effective potential Veff with
energy μI < 0. The stationary states of Veff obtained from
Eq. (9b) correspond to the impurity excitation energies εI with
respect to the ground state μI that are bound for εI < −μI ,
and above which the scattering continuum exists. On the
other hand, the self-bound droplet with μ < 0 has discrete
collective excitations below −μ, above which they merge
with the scattering continuum. Beyond the above-mentioned
single-particle description, the impurity excitations couple to
the droplet fluctuations, and the collective excitations ε of
the full system can be described by the effective Bogoliubov
equations, obtained from linearization of Eqs. 9(a) and (9b)⎛⎜⎜⎜⎝

L0 + X X Y Y
−X −L0 − X −Y −Y

Ỹ Ỹ LI 0

−Ỹ −Ỹ 0 −LI

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u(1)

v(1)

u(2)

v(2)

⎞⎟⎟⎟⎠ = ε

⎛⎜⎜⎜⎝
u(1)

v(1)

u(2)

v(2)

⎞⎟⎟⎟⎠,

(12)
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(a) (b1)

(b2)

Scattering
Droplet States

FIG. 2. Formation of bound impurity states in a droplet for at-
tractive interaction λ1,2 = −λ. (a) Variation of the excitation energy
ε of the Bogoliubov modes with −λ. The black triangles represent
the excitation modes obtained from solving Eq. (12). The dotted blue
(dashed red) line corresponds to droplet (impurity) modes in the de-
coupled approximation. (b1) Variation of the transmission coefficient
T with ε > −μ for λ = −0.006. Vertical dashed lines represent the
single-particle impurity energy levels εI . (b2) Schematic of single-
particle effective potential experienced by the impurity (dashed
dotted line) and the droplet (solid line). Single-particle impurity
(droplet) energy levels are marked by horizontal solid (dashed) lines,
and the scattering states are denoted by shaded regions. The chemical
potential values are denoted by horizontal dotted lines marked by
arrows. In all figures we employ g = 0.1, g12 = −0.95g, α = 0.4,
N = 400, and NI = 5.

where the different matrix elements are given by

L0 = − 1

2m

d2

dx2
+ δgn(x) + λ̃nI (x)/2 − μ + �μLHY, (13a)

LI = − α

2m

d2

dx2
+ λ̃n(x) − μI + �μI , (13b)

X = δgn(x) + n(x)
∂�μLHY

∂n(x)
, (13c)

Y = λ̃
√

n(x)nI (x)/2, (13d)

Ỹ = λ̃
√

n(x)nI (x) + ∂�μI

∂n(x)

√
n(x)nI (x). (13e)

The droplet and impurity amplitudes are given by (u(1), v(1) )
and (u(2), v(2) ), respectively, which satisfy the normalization
condition∫

dx ( |u(1)|2 − |v(1)|2 + |u(2)|2 − |v(2)|2) = 1. (14)

The excitation spectrum exhibits various interesting fea-
tures. For μI < μ, the bound modes of the droplet (below −μ)
can hybridize with the bound impurity modes, giving rise
to a new set of bound excitations. Based on the rela-
tive strength of the Bogoliubov amplitudes, these can be
classified as being droplet-like for

∫
dx (|u(1)|2 − |v(1)|2) >∫

dx (|u(2)|2 − |v(2)|2) or impurity-like for
∫

dx (|u(1)|2 −
|v(1)|2) <

∫
dx (|u(2)|2 − |v(2)|2). In Fig. 2(a), the impurity-

like excitations are compared with the single-particle impurity
states obtained from the effective potential Veff . Interestingly,
within the range −μ < ε < −μI , the scattering continuum of
droplet excitations coexist with the bound modes of the im-
purities, which results in an intriguing resonance phenomena
in the scattering with impurities. To study the scattering of
the droplet modes with the impurities, we numerically solve

(a) (b)

FIG. 3. Quench dynamics of impurity. Contrast in the time evolu-
tion of width σI of an initial impurity state for λ1,2 = λ by quenching
g12 for (a) repulsive (λ = 0.006) and (b) attractive (λ = −0.006)
cases. The insets show the time evolution of width σD of the respec-
tive droplet states. The initial state in both the cases is prepared for
g = 0.1, g12 = −0.95g, α = 0.4, N = 400, and NI = 5.

Eq. (12) following the method outlined in Ref. [43], consid-
ering the asymptotically free droplet excitations with u(1) ∼
e±ıkx and the amplitude of other channels decaying to zero. We
compute the transmission coefficient T , which vanishes when
the excitation ε becomes close to the single-particle state of
the impurities, exhibiting scattering resonances, as shown in
Fig. 2(b).

V. QUENCH DYNAMICS OF IMPURITY

To this end, we discuss the coupled dynamics of impurity
and droplet under a sudden change of the interspecies cou-
pling strength g12, affecting the droplet size sensitively. First,
we investigate the fate of a sufficiently stable quasi-bound
state of a repulsive impurity as g12 is increased abruptly,
generating a compression of the droplet. Under such pertur-
bation, the droplet exhibits a breathing oscillation that leads
to unbinding of the impurity from the droplet depending on
the strength of the quench, which is manifested as spreading
of the impurity wave function, as shown in Fig. 3(a). On
the other hand, an attractive impurity remains bound to the
droplet and exhibits breathing oscillations, as g12 is changed
[see Fig. 3(b)]. Note that we have not taken into account the
three body losses, which may play an important role in the
damping of such oscillations.

VI. IMPURITY TRAPPING DUE TO LHY POTENTIAL

We consider at this point the situation when the mean-
field effective potential experienced by the impurity becomes
vanishingly small, and the impurity atoms interact with two
components of the droplet in an opposite manner (demanding
λ1 = −λ2). In this situation, the mean-field potential itself
is unable to bind the impurity, however the LHY quantum
correction gives rise to an effective attractive potential well

Veff = �μI < 0, (15)

which can lead to the formation of an impurity bound state.
In contrast to the attractive impurity interaction λ1,2 = −λ

with very localized impurity bound states [see Fig. 4(b)], in
this case, the effective potential takes the shape of a flat well,
as a result, the wave function of the impurity spreads and its
width becomes comparable with the droplet size, as shown in
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(a) (b)

FIG. 4. Impurity trapping due to LHY correction. Comparison
of the density profiles of the droplet n (left axis) and impurity nI

(right axis) for (a) λ1 = −λ2 = 0.010 and (b) λ1 = λ2 = −0.010.
The inset shows the effective potential Veff with (solid blue line) and
without (red dashed line) quantum correction, where the horizontal
solid blue lines denote the ground-state energy of the impurity bound
state. Parameters chosen g = 0.1, g12 = −0.95g, α = 0.4, N = 400,
and NI = 5.

Fig. 4(a). This corresponds to a unique situation of trapping
impurity atoms purely due to the quantum fluctuations.

VII. CONCLUSION

We investigated the intriguing physics of impurities in
one-dimensional quantum droplets of binary mixtures. For
both repulsive and attractive impurities, such a composite
system was analyzed within the framework of coupled Gross-
Pitaevskii equations, incorporating quantum fluctuations in

a systematic manner. On one hand, the repulsive interaction
between the impurity and bosons leads to the formation of
metastable quasi-bound states with finite lifetime, as a result
of the impurity back-action on the droplet. On the other hand,
for the attractive impurity-boson interactions, a true bound
state is formed, for which we obtain the collective excitations,
exhibiting hybridization of the impurity and droplet modes.
Furthermore, an intriguing resonance phenomena is observed
when the free-particle excitations of the droplet coincide with
bound excitations of the impurity. Moreover, we identify a
regime where a unique situation can arise when the impurity
can form bound states solely due to the quantum fluctuations.
This impurity-trapping phenomena can also serve as a probe
for quantum fluctuations. Finally, we study the quench dy-
namics, which leads to the unbinding of the repulsive impurity
from the droplet. On the contrary, the attractive impurities
remain bound to the droplet, exhibiting breathing oscillations.
Experimental progress on the mixtures of Bose gases shows
promise to realize such (quasi) bound states of impurities in a
quantum droplet, which can provide a unique opportunity to
study few-body correlations as well as the collective proper-
ties of the droplet.
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APPENDIX A: QUANTUM CORRECTIONS WITHIN THE BOGOLIUBOV APPROACH

Here, we derive the quantum corrections arising from the interaction between the two components of the binary mixture as
well as from the interaction of the impurities with the binary mixture.

For the binary Bose-Bose mixture, we consider homogeneous condensates with densities ni (i = 1, 2), and expand the
corresponding bosonic field operators in the plane wave basis

�̂i(x) = √
ni + 1√

L

∑
k �=0

eıkxâi,k, (A1)

where âi,k (i = 1, 2) denotes the annihilation operator for species 1(2). The Hamiltonian in Eq. (1) of the main text can be
expanded up to quadratic order as follows:

Ĥ = EMF + Ĥc + ĤI +
∑
i=1,2

λi

∫
dx n̂I (x)ni +

∑
i,k �=0

λi
√

ni ρ̂I,k (âi,k + â†
i,−k ), (A2)

where EMF = L(g1n2
1/2 + g2n2

2/2 + g12n1n2) is the mean-field energy and Ĥc represents the fluctuations up to quadratic order
for the binary Bose gas. The second to last term describes the interaction between the impurities and the binary mixture of
bosons, where n̂I (x) = �̂

†
I (x)�̂I (x). The last term is called the Fröhlich Hamiltonian, which describes the impurity-phonon

interaction, where ρ̂I,k = ∫
dx n̂I (x)eıkx/

√
L.

1. Lee-Huang-Yang correction for a binary mixture of Bose gases

In the following, we derive the quantum correction also known as the “Lee-Huang-Yang (LHY)” correction due to the
interaction between the two components of the binary Bose gas in one dimension. We can write the operators âi,k in terms
of the Bogoliubov operators α̂i,k by using the Inverse Bogoliubov transformation, which are given as following:

âi,k = N (i)
+,k

[(
E+,k + h̄2k2

2mi

)
α̂1,k −

(
E+,k − h̄2k2

2mi

)
α̂

†
1,−k

]
+ N (i)

−,k

[(
E−,k + h̄2k2

2mi

)
α̂2,k −

(
E−,k − h̄2k2

2mi

)
α̂

†
2,−k

]
, (A3)
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where E±,k denotes the excitation spectrum for the two-component Bose gas [1] given in Eq. (6), and the normalization constants
N (i)

±,k are given by

N (i)
±,k =

[
1

4E±,k

(
2mi

h̄2k2

) (
E2

±,k − E2
ĩ,k

)(
E2

±,k − E2
∓,k

)]1/2

, (A4)

with i �= ĩ. After performing the Bogoliubov transformation for the two-component Bose gas, the diagonalized part is given by

ĤD
c =

∑
k �=0

(E+,kα̂
†
1,kα̂1,k + E−,kα̂

†
2,kα̂2,k ) + ELHY. (A5)

The LHY correction ELHY in Eq. (A5) arises due to the zero-point fluctuations of the Bogoliubov modes of the binary mixture,
which for one dimension is given by Eq. (5). For the two species having equal masses m1 = m2 = m, the integral in Eq. (5) can
be solved exactly

ELHY

E0
= − L

2πξ

√
2χ−3/2

3

∑
±

(
1 + χ2 ±

√
(1 − χ2)2 + 4ηχ2

)3/2

⇒ ELHY = − L

2π h̄

√
2m(g2n2)3/2

3

∑
±

(
1 + χ2 ±

√
(1 − χ2)2 + 4ηχ2

)3/2

, (A6)

where we introduced the scales E0 = √
g1n1g2n2 = h̄2/ξ 2√m1m2, ξ 2 = h̄2/

√
m1m2g1g2n1n2, as well as the dimensionless

parameters χ = √
g1n1/g2n2, η = g2

12/g1g2. Note that, the LHY correction is attractive in one dimension [15,17].

2. Fröhlich terms and quantum correction due to impurities

In this section, we derive the quantum correction arising due to the interaction between the impurities and the two-component
Bose gas. By applying the transformations given in Eq. (A3), the Fröhlich part ĤF can be written in terms of the Bogoliubov
operators α̂i,k as follows:

ĤF =
∑
i,k �=0

λi
√

ni ρ̂I,k
(
âi,k + â†

i,−k

)
=

∑
i,k �=0

λi
√

ni ρ̂I,k

(
N (i)

+,k

h̄2k2

mi
α̂1,k + N (i)

+,k

h̄2k2

mi
α̂

†
1,−k + N (i)

−,k

h̄2k2

mi
α̂2,k + N (i)

−,k

h̄2k2

mi
α̂

†
2,−k

)
. (A7)

By using the second-order perturbation theory for ĤF , we calculate the additional quantum fluctuation terms [other than the LHY
term in Eq. (5)] arising due to impurities. Here, we assume the dilute gas of impurities, i.e., nI � ni, so that the perturbation
theory is applicable. The second-order perturbation theory states that

E (I ) = −
∑

ν

|〈�|ĤF |ν〉|2
(Eν − E0)

, (A8)

where |�〉 is the Bogoliubov vacuum with energy E0 and |ν〉 �= |�〉 are appropriately chosen excited states with energy Eν . For
Bogoliubov excitations of species 1 and 2, the matrix elements 〈�|ĤF |ν〉 are given by

〈�|ĤF |1〉 = N (1)
+,kλ1

√
n1nI

h̄2k2

m1
+ N (2)

+,kλ2
√

n2nI
h̄2k2

m2
, (A9a)

〈�|ĤF |2〉 = N (1)
−,kλ1

√
n1nI

h̄2k2

m1
+ N (2)

−,kλ2
√

n2nI
h̄2k2

m2
. (A9b)

Substituting the above equations in Eq. (A8), we obtain the following:

|〈�|ĤF |1〉|2
(E+,k + EI,k )

= λ2
1 n1nI (h̄2k2/m1)

(
E2

+,k − E2
2,k

)
2E+,k

(
E2

+,k − E2
−,k

)
(E+,k + EI,k )

+ λ2
2 n2nI (h̄2k2/m2)

(
E2

+,k − E2
1,k

)
2E+,k

(
E2

+,k − E2
−,k

)
(E+,k + EI,k )

+ g12 λ1λ2 n1n2nI (h̄2k2/
√

m1m2)2

E+,k
(
E2

+,k − E2
−,k

)
(E+,k + EI,k )

,

(A10a)

|〈�|ĤF |2〉|2
(E−,k + EI,k )

= λ2
1 n1nI (h̄2k2/m1)

(
E2

−,k − E2
2,k

)
2E−,k

(
E2

−,k − E2
+,k

)
(E−,k + EI,k )

+ λ2
2 n2nI (h̄2k2/m2)

(
E2

−,k − E2
1,k

)
2E−,k

(
E2

−,k − E2
+,k

)
(E−,k + EI,k )

+ g12 λ1λ2 n1n2nI (h̄2k2/
√

m1m2)2

E−,k
(
E2

−,k − E2
+,k

)
(E−,k + EI,k )

,

(A10b)
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where we used the relation (E2
±,k − E2

1,k )(E2
±,k − E2

2,k ) = g2
12n1n2(h̄2k2/

√
m1m2)2 in the third term of the above equations, and

EI,k = h̄2k2/2mI denotes the excitation energy of the impurity state. By adding the first terms of Eqs. (A10a) and (A10b), we
obtain the following:

E (I )
1,k = − λ2

1n1nI

2

h̄2k2

m1

[ (
E2

+,k − E2
2,k

)
E−1

+,k(
E2

+,k − E2
∓,k

)
(E+,k + EI,k )

+ (E2
−,k − E2

2,k ) E−1
−,k(

E2
−,k − E2

+,k

)
(E−,k + EI,k )

]

= − λ2
1n1nI

2

h̄2k2

m1

[(
E2

+,k − E2
2,k

)
(E+,k − EI,k ) E−1

+,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) +
(
E2

−,k − E2
2,k

)
(E−,k − EI,k ) E−1

−,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

) ]

= − λ2
1n1nI

2

h̄2k2

m1

[ (
E2

+,k − E2
2,k

)(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) +
(
E2

−,k − E2
2,k

)(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)
−

(
E2

+,k − E2
2,k

)
E−1

+,k EI,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) −
(
E2

−,k − E2
2,k

)
E−1

−,k EI,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)]

= − λ2
1n1nI

2

h̄2k2

m1

[(
E2

+,k − E2
2,k

)(
E2

−,k − E2
I,k

) − (
E2

−,k − E2
2,k

)(
E2

+,k − E2
I,k

)(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

)(
E2

−,k − E2
I,k

)
−

(
E2

+,k − E2
2,k

)
E−1

+,k EI,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) −
(
E2

−,k − E2
2,k

)
E−1

−,k EI,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)]

= − λ2
1n1nI

2

h̄2k2

m1

[
−

(
E2

+,k − E2
−,k

)(
E2

I,k − E2
2,k

)(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

)(
E2

−,k − E2
I,k

)
−

(
E2

+,k − E2
2,k

)
E−1

+,k EI,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) −
(
E2

−,k − E2
2,k

)
E−1

−,k EI,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)]

= λ2
1n1nI

2

h̄2k2

m1
EI,k

[ (
E2

I,k − E2
2,k

)
E−1

I,k(
E2

I,k − E2
+,k

)(
E2

I,k − E2
−,k

) +
(
E2

+,k − E2
2,k

)
E−1

+,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) +
(
E2

−,k − E2
2,k

)
E−1

−,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)]

E (I )
1,k = λ2

1n1nI

4

h̄4k4

m1mI

[ (
E2

I,k − E2
2,k

)
E−1

I,k(
E2

I,k − E2
+,k

)(
E2

I,k − E2
−,k

) +
(
E2

+,k − E2
2,k

)
E−1

+,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) +
(
E2

−,k − E2
2,k

)
E−1

−,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)]
. (A11)

Similarly, by adding the second as well as third term of Eqs. (A10a) and (A10b), we obtain E (I )
2,k and E (I )

12,k , respectively,

E (I )
2,k = λ2

2n2nI

4

h̄4k4

m2mI

[ (
E2

I,k − E1
1,k

)
E−1

I,k(
E2

I,k − E2
+,k

)(
E2

I,k − E2
−,k

) +
(
E2

+,k − E2
1,k

)
E−1

+,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) +
(
E2

−,k − E2
1,k

)
E−1

−,k(
E2

−,k − E2
+,k

)(
E2

−,k − E2
I,k

)]
, (A12)

E (I )
12,k = λ1λ2n1n2nI

2

g12 h̄6k6

m1m2mI

[
E−1

+,k(
E2

+,k − E2
−,k

)(
E2

+,k − E2
I,k

) + E−1
−,k(

E2
−,k − E2

+,k

)(
E2

−,k − E2
I,k

) + E−1
I,k(

E2
I,k − E2

+,k

)(
E2

I,k − E2
−,k

)]
. (A13)

Therefore, the quantum correction in energy arising due to the interaction with the mobile impurities is given by

E (I ) =
∑

k

E (I )
1,k + E (I )

2,k + E (I )
12,k . (A14)

We can now write the above equation Eq. (A14) in the integral form, which can be solved exactly for equal masses of the bosonic
species m1 = m2 = m,

E (I )

E0
= L

∫ ∞

−∞

dk

2π

(
E (I )

1,k + E (I )
2,k + E (I )

12,k

)
E0

= L

2πξ

√
2χ1/2�(α)((1 − χ2)2 + 4ηχ2)−1/2

(
λ2

1

g1g2

nI

n2
F (χ, η) + λ2

2

g1g2

nI

n1
G(χ, η) + λ1λ2

g1g2

4
√

η nI√
n1n2

K(χ, η)

)
⇒ E (I ) = L

2π h̄
g1n1[g2n2]1/2

√
2m�(α)((1 − χ2)2 + 4ηχ2)−1/2

(
λ2

1

g1g2

nI

n2
F (χ, η) + λ2

2

g1g2

nI

n1
G(χ, η) + λ1λ2

g1g2

4
√

η nI√
n1n2

K(χ, η)

)
,

(A15)
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where �(α) = sin−1(
√

1 − α2)/
√

1 − α2, α = m/mI , and the functions F (χ, η), G(χ, η), K(χ, η) are given by

F (χ, η) = (1 − χ2 −
√

(1 − χ2)2 + 4ηχ2 )

(1 + χ2 +
√

(1 − χ2 )2 + 4ηχ2 )1/2
− (1 − χ2 +

√
(1 − χ2)2 + 4ηχ2 )

(1 + χ2 −
√

(1 − χ2 )2 + 4ηχ2 )1/2
, (A16a)

G(χ, η) = (1 − χ2 −
√

(1 − χ2)2 + 4ηχ2 )

(1 + χ2 −
√

(1 − χ2 )2 + 4ηχ2 )1/2
− (1 − χ2 +

√
(1 − χ2 )2 + 4ηχ2 )

(1 + χ2 +
√

(1 − χ2)2 + 4ηχ2 )1/2
, (A16b)

K(χ, η) = [(1 + χ2 −
√

(1 − χ2 )2 + 4ηχ2 )−1/2 − (1 + χ2 +
√

(1 − χ2)2 + 4ηχ2 )−1/2]χ. (A16c)

Consequently, the total energy functional computed from Eq. (A2) for the homogeneous case is given by

E [n1, n2, nI ] = L
(
g1n2

1

/
2 + g2n2

2

/
2 + g12n1n2

) + L(λ1nI n1 + λ2nI n2) + ELHY[n1, n2] + E (I )[n1, n2, nI ]. (A17)

APPENDIX B: LOCAL DENSITY APPROXIMATION

Next, we write the above-mentioned energy functional in Eq. (A17) within the local density approximation (LDA) with ψI (x)
being the impurity wave function and φ1(2)(x) being the wavfunction of the two components of the binary mixture

E [φ1(x), φ2(x), ψI (x)] = EBB[φ1(x), φ2(x)] + EI [ψI (x)] + EIB[ψI (x), φ1(x), φ2(x)], (B1)

where the individual terms are given by the following.
(1) Energy functional of the two-component Bose gas

EBB[φ1(x), φ2(x)] =
∑
i=1,2

[ ∫
dx φ�

i (x)

(
− h̄2

2m

d2

dx2

)
φi(x) +

∫
dx

gin2
i (x)

2

]
+

∫
dx g12n1(x)n2(x)

−
∫

dx

√
2m[g2n2(x)]3/2

2π h̄

∑
±

1

3
(1 + χ2(x) ±

√
[1 − χ2(x)]2 + 4ηχ2(x))3/2. (B2a)

(2) Energy functional of the impurities

EI [ψI (x)] =
∫

dx ψ�
I (x)

(
− h̄2

2mI

d2

dx2

)
ψI (x). (B2b)

(3) Energy functional of the interaction between the impurities and binary mixture

EIB[ψI (x), φ1(x), φ2(x)] =
∑
i=1,2

∫
dx λini(x)nI (x) +

∫
dx

g1n1(x)[g2n2(x)]1/2
√

2m

2π h̄
�(α)([1 − χ2(x)]2 + 4ηχ2(x))−1/2

×
(

λ2
1

g1g2

nI (x)

n2(x)
F[χ (x), η] + λ2

2

g1g2

nI (x)

n1(x)
G[χ (x), η] + λ1λ2

g1g2

4
√

η nI (x)√
n1(x)n2(x)

K[χ (x), η]

)
, (B2c)

with ni(x) = φ�(x)φ(x), nI (x) = ψ�
I (x)ψI (x), and χ (x) = √

g1n1(x)/g2n2(x).

1. Equations of motion for two-component Bose gas

The coupled Gross-Pitaevskii equations obtained from the energy functional in Eq. (B1) are given by,

ı h̄
∂

∂t
φ1(x, t ) =

(
−h̄2

2m

∂2

∂x2
+ g1n1(x, t ) + g12n2(x, t ) + λ1nI (x, t ) + �μ

(1)
LHY(x, t )

)
φ1(x, t ), (B3a)

ı h̄
∂

∂t
φ2(x, t ) =

(
−h̄2

2m

∂2

∂x2
+ g2n2(x, t ) + g12n1(x, t ) + λ2nI (x, t ) + �μ

(2)
LHY(x, t )

)
φ2(x, t ), (B3b)

ı h̄
∂

∂t
ψI (x, t ) =

(
−h̄2

2mI

∂2

∂x2
+ λ1n1(x, t ) + λ2n2(x, t ) + �μI (x, t )

)
ψI (x, t ), (B3c)
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where the correction to the chemical potentials are

�μ
(1)
LHY(x) = −g1[g2n2(x)]1/2

√
2m

4π h̄

∑
±

(1 + χ2(x) ±
√

[1 − χ2(x)]2 + 4ηχ2(x))1/2

(
1 ± (2η + χ2(x) − 1)√

[1 − χ2(x)]2 + 4ηχ2(x)

)
, (B4a)

�μ
(2)
LHY(x) = −g2[g2n2(x)]1/2

√
2m

4π h̄

∑
±

(1 + χ2(x) ±
√

[1 − χ2(x)]2 + 4ηχ2(x))1/2

(
1 ± (2ηχ2(x) − χ2(x) + 1)√

[1 − χ2(x)]2 + 4ηχ2(x)

)
, (B4b)

�μI (x) = g1n1(x)[g2n2(x)]
1
2

√
2m

2π h̄

sin−1 (
√

1 − α2)√
1 − α2

([1 − χ2(x)]2 + 4ηχ2(x))−1/2

×
(

λ2
1

g1g2

1

n2(x)
F[χ (x), η] + λ2

2

g1g2

1

n1(x)
G[χ (x), η] + λ1λ2

g1g2

4
√

η√
n1(x)n2(x)

K[χ (x), η]

)
. (B4c)

We point out that, the higher-order correction in the chemical potential arising due to impurity atoms �μ
(i)
I = ∂E (I )/∂ni ∝ nI ,

and as a result, �μ
(i)
I � �μLHY can be neglected. In the main text, we considered condensates with same density profile

n1(x) = n2(x) = n(x) and equal intraspecies interaction g1 = g2 = g, for which we obtain an effective single-component system
with density n(x) [15,17]. In that case, the above-mentioned equations in Eq. (B3) reduce to Eq. (9), which describe the time
evolution of the effective single-component condensate and the impurities.
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