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We study the nucleation and dynamics of vortices in rotating lattice potentials where weakly linked conden-
sates are formed with each condensate exhibiting an almost axial symmetry. Due to such a symmetry, the on-site
phases acquire a linear dependence on the coordinates as a result of the rotation, which allows us to predict the
position of vortices along the low-density paths that separate the sites. We first show that, for a system of atoms
loaded in a four-site square lattice potential, subject to a constant rotation frequency, the analytical expression that
we obtain for the positions of vortices of the stationary arrays accurately reproduces the full three-dimensional
Gross-Pitaevskii results. We then study the time-dependent vortex nucleation process when a linear ramp of the
rotation frequency is applied to a lattice with 16 sites. We develop a formula for the number of nucleated vortices
which turns out to have a linear dependence on the rotation frequency with a smaller slope than that of the
standard estimate which is valid in the absence of the lattice. From time-dependent Gross-Pitaevskii simulations
we further find that the on-site populations remain almost constant during the time evolution instead of spreading
outwards, as expected from the action of the centrifugal force. Therefore, the time-dependent phase difference
between neighboring sites acquires a running behavior typical of a self-trapping regime. We finally show that, in
accordance with our predictions, this fast phase-difference evolution provokes a rapid vortex motion inside the
lattice. Our analytical expressions may be useful for describing other vortex processes in systems with the same
on-site axial symmetry.
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I. INTRODUCTION

In the past decades the study of the dynamics of quantized
vortices in superfluid systems [1] has been an active area of
research. In confined Bose-Einstein condensates (BECs) [2]
the first experimental realization that succeeded in generating
and observing a vortex was performed in 1999 [3], and subse-
quently Anderson et al. measured the precession frequency of
a vortex moving around the axis of a harmonic trapping poten-
tial [4]. Such experiments have constituted the starting point
of a growing number of works on either static or dynamical
configurations of vortices in BECs within different types of
confining potentials (see [5] and references therein). Among
them, the most commonly used trapping potentials are the
harmonic, quadratic plus quartic, and toroidal ones, to which
optical lattices may also be superimposed. The low-density
regions of such condensates, such as the central hollow of a
torus, have shown to favor the pinning of vortices, whereas,
for rotating systems with superimposed optical lattices, the
low-density paths that connect the outside and inside of the
condensate help to reduce the vortex nucleation frequency.
The reason is that the energy barrier for a vortex to enter the
system becomes flattened when lowering such density.

The first experiments on producing arrays of many vortices
were performed with rotating harmonic traps for large enough
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rotation frequencies [6–8] and rotating quadratic plus quartic
potentials for even larger frequencies [9,10]. Then experi-
ments dealing on quantized circulation have included toroidal
trapping potentials [11–13]. In the more recent realization
[13], a multiply quantized superfluid circulation has been
generated about the central density hollow with a winding
number around the torus as high as 11, which persisted for at
least 3 s. From the theoretical point of view, in such toroidal
trappings, stationary arrays of vortices have been studied in
rotating systems [14,15] and in nonrotating ones [16,17].
Finally, in rotating optical lattices, some pioneer theoretical
studies in searching equilibrium vortex configurations have
been carried out [18–20]. Such works dealt with vortices that
became pinned on the density minima, which was latterly
experimentally observed by Tung et al. [21] in triangular and
square lattices, whereas for sufficient rotation intensity they
reported a structural crossover to a vortex lattice. From then
on, these studies were extended to include other systems,
e.g., mixtures of species with more complex types of atomic
interactions, such as the dipolar one [22]. More recently, re-
searchers have also analyzed the consequences of including
finite temperature effects [23].

In an experimental work in a rotating lattice [24], the vortex
nucleation process has been undertaken in a rather distinct
manner, since the optical lattice was subject to a time-varying
rotation frequency. In such work it has been observed that the
number of nucleated vortices increased linearly as a function
of the frequency for barriers high enough so that the system
can be considered as formed by weakly linked condensates
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(WLCs). In the present work, although we use a simpler
system, we work with WLCs and apply similar dynamical
conditions to those of the experiment, with the aim to better
understand such vortex nucleation process. An early attempt
to theoretically describe such results [25] includes an ad hoc
dissipation parameter to relax the system into the equilibrium
configuration, although in view of some mismatches that ap-
pear with respect to the experimental data, it might not be the
experimental case.

It is interesting to mention that density profiles similar
to those of lattice systems can be attained in the supersolid
phase of dipolar BECs [26–28] given that the formed parti-
cle droplets are separated by low-density valleys. Hence, in
rotating condensates the nucleation of vortices become more
favored in the supersolid phase than in the superfluid one.
In particular, it was shown that low-density regions tend to
reduce the energetic barrier for a vortex to enter the system,
and thus lower the nucleation frequency and help in pinning
vortices in the interstitial zones between droplets [27]. We
finally note that in an experimental work, vortices have been
recently observed in dipolar condensates [29].

The goal of this work consists in showing that for WLCs
formed in deep lattice potentials, the expressions for the
rotation-induced on-site phases constitute a powerful tool
for describing the nucleation and dynamics of vortices. In
Ref. [30] it has been observed that when a ring-shaped lattice
is subject to rotation, the induced on-site phase of each lo-
calized function (LF), and hence the associated velocity field,
depends on the geometry of the corresponding well. In some
cases, such LF phases acquire a simple expression, with a lin-
ear dependence on the coordinates. In this work we will obtain
an analytical formula for predicting the position of vortices
on rotating optical lattices by using such phases’ expressions.
The formalism applies to square lattices for which the system
can be considered to be formed by WLCs with each of the
condensates having an approximately axial symmetry around
a direction parallel to the rotation axis. In particular, we will
focus our study on four- and 16-site square lattices confined
by a harmonic potential. For the four-site system the LFs are
obtained by a basis transformation from four Gross-Pitaevskii
(GP) stationary states. Considering that the order parameter
can be written as a linear combination of the on-site LFs
with their corresponding phases, the location of vortices is
determined by searching the zeros of such an order parameter.
The vortex positions between two neighboring sites can be
easily obtained by considering only both associated LFs. In
doing so we obtain the stationary array of vortices in the
case of a lattice of four sites, which show to be in very
good accordance with the vortex positions obtained by GP
simulations. In a second step, we generalize such a formula
for a lattice which does not exhibit a ring-type form, and hence
the LFs cannot be obtained through a basis transformation.
Nevertheless, in order to find the vortex positions, due to the
sites’ symmetry, we can assume that the LFs phases acquire
the same analytic expressions. Finally, we analyze the vortex
nucleation process when the rotation frequency varies linearly
in time from zero to the radial trap frequency, reproducing
the dynamical conditions applied in the experimental device
[24]. Although we do not adjust the size of the lattice and
parameters to the experimental ones, the present study allows

us to analyze the dynamical characteristics of a similar time-
dependent nucleation process.

The paper is organized as follows. In Sec. II we describe
the theoretical framework for the four-site ring-shaped lattice
and analyze the spatial validity range of the phase expression
for the on-site localized function described in Ref. [30]. In
Sec. III we obtain the stationary arrays of vortices for the
rotating ring-shaped lattice at two given frequencies, whereas
in Sec. IV we study the vortex nucleation process when apply-
ing a time-linear ramp of the rotation frequency for a 16-site
square lattice. In particular, we determine the number of nu-
cleated vortices as a function of the rotation frequency and
analyze the involved vortex dynamics during such a process.
Finally, Sec. VI is devoted to our conclusions.

II. THEORETICAL FRAMEWORK

A. On-site localized functions for a ring-shaped lattice

Given we consider high barriers between sites, a quite
accurate approximation of the order parameter is obtained by
a superposition of on-site LFs. A previous work described
the method for obtaining such localized states for a rotating
ring-shaped lattice system [30]. Summarizing, one should first
obtain the stationary states ψn(r) by solving the correspond-
ing GP equation [31],

[Ĥ0 + gN |ψn(r)|2 − � · L̂]ψn(r) = μnψn(r), (1)

where Ĥ0 = − h̄2

2m ∇2 + Vt with Vt the trapping potential, g =
4πah̄2/m is the 3D coupling constant in terms of the s-wave
scattering length a of the atoms, L̂ is the angular momen-
tum operator, and � = �ẑ is the applied angular rotation
frequency around the z axis. For a nonrotating system, the
index n denotes the winding number, where the velocity field
circulation is calculated along a circle that passes by the
links around the lattice. Such a winding number is generated
through a phase-imprinting method performed on the order
parameter before the minimization procedure. For a number of
sites Ns, the possible independent states are restricted to val-
ues of n in the interval −||(Ns − 1)/2|| � n � ||Ns/2|| [32],
where ||.|| denotes the standard integer part, whereas in a
rotating system, using the same phase-imprinting method, de-
pending on the value of �, the winding number of the outcome
of the minimization can change in Ns units. Hence, the differ-
ent stationary order parameters can still be labeled with the
same values of n, restricted to −||(Ns − 1)/2|| � n � ||Ns/2||
[30], although n may not correspond to the actual winding
number. It has been shown in Ref. [32] that the stationary
states with different n values are orthogonal. Furthermore, one
can define a set of Ns orthonormal LFs, given by the following
basis transformation [30]:

wk (r) = 1√
Ns

∑
n

ψn(r) e−inθk , (2)

where θk = 2πk/Ns. The index k labels the site where the
function is localized. For Ns = 4, the value k = 0 corresponds
to the quadrant x > 0 and y > 0, and k increases in the coun-
terclockwise direction around the ring from k = −1 to k = 2.
It is important to note that the choice of the global phase of
each ψn(r) can affect the localization of the LFs. A discussion
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of how to choose such a phase in order to achieve maximum
localization is given in [33]. In this work we set arg (ψn(r))=0
at the bisector of the k = 0 site. We note that, in contrast to
the nonrotating case, the on-site LF obtained through Eq. (2),
cannot be reduced to a real function. Due to the rotation,
the wave functions ψn(r) have a nonvanishing velocity field
within each site and hence carry a spatially inhomogeneous
phase profile. This inhomogeneity in the on-site phase is then
transferred to the LFs through Eq. (2).

Finally, the order parameter can be approximated employ-
ing the LFs as

ψ (r, t ) =
∑

k

bk (t ) wk (r), (3)

with bk (t ) = √
nk (t )eiφk (t ), where nk = Nk/N with Nk the

occupation number at the site k. We note that the global time-
dependent phase φk (t ) does not represent the actual phase in
the k-site when � �= 0, but it takes into account only its time
dependence, while as we have mentioned the spatial profile of
the phase is carried out by the complex function wk (r).

B. The system

The condensate is formed by rubidium atoms and the trap-
ping potential is given by

Vt(r) = 1
2 m

[
ω2

r r2 + ω2
z z2

] + Vb[cos2(πx/d ) + cos2(πy/d )],
(4)

where r2 = x2 + y2 and m is the atom mass. Hereafter, the
time, energy, and length will be given in units of ω−1

r , h̄ωr ,
and lr = √

h̄/(mωr ), respectively.
For the four-site, ring-shaped lattice we have chosen

the harmonic frequencies ωr = 2π × 70 Hz and ωz = 2π ×
90 Hz, and the intersite distance d = 3.9lr = 5.1μm. The
barrier height of the lattice is fixed at Vb = 25h̄ωr in order
to obtain a system of four WLCs for a number of particles of
N = 104 [30].

C. Validity range for the expression of the rotation induced
on-site phases

When the ring-shaped lattice is subject to rotation, the LF
phases acquire a linear dependence on the x and y coordinates,
related to a homogeneous velocity field [30]. Such a velocity
field profile is a consequence of the almost axial symmetry of
each localized on-site density around an axis parallel to the z
direction. In Ref. [30], an analytical expression for the phase
on each site has been obtained. In this section we will show
that such an expression is valid in a wide region that includes
the straight segments that separates the sites.

In particular, it has been shown [30] that the LF for the
k-site can be written as

wk (r,�) = |wk (r,�)|ei m
h̄ (r−rk

cm )·(�×rk
cm ), (5)

where rk
cm is the center of mass of the localized density

|wk (r,�)|2. Hereafter, for simplicity, we will omit writing the
implicit LF dependence on �.

Such a particular phase dependence on the coordinates
has important consequences on the vortex nucleation phe-
nomenon, which takes place along low-density paths that

FIG. 1. Top panels: Phase of w0(x, y, zi ) from Eq. (2) for
�/2π = 28 Hz, at the planes z1 = 0 and z2 = 3lr in the left and right
panels, respectively. The form of the phase around the other sites
is necessary to ensure w0(x, y, zi ) ⊥ wk (x, y, zi ), with k �= 0. Bottom
panels: Phase of w0(x, y, zi ) e−iA(−x+y) for the same � and z planes
of the top panels. The dashed lines indicate the isodensity contour of
such a LF with a value of 10−3 of the maximum density. The color
scales correspond to arg (w0(r)) and arg (w0(r) e−iA(−x+y)) in the top
and bottom panels, respectively.

connect the lattice junctions. Due to the discrete symmetry,
we will concentrate ourselves on a specific junction, but the
results remain valid for the other ones. In particular, we con-
sider the junction that separates the k = 0 and k = 1 sites,
which lies along the semiaxis y > 0. We first rewrite Eq. (5) in
terms of the center-of-mass coordinates: rk

cm = (xk, yk, 0) as

wk (r) = |wk (r)|ei m
h̄ (yxk−xyk )�. (6)

For the trapping potential here considered, the coordinates of
the center of mass of the localized densities verify x1 = −x0

and y1 = y0, and their absolute values may be taken equal to
d/2. Then the neighboring LFs read

w0(x, y, z) = |w0(r)| eiA(−x+y), (7)

w1(x, y, z) = |w1(r)| e−iA(x+y), (8)

where A = dm�/(2h̄).
In the top panel of Fig. 1 we show the LF phase profile

for the k = 0 site, given by Eq. (2), at the z = 0 and z = 3lr
planes, in the left and right panels, respectively. In such panels
it may be seen that the LF has a phase gradient with the shape
of Eq. (7) within the site. Moreover, in the bottom panels we
depict such a phase minus its approximate analytic expression
of Eq. (7). It may be seen that the resulting phase turns out
to be zero around the region determined by x > 0 and y > 0,
for both z planes. We further note that given that the area
of homogeneity is slightly larger than the mentioned quad-
rant, the actual phase A(−x + y) remains valid surpassing the
neighborhood of the junctions. Then one can safely use the
order parameter of the type of Eq. (3), with the expression
for the LFs given by Eq. (5), along the low-density paths that
separate the sites. As we will see, such an expression with the
analytical phase turns out to be crucial to correctly define the
location of vortices.

023310-3



D. M. JEZEK AND P. CAPUZZI PHYSICAL REVIEW A 108, 023310 (2023)

III. VORTEX NUCLEATION ON STATIONARY STATES
IN A RING-SHAPED LATTICE

A. Vortex nucleation on ψ0(r)

In order to analyze the appearance of vortices in the sim-
plest case, and in view that in current experiments the system
is initially in a vortex free state, we will first focus on the
n = 0 stationary order parameter. For a fixed � value such
a state, in terms of the LFs, with the on-site velocity field
provided by the rotation, is given by

ψ0(r) = 1√
Ns

∑
k

wk (r). (9)

It is well known that a superfluid system is characterized
by an irrotational flow given by the condition on the veloc-
ity field ∇ × v(r) = 0. Since the vortex has a nonvanishing
velocity field circulation around its core, it implies that the
density should vanish at the coordinates of the vortex line
Rv = (Xv,Yv, z) to guarantee the superfluid condition in every
point of the fluid. Hence, we will analytically obtain such
coordinates of the vortex for the junction around x � 0 with
y > 0, by searching the points that verify ψ0(Rv ) = 0, which
yields a vanishing density.

Using the analytic expression for the phases of the LFs and
retaining only the terms of the order parameter that include
the relevant localized states around that junction, we ob-
tain the vortex position by solving

√
Nsψ0(Rv ) = w0(Rv ) +

w1(Rv ) = 0 with the approximations of Eqs. (7) and (8). This
yields the following equation:

|w0(Rv )| eiA(−Xv+Yv ) + |w1(Rv )| e−iA(Xv+Yv ) = 0, (10)

which can be rewritten as

e−iA(Xv+Yv )(|w0(Rv )| ei2AYv + |w1(Rv )|) = 0. (11)

Taking into account the real and imaginary parts of the previ-
ous equation we further obtain

|w0(Rv )| cos(2AYv ) + |w1(Rv )| = 0 (12)

and

sin(2AYv ) = 0, (13)

respectively.
Equation (13) implies 2AYv = πk′, where k′ is a natural

number, whereas Eq. (12) restricts such a value to an odd
number k′ = 2l + 1 given that it should verify cos(πk) =
−|w1(Xv,Yv, z)|/|w0(Xv,Yv, z)| = −1. We note that the con-
dition for the absolute values of the localized states, taking
into account the symmetry, is fulfilled for Xv = 0, whereas
from the other conditions, one obtains the expression for the
Yv coordinate along the low-density path between the k = 0
and the k = 1 sites,

Yv (l ) = (2l + 1)
π h̄

md�
, (14)

where l � 0 labels the sequence of vortices that enter the
system from the y > 0 border of the lattice. Moreover, given
the fourfold symmetry of the lattice, each l value defines
the positions of four vortex lines: (0,Yv (l ), z), (Yv (l ), 0, z),
(0,−Yv (l ), z), and (−Yv (l ), 0, z), in the whole system.

FIG. 2. Left panel: Phase (in colors) and velocity field (arrows)
extracted from the GP order parameter ψ0(r) around the junction
y > 0 and at the z = 0-plane for �/(2π ) = 28 Hz. The position
of the vortex, obtained by the plaquette method, is marked with a
red plus sign. Right panel: Three-dimensional configuration of the
on-site condensates (blue) and the vortex lines (red) extracted from
GP simulations. The color scale in the left panel corresponds to
arg (ψ0(r)). The border of the condensate in the right panel is fixed
at a density of 5 × 10−2 of its maximum value.

In the left panel of Fig. 2 we show with colors the phase
and the corresponding velocity field of ψ0(r) obtained from
the GP (1), for the rotation frequency �/(2π ) = 28 Hz. There
we mark with a red plus sign a vortex position which has
been extracted from such a state using the plaquette method of
Ref. [34]. It may be seen that for l = 0, the estimate given by
Eq. (14) yields Yv (0) = 2.03lr , which is in good accordance
with the GP result. Such a position corresponds to a point of
the vortex line (0,Yv (0), z). In the right panel we show the
full system in three dimensions, with the four vortex lines. We
note that such vortices coincide with straight lines parallel to
the z axis as we have stated.

B. Vortex nucleation on the stationary states

We now extend the study to stationary states with arbitrary
n values. It is interesting to note that such states change their
relative energy values when varying the rotation frequency
[30], hence the ground state is not achieved at a fixed n value
for any �. By inverting the basis transformation of Eq. (2),
such stationary states in terms of the LFs acquire the form

ψn(r) = 1√
Ns

∑
k

wk (r) eink2π/Ns (15)

for n ∈ {−1, 0, 1, 2}. In an analogous manner to the described
in the previous subsection, we can obtain the Yv coordinate for
the junction between k = 0 and k = 1 sites. We then search
the solution of

|w0(Rv )| eiA(−Xv+Yv ) + |w1(Rv )| e−iA(Xv+Yv )+i2πn/Ns = 0,

(16)

where Rv = (Xv,Yv, z), from which the following equa-
tion should hold:

|w0(Rv )| ei(2AYv−2π n
Ns

) + |w1(Rv )| = 0, (17)

which is satisfied by 2AYv − 2πn/Ns = π (2l + 1). Therefore,
using that Ns = 4, the Yv coordinate of the vortex is given by

Yv (�, n, l ) =
(n

2
+ 2l + 1

) h̄π

md�
, (18)
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FIG. 3. Vortex coordinate Yv given by Eq. (18) as a function of
rotation frequency �. The different types of lines indicate the curves
for the possible n values, with l = 0 and l = 1 for the first and second
sequence, respectively. The vertical dashed lines indicate the rotation
frequency values �/2π = {28, 35, 50} Hz.

where l � 0 labels the different sequences of vortices that
enter the condensate, for the distinct n values. In Fig. 3 we
plot the vortex coordinate Yv as a function of the rotation
frequency, for all n values and the branches with l = 0 and
l = 1. It may be seen that up to �/2π � 35 Hz only one
vortex is nucleated per junction, whereas for increasing � a
second vortex per junction, with l = 1, enters the system for
the stationary states with successive n values.

In particular, in Fig. 4 we show the arrays of vortices in the
(x, y, 0)-plane for the different n ∈ {−1, 0, 1, 2} values at two
rotation frequencies, �/2π = 28 Hz and 50 Hz. The vortex
positions of such arrays were extracted from ψn(r) of Eq. (1),
by means of the plaquette method [34]. The central vortices
are related to the imprinted phases necessary to obtain the dif-
ferent ψn(r) states. The label n = 1 (n = −1) corresponds to a
singly quantized vortex (antivortex), n = 2 to a doubly quan-
tized vortex, and n = 0 has no central vortex. Such vortices
are present even for low frequencies. In such a figure, one can
observe that each, noncentral vortex position is in good agree-
ment with the expression of Yv which is depicted in Fig. 3,
for the different n and l values. For the smaller frequency
the vortex positions are accurately reproduced by the l = 0
sequence, whereas for the larger frequency, it may be seen,
that in Figs. 3(a) and 3(b) a second vortex per junction enters
the lattice as expected from Eq. (18) for l = 1. By comparing
the vortex positions obtained from both approaches one can
infer that the estimate derived using the analytic expression
for the phases of the LFs is shown to be a very reliable one.

It is interesting to recall that the energy differences
between the stationary states ψn(r) can change their sign for
different frequencies. In particular for n = {−1, 0, 1, 2} we
have obtained En = {−4.2, 0,−6.7,−10.8}10−4 h̄ωr +
16.501048h̄ωr and En = {−0.6, 0, 3.9, 3.3}10−4 h̄ωr +
15.213832h̄ωr , for �/2π = 28 Hz and �/2π = 50 Hz,
respectively. Hence, for the smaller (larger) frequency
the ground state corresponds to n = 2 (n = −1). By
comparing Eq. (15) to Eq. (3), for a given frequency, the
stationary states ψn(r) have all the same population numbers
but differ in the phase differences between neighboring
sites ϕk = φk−1 − φk = −nπ/2. Then the small energy
differences, around 10−4h̄ωr , between the states ψn(r) can be
attributed only to such phase differences.

FIG. 4. Stationary vortex arrays at the z = 0-plane obtained from
ψn(r) of Eq. (1), for �/(2π ) = 28 Hz and �/(2π ) = 50 Hz. The
black arrows represent the velocity field of the corresponding order
parameter. Panels (a) to (d) of each frequency correspond to the dif-
ferent values n = −1, 0, 1, 2, respectively. The vortex and antivortex
positions, obtained by the plaquette method, are marked with red
plus signs and circles, respectively. Note that in the (d) panels, cor-
responding to n = 2, the central plus signs denote doubly quantized
vortices centered at x = y = 0. The red dashed lines correspond to
isodensity curves for a value equal to 5 × 10−3 of the maximum
density.

It is important to remark that the previous expression (18)
for Yv does not describe the existence of the central vortices
since we have restricted the order parameter to the superposi-
tion of only two neighboring LFs, while at the origin the four
localized functions should be considered. We thus have

ψn(0, 0, z) = 1√
Ns

∑
k

|wk (0, 0, z)| eink2π/Ns , (19)

and since |wk (0, 0, z)| = |w0(0, 0, z)|, one can ensure the
presence of at least one vortex or antivortex along the z axis,
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for any n �= 0, given that the previous expression vanishes for
such n numbers.

IV. TIME-DEPENDENT NUCLEATION OF VORTICES
ON EXTENDED SQUARE LATTICES

We now consider a square lattice with a larger number of
sites. We are interested in systems with Ns > 4 in order to
analyze the effects of the centrifugal force when the system is
subject to a time-linear ramp of the rotation frequency. Such
a number of sites, which involves different absolute values
of the center-of-mass distance to the rotation axis, enables a
possible redistribution of particles during the time evolution.
We further assume that each site has a high occupation number
and that the system forms a bosonic Josephson junction array
of Ns weakly linked condensates. In particular, we are inter-
ested in studying the appearance of vortices when an initial
vortex-free ground state, for � = 0, is subject to the linear
sweep of the frequency without losing the coherency between
neighboring sites during the evolution. Such a type of nucle-
ation process has been experimentally studied in Ref. [24].

We first note that as the system is multiply connected, a
single vortex cannot be generated inside the lattice, since the
winding number along any closed curve that connects the
WLCs through the links cannot be changed spontaneously.
As established in the celebrated Helmholtz-Kelvin theorem
[35], the winding number around a closed curve is conserved
during the time evolution if the superfluid condition is not
broken [36]. Therefore, the value of the velocity circulation
can change only when a vortex crosses such a curve. Hence,
the vortex nucleation process is originated by a vortex that
penetrates the system from the outside region, where the su-
perfluid condition is broken. It is worthwhile to mention that
another possible process, not observed in our case, could be
the creation of a vortex-antivortex pair within the lattice with
a later departure of the antivortex.

In this study, we will consider each on-site condensate
with the same axial symmetry as has been assumed in the
previous sections. Although obtaining complete approximate
expressions for the on-site LFs in an arbitrary square lattice
does not constitute an easy task [37], we will see that in order
to estimate the position of vortices only the phase dependence
on the coordinates is needed. Due to this axial symmetry, one
can safely assume that the rotation should induce a linear
phase with the same analytical expression as that of Eq. (5)
on each LF.

On the other hand, taking into account the time-dependent
character of the present study, the LFs, the populations, and
on-site global phases could evolve in time, and then the order
parameter should be approximated by

ψ (r, t ) = 1√
Ns

√
Ns∑

k,p=1

wk,p(r,�(t )) eiφk,p(t )
√

nk,p(t ), (20)

where the indices k and p label the sites in the x and y
directions, respectively. We number the sites starting from
the corner determined by the smallest and largest, x and y
coordinates, respectively. Such indices run from 1 to

√
Ns.

The population in each site is given by Nk,p = nk,pN . In what

follows, for simplicity, we omit writing the � dependence on
time.

In order to find the vortex position between the k − 1- and
k-sites, for a given p, one can reduce the sum of Eq. (20) to
the two nearest-neighboring LFs, and hence ψ (r, t )

√
Ns can

be approximated by

wk−1(r,�) eiφk−1(t )
√

nk−1(t ) + wk (r,�) eiφk (t )
√

nk (t ), (21)

where for simplicity we have omitted the index p. Approxi-
mating the localized function by

wk (r,�) = |wk (r,�)|ei m
h̄ (r−rk

cm )·(�×rk
cm ), (22)

and taking into account that k increases for increasing x values
we have rk

cm = rk−1
cm + dx̂, where d is the intersite distance, we

may write the phase factor of wk (r,�) from Eq. (22) as(
r − rk

cm

) · (
� × rk

cm

) = (
r − rk−1

cm

) · (
� × rk−1

cm

) + y�d.

(23)

By introducing (22) and (23) in Eq. (21) one obtains the fol-
lowing condition for the vortex position R(k)

v = (X (k)
v ,Y (k)

v , z):√
nk (t )

∣∣wk
(
R(k)

v ,�
)∣∣ ei( m�d

h̄ Y (k)
v −ϕk (t ))

+
√

nk−1(t )
∣∣wk−1

(
R(k)

v ,�
)∣∣ = 0, (24)

where ϕk (t ) = φk−1(t ) − φk (t ) is the phase difference be-
tween such neighboring sites, with −π < ϕk (t ) < π . The
superscript (k) in the vortex position denotes that it belongs
to the path parallel to the y axis that separates the sites labeled
with k − 1 and k. Then, from the imaginary part of Eq. (24),
one can derive the expression for the vortex coordinate,

Y (k)
v (t ) =

(
ϕk (t )

π
+ 2lk + 1

)
π h̄

md�
, (25)

where lk is an integer number that labels the vortices located
along such a path parallel to the y axis. If one wants to
calculate Y (k)

v (t ) along the whole low-density straight line that
crosses the lattice, one should incorporate in Eq. (25) the
phase differences ϕk (t ) for all the p values. However, due to
the fourfold symmetry of the square lattice one can restrict the
study to Y (k)

v > 0, which is given for p � √
Ns/2 and lk � 0.

Finally, we note that, from the real part of Eq. (24) one
should obtain the transversal coordinate X (k)

v (t ) of the vortex
along such a straight path, if having at hand |wk (R(k)

v ,�)|,
which is not the present case. Although possible variations
on the site populations, Nk and Nk−1, could lead to slight
shifts in such transversal coordinate, this effect turns out to be
almost imperceptible due to the tight on-site localization, as
we have observed from our numerical GP simulations. Then
we will consider such x values constant along the straight lines
parallel to the y axis.

In the following subsection we will show the usefulness of
the previous formula for determining the number of nucleated
vortices.

A. Number of nucleated vortices

In what follows, we will be focused on the number of
vortices that become nucleated on the lattice as a function of
�, which turns to be an increasing function of time. Assuming
the vortices are generated outside the lattice, one can obtain
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such a number by counting how many vortices enter into
the low-density paths by what we will call entrances. Taking
into account the fourfold symmetry, we will consider only
the Y (k)

v > 0 case. Being the first vortex labeled by lk = 0,
the number of vortices, for a given �, that enter by such an
entrance reads N (k)

v = l (L)
k + 1, with l (L)

k the largest lk value.
The value of l (L)

k as a function of � can be obtained through
Eq. (25) with the condition that Y (k)

v is located at the entrance,
hence Y (k)

v = d
√

Ns/2, where
√

Ns/2 is the number of sites in
the y direction (labeled by p), up to the x axis. Then, replacing
N (k)

v = l (L)
k + 1, we finally obtain

N (k)
v (t ) =

∥∥∥∥md2
√

Ns�

4π h̄
− ϕk (t )

2π
+ 1

2

∥∥∥∥. (26)

Given that the time evolution depends on the way the
rotation frequency is varied, we can obtain only bounds of
the previous expression taking into account −π < ϕk (t ) < π ,
which yield

N (k)
− =

∥∥∥∥md2
√

Ns�

4π h̄

∥∥∥∥ (27)

and

N (k)
+ =

∥∥∥∥md2
√

Ns�

4π h̄

∥∥∥∥ + 1, (28)

for the lower and upper bounds, respectively.
Multiplying by the number of entrances around the lattice

4(
√

Ns − 1), and approximating the integer part function by
a straight line that passes by the middle points of the steps,
we obtain ||X || � X − 1/2, for X > 0, we conclude that the
total number of vortices Nv inside the lattice lies between the
following values:

N (±)
v = 4(

√
Ns − 1)

(
md2

√
Ns�

4π h̄

)
± 2(

√
Ns − 1), (29)

which can be rewritten as

N (±)
v = md2(Ns − √

Ns)�

h̄π
± 2(

√
Ns − 1). (30)

Finally, an estimate of such a number of nucleated vortices
can be obtained as the average of N (±)

v which yields

Nv = md2(Ns − √
Ns)�

h̄π
. (31)

Consequently, the total number of vortices nucleated in the
lattice is a linear function of � in agreement with the experi-
mental observation of [24]. We note that Eq. (31) differs from
the best estimate used in [24], where it is assumed that the
density of vortices for a given �, whether a lattice is present
or not, is nv = m�/π h̄. Then the total number of vortices
follows the Feynman’s rule [38] NF

v = m�R2/h̄, where R
is the Thomas-Fermi radius. In Ref. [24] the authors claim
that, when working with WLCs, a good estimate for their
results is given by a straight line which is obtained by using a
fixed R(�) = R(� = 0), instead of considering an increasing
R(�). Such an approximation in terms of the number of sites
Ns and the intersite distance d may be rewritten as NF

v =
m�d2Ns/π h̄, given that the area πR2 should be replaced by
Nsd2. Here, by assuming that the vortices are coming from

FIG. 5. Number of vortices Nv as a function of the rotation
frequency � for Vb = 75h̄ωr . The red points correspond to time-
dependent GP simulations, obtained by solving Eq. (32), whereas
the blue lines indicate our predictions; in particular, the solid line
indicates the mean value given by Eq. (31), and the dashed lines
correspond to the upper and lower bounds from Eq. (30). The green
solid line, with the higher slope, corresponds to the estimate NF

v =
m�d2Ns/π h̄.

outside the lattice, we have obtained a smaller slope due to the
subtraction of the term

√
Ns inside the parentheses of Eq. (31).

The numerical simulations are performed by solving the
3D time-dependent GP equation,

ih̄
∂

∂t
ψGP(r, t ) = [Ĥ0 + gN |ψGP(r, t )|2 − �(t ) · L̂]ψGP(r, t ),

(32)

using as the initial order parameter, ψGP(r, 0), the ground state
of the nonrotating system. The rotation angular frequency
�(t ) = �(t )ẑ is linearly increased in time from zero up to ωr ẑ,
with a ramping time interval τ = 103/ωr . We change the lat-
tice intersite distance to d = 3lr to simplify the notation, and
use a less confining harmonic potential with ωr = 2π × 10 Hz
and ωz = 2π × 20 Hz. The number of sites is increased to
Ns = 16 and the total number of particles to N = 4 × 104. In
Figs. 5 and 6 we show the number of vortices nucleated within
a lattice as a function of �, for Vb = 75h̄ωr and Vb = 40h̄ωr ,
respectively. For both barriers the system is formed by WLCs,
being the barriers 1.3 to 1.9 larger than the chemical potential
of the ground state. In order to observe how the results are
affected when the fourfold symmetry is slightly broken, a fact
that can also occur in an experiment, we discuss two possibil-
ities shown in Fig. 6. In the upper panel we present the results
when a small perturbation in the initial populations of the
ground state has been applied, and in the bottom one, we per-
form a slight displacement δr = 0.1lr (x̂ + ŷ) of the axis of the
harmonic potential. One can observe that a number of nucle-
ated vortices different from a multiple of four is now allowed,
and hence a smaller spreading of the points with respect to
the line that estimates the mean value is attained. In each
case we also draw the estimate NF

v = m�d2Ns/π h̄, which
corresponds to NF

v = m�R(� = 0)2/h̄ given in Ref. [24]. We
note that, when drawing the points of Figs. 5 and 6, we count
the total number of GP vortices by adding the vortices and
subtracting the antivortices, both obtained by the plaquette
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FIG. 6. Number of vortices Nv as functions of the rotation fre-
quency � for Vb = 40h̄ωr . The points correspond to time-dependent
GP results from Eq. (32). The top panel (a) corresponds to simula-
tions using small perturbed initial populations, and the points in the
bottom panel (b) were obtained using a slightly shifted harmonic po-
tential, 1

2 m[ω2
r (x − 0.1lr )2 + ω2

r (y − 0.1lr )2 + ω2
z z2]. The lines are

the same as in Fig. 5.

method, up to the borders of the lattice. However, at such
borders, some fluctuations appear which give rise to the points
that exceed the upper and lower bounds.

From our numerical calculation it may be seen that, for the
present dynamical vortex nucleation process, Feynman’s rule
can be improved when applied to an optical lattice. Moreover,
although our approximation has been derived for a differ-
ent system, it is easy to verify that it better describes the
experimental data for the higher barrier of Ref. [24], which
correspond to WLCs.

In the next section we will see that the outer sites do not
increase their populations as expected from the centrifugal
distortion, and hence support the fact of working with a fixed
number of sites during the whole dynamics. It is important to
distinguish our dynamical nucleation process from the theo-
retical study [25] where the dissipative parameter allows the
system to relax into a wider lattice and hence the number
of nucleated vortices increases faster with �. Another differ-
ence is the critical rotation frequency �c/ωr � 0.2 needed in
Ref. [25] to start nucleating vortices.

In Figs. 5 and 6 one can observe that the number of nu-
cleated vortices exhibits fast variations as a function of the
rotation frequency. Such rapid variations are related to the
fact that a self-trapping (ST) dynamics, with very short time
periods, is triggered, which in turn provokes a rapid movement
of vortices. In the following subsection we will analyze such
a vortex dynamics.

B. Vortex dynamics

In a homogeneous BEC, the vortex velocity is determined
by the background superfluid velocity through the Magnus
force [1,39,40], whereas in a nonhomogeneous BEC, the vor-
tex velocity acquires an additional term which depends on the
density gradient [17,40–42] and on the form of the vortex core
[42]. In systems where the order parameter can be written in
terms of LFs, an instantaneous passage of a vortex can be
easily predicted. However, in these cases, no relation between
the velocity of the vortex and the macroscopic coordinates,
of the type of Eq. (25), has been established. In particular,
in nonrotating double-well systems, such passage of vortices
across the junctions has been related to the presence of phase
slips [43] which occurs in the ST regime [44,45]. Their motion
turns to be much faster than the variation of the macroscopic
coordinates which describe the relevant dynamics. We recall
that the ST regime is characterized by a phase difference time
derivative that never vanishes and is referred to as running
phase [44,45]. It is worthwhile noting that the ST behavior
is also encountered in lattice systems [33,46], showing the
same phase difference behavior. In this section we will show
that in rotating systems the GP vortex dynamics is in close
connection with the evolution of the phase difference between
neighboring sites, as stated in Eq. (25), and hence they share
the same time periods.

In stationary conditions, attained from a GP energy min-
imization procedure, each phase difference and population
should remain static. However, the static population in each
site should differ for distinct constant frequencies due to the
centrifugal force. Here we may distinguish three sets of sites
according to their center-of-mass distance to the rotation axis,
namely, the central (C), lateral (L), and diagonal (D) ones,
consisting of four, eight, and four sites, respectively (see inset
of Fig. 7). In the notation of Eq. (20), the central site labels
k and p are given by the combinations of the numbers {2, 3},
the diagonal by {1, 4}, and the lateral by the rest ones. Hence,
the centrifugal force should push particles from central to
lateral sites, and from lateral to diagonal ones as marked with
arrows in the right corner of inset of Fig. 7. In the top panel of
Fig. 7, we show as dashed lines the number of particles in the
different types of sites in stationary conditions as a function of
the static rotation frequency. It may be seen, for example, that
all sites acquire the same number of particles when � = ωr ,
due to the full compensation of the harmonic trapping with the
centrifugal force.

For the barrier of Fig. 5, we found that the number of par-
ticles in each site remains fixed at their initial value during all
the time evolution, whereas, for the lower barrier, a different
evolution of the populations is encountered. In Fig. 7 we show
the low barrier height case with Vb = 40h̄ωr , which is nearer
to the chemical potential which is about μ � 30h̄ωr . It may
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FIG. 7. Site populations Nk,p as functions of �, which are de-
picted with solid lines, were obtained by solving Eq. (32) during the
time sweep of the frequency, for Vb = 40h̄ωr . The top (a) and bottom
(b) panels correspond to the same cases of Fig. 6. The blue (upper)
lines, the red (middle) lines, and the green (lower) lines correspond
to the number of particles in the central, lateral, and diagonal sites,
respectively. The correspondence between the indices k, p and the
different sets of sites is explained in the text. The dashed lines in the
top panel depict the GP stationary populations at the corresponding
static frequency, obtained via a minimization procedure.

be seen that there exists an initial movement of particles to
the more external sites up to � � 0.4ωr . In particular, in that
range of frequencies, a sizable number of particles move from
the central sites to the lateral ones. For larger values of �,
the populations perform only small oscillations around some
fixed numbers.

In what follows we will see how the populations Nk,p, the
phase differences, and the vortices evolutions are related when
the time-linear ramp of the rotation frequency is applied. As
a consequence of the phase differences evolution a dynamics
of vortices appears as expected from Eq. (25), which exhibits
distinct behaviors. More precisely, for neighboring sites that
belong to the same set (C, L, or D), very small variations of
the phase differences are observed, and hence, the vortices
located between such sites move slowly, whereas, when the
neighboring sites belong to different sets, and the populations
turn to be far from the stationary configuration values, running
phase differences, with related fast vortex dynamics, develop.
Hence, the fast variation of the phase differences, connected to
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FIG. 8. Top panel: GP phase differences between sites at both
sides along x = 0, ϕk,p = φk−1,p − φk,p, which are given for k = 3
and p = 1 to 4, as functions of �, for Vb = 75h̄ωr . The phase differ-
ence between the lateral sites for y > 0 (y < 0) with p = 1 (p = 4)
is depicted with blue filled triangles (circles), whereas the difference
between the central sites for y > 0 (y < 0) with p = 2 (p = 3) is
depicted with red hollow triangles (circles). Middle panel: Vortex
positions along the x = 0 low-density path. The positions extracted
from the order parameter of Eq. (32), obtained by the plaquette
method, are depicted with blue dots, whereas the red dashed line
and the yellow triangles, almost superimposed on the blue dots,
correspond to Eq. (25) replacing ϕk (t ) by zero and by the GP ϕ3,p(t )
of the top panel, respectively. Bottom panel: Antivortices obtained
through GP simulations.

a ST regime, seems to be the responsible for the permanence
of almost all the particles within the same sites of the non-
rotating system. Such an observation of the atoms remaining
within the initial confinement has also been reported in the
experimental work [24].

We first study the dynamical nucleation process along the
low-density paths that separate sites belonging to the same
set, such as the x = 0 path, where the phase differences are
calculated between two central sites and two lateral ones.
In the notation of Eq. (20) such phase differences are given
by ϕ3,p(t ) = φ2,p(t ) − φ3,p(t ) with p = 1 to 4. From the top
panel of Fig. 8 it may be seen that the phase differences remain
almost vanishing, since |ϕk (t )|/π � 0.06, and thus a reason-
able estimate for the position of vortices can be obtained
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using Eq. (25) with ϕk = 0, for all p values. In the middle
panel of Fig. 8 we display the vortex positions. Focusing
on the vortices with Y (k)

v > 0, with k = 3, we may see that
the positions obtained from Eq. (25) with ϕk replaced by the
GP results ϕk,p(t ) (for k = 3 and p = 1, 2 values) and with
ϕk = 0, where we have used lk = 0, 1, and 2, are superposed,
and hence the variation of the phase differences has no siz-
able effect on the vortex nucleation at the axes. Moreover,
both curves are in good accordance with the points extracted
from the time-dependent GP simulations using the plaquette
method. We note that at the end of the evolution there are three
vortices located at the points marked with horizontal arrows in
the middle panel that have entered the lattice at the frequencies
indicated with vertical arrows. Given that the largest lk value
is l (L)

k = 2 the number of vortices that entered through the
top entrance is in fact N (k)

v = l (L)
k + 1 = 3, as stated above

Eq. (26). The reflection symmetry observed in such a panel is
a direct consequence of the fourfold symmetry of the lattice.
Then, by the four entrances located at the axes, during the
whole evolution 12 vortices penetrate in the system.

It is important to mention that many vortex-antivortex pairs
are created and annihilated instantaneously throughout the
GP dynamics, especially near the intersections of the low-
density paths. Hence, as we are depicting only the vortices,
in the middle panel, some points that appear occasionally in
the graph correspond to such vortex-antivortex fluctuations,
and they do not contribute to the net number of nucleated
vortices, as they cancel each other. In the bottom panel of
Fig. 8 we show the antivortices positions. Such antivortices
appear, as we have stated around the intersections of the
paths, where the approximation of Eq. (25) is not appropri-
ate for predicting the existence of vortices, since the four
LFs should be taken into account. We want to mention that
by analyzing the three-dimensional structure of such vortex-
antivortex pairs, we have observed that they do not correspond
to straight vortex lines, and in some cases they form part of a
vortex ring.

For the paths that separate neighboring sites belonging to
different sets (C, L, or D), the time-dependent nucleation of
vortices is not only due to the process observed at the axes.
The phase differences time variations, between the centers of
such sites, can also provoke the penetration and departure of
vortices, and hence change the values of l (L)

k . In particular,
when the on-site populations depart sizably from their station-
ary values, the vortex nucleation process is combined with a
rapid motion of vortices. The fast vortex dynamics seems to
be related to the fact that the macroscopic coordinates enter a
self-trapping regime characterized by an almost constant oc-
cupation number and a running phase difference between such
neighboring sites. From Eq. (25) one can infer that an increas-
ing (decreasing) running phase should produce a monotonous
increasing (decreasing) vortex coordinate. In our system such
dynamics develops along the four low-density paths defined
by the straight lines x = ±3lr and y = ±3lr , which separate
sites of distinct sets. In Fig. 9 we illustrate such behavior along
the path located at x = −3lr , when the linear ramp has been
switched off, and hence around six vortices have been nucle-
ated. In the top panel we show the phase differences ϕk,p(t ) =
φk−1,p(t ) − φk,p(t ) for k = 2 and different 1 � p � 4 values,
from time-dependent GP simulations. In the bottom panel we
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FIG. 9. Top panel: The phase differences as function of time be-
tween both sides of the line x/lr = −3, ϕk,p(t ) = φk−1,p(t ) − φk,p(t ),
for k = 2 and p = 1 − 4. The phase difference between the diagonal
and lateral sites ϕ2,1(ϕ2,3), for y > 0 (y < 0) is depicted with blue
filled triangles (circles), whereas the difference between the lateral
and central sites for y > 0 (y < 0) with index p = 2 (p = 3) is
depicted with red hollow triangles (circles). Given the high symmetry
of the system both curves with blue (red) points are superimposed.
Bottom panel: The vortex positions Y (k)

v as function of time are de-
picted with blue dots for time-dependent GP simulations by solving
Eq. (32), and the yellow triangles (almost on top of the blue ones) are
obtained through Eq. (25) replacing ϕ2(t ) by the GP results ϕ2,p(t ),
with p = 1 to p = 4, which yield the different Y (2)

v values from top to
bottom. The barrier height is Vb = 75h̄ωr , and the time interval has
been extracted after the linear ramp was switched off.

show the vortex coordinate extracted from time-dependent GP
simulations, through the plaquette method. Almost on top of
such points, indicated with yellow triangles, one can view the
points estimated by Eq. (25) using the time-dependent GP-
phase differences, showing the very good agreement between
both approaches. Hence, one can conclude that such vortex
dynamics is ruled by the phase differences evolution, rather
than by density gradients which become useful in other types
of systems. Furthermore, such vortex dynamics is much more
rapid than the typical timescales involved in the whole process
provided by the linear ramp. In the bottom panel it may be
seen that vortices enter the lattice from the bottom entrance
and depart from the top one at different times, which explains
the rapid variation of the nucleated vortices inside the lattice.
It is worthwhile recalling that if the fourfold symmetry is
broken, as in the case of the bottom panel of Fig. 6, the fluc-
tuation on the total number of vortices has shown to exhibit a
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FIG. 10. The phase of the GP order parameter, obtained by
solving Eq. (32), is depicted in colors at the z = 0 plane. The cor-
responding vortex locations, obtained by the plaquette method, are
marked with plus signs, whereas the antivortices with circles. The
nucleated vortices are marked with black symbols, whereas vortex-
antivortex pairs, in the top panel around |x| = |y| = 3lr , are depicted
with white symbols. The barrier height corresponds to Vb = 75h̄ωr .
The three times were selected at the end of the ramp, at ωrt = 999.8
(top panel), 1000.0 (middle panel), and 1000.2 (bottom panel). In
each panel the color scale corresponds to arg (ψGP(r, t )) at the se-
lected time.

smaller amplitude. A plausible explanation of such an effect
could be that the vortices that move along the four straight
lines x = ±3lr and y = ±3lr , do not enter, or exit, the system
simultaneously.

Finally, to better visualize the vortex dynamics in Fig. 10
we mark with plus signs the positions of vortices obtained by
time-dependent GP simulations, in the z = 0 plane, at three
times around t � 1000ω−1

r . In such figure, we also show in
colors the phase of the GP order parameter where one can first
view that the phases are, in fact, linear on such coordinates at
each site, as we have assumed, and that the phase gradient

increases with an increasing center-of-mass distance to the
rotation axis. In other words, the central, lateral, and diagonal
sites have increasing phase gradients in such an order. Second,
the vortices are clearly located along the six paths defined by
the straight lines, x/lr = −3, 0, 3 and y/lr = −3, 0, 3. Along
the axes x = 0 and y = 0 the vortices perform only very small
oscillations, and hence their total number remains fixed at
six vortices per axis in the time interval considered, and the
positions are in agreement with those nucleated at the end
of the evolution of Fig. 8, which are marked with horizontal
arrows at the middle panel of such a figure. On the other hand,
for the other four straight lines x/lr = ±3 or y/lr = ±3, the
running phase difference, shown in Fig. 9, generates a vortex
dynamics, which can involve either the ingress or the exit of
vortices from the lattice. For example, at x = −3lr it may
be seen, by following the movement of the vortex which is
around y = 5lr at the top panel of Fig. 10, that it moves in
the positive y direction to its position in the middle panel, and
finally it disappears at the bottom panel. Hence, one has six
vortices moving in such direction, except in the lower panel
where only five remain. Once more, such dynamics explains
the change, from 36 to 32, of the total number of vortices
nucleated, in such a short time interval. Using our estimate
of Eq. (31), the number of vortices yields 34.4 in contrast
to Feynman’s rule applied to our 16-site system, which reads
45.8. The top panel also illustrates the appearance of vortex-
antivortex pairs, around the points that satisfy |x| = |y| = 3lr ,
that disappear in the middle panel. We note that such fluctua-
tions are concentrated in the lower density regions.

V. CONCLUSIONS

For a four-site system which forms a ring lattice, by using
an accurate expression for the phases of the on-site localized
functions, we have analytically obtained the arrays of vortices
for the four different stationary states with a given rotation
frequency. By comparing with the GP results, we have shown
that our analytical estimates for such vortex positions turn out
to be very accurate.

Hence, in a second step, making use of the same type of
expressions, we have investigated a vortex nucleation process
for a square lattice with a larger number of sites. Such a pro-
cess consists on applying a a time-linear ramp of the rotation
frequency, similar to the method used in the experiment of
Ref. [24]. By analyzing such a dynamical process, we found
that the on-site populations perform small oscillations around
numbers very close to the initial ones, and that the phase
differences between different types of sites exhibit a running
phase behavior as function of time, typical of a ST regime. As
a consequence of such a behavior, the expanding effect of the
centrifugal force was canceled. An analogous observation, for
WLCs, has been reported in Ref. [24], where the experimental
results do not reflect an increasing Thomas-Fermi confine-
ment radius as expected from a centrifugal distortion.

With respect to the number of nucleated vortices we have
obtained a linear dependence on the rotation frequency sim-
ilar to the estimate NF

v = m�d2Ns/π h̄ used in Ref. [24] for
WLCs. However, our prediction differs from such an estimate,
given that, instead of being proportional to the number of
involved sites, it turns to be proportional to Ns − √

Ns. By
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introducing the parameters of the experiment of Ref. [24]
in our formula, it seems to better reproduce their experi-
mental results. Although our approach was derived for a
specific system, we believe that the new factor which is
related to the number of entrances should also be present
in the vortex nucleation estimates of other types of lattice
potentials.

Finally, the nucleation of vortices in other systems of cur-
rent interest such as a rotating supersolid dipolar gas [26,27]
with regular patterns in the density could be suitable for apply-
ing the present approach. Given that each droplet exhibits an
almost axial symmetry around an axis parallel to the rotation
axis, when subject to rotation its velocity field can be approxi-
mated by an homogenous one [30]. Then the rotation-induced
phase on the droplet should have a linear dependence on the

coordinates, which constitutes the main requirement for the
application of the present treatment. Since rotation may com-
promise the density pattern of the nonrotating ground state
[27,47], the study should contemplate the possible changes,
when varying the rotation frequency, in the number of droplets
and their distribution.

ACKNOWLEDGMENTS

D.M.J. and P.C. acknowledge CONICET for financial
support under PIP Grant No. 11220150100442CO. P.C. ac-
knowledges support from the Universidad de Buenos Aires
through UBACyT Grant No. 20020190100214BA and CON-
ICET through PIP Grant No. 11220210100821CO.

[1] R. J. Donnelly, Quantized Vortices in Helium II (Cambridge
University Press, Cambridge, 1991).

[2] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999).

[3] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.
Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

[4] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell,
Phys. Rev. Lett. 85, 2857 (2000).

[5] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
[6] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys.

Rev. Lett. 84, 806 (2000).
[7] J. Abo-Shaeer, C. Raman, J. Vogels, and W. Ketterle, Science

292, 476 (2001).
[8] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and

E. A. Cornell, Phys. Rev. Lett. 90, 170405 (2003).
[9] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett.

92, 050403 (2004).
[10] S. Stock, B. Battelier, V. Bretin, Z. Hadzibabic, and J. Dalibard,

Laser Phys. Lett. 2, 275 (2005)
[11] C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson,

and W. D. Phillips, Phys. Rev. Lett. 99, 260401 (2007).
[12] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark,

C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell,
Nature (London) 506, 200 (2014).

[13] K. E. Wilson, E. C. Samson, Z. L. Newman, and B. P. Anderson,
Phys. Rev. A 106, 033319 (2022).

[14] A. L. Fetter, B. Jackson, and S. Stringari, Phys. Rev. A 71,
013605 (2005).

[15] J. K. Kim and A. L. Fetter, Phys. Rev. A 72, 023619 (2005).
[16] P. Capuzzi and D. M. Jezek, J. Phys. B: At. Mol. Opt. Phys. 42,

145301 (2009).
[17] D. M. Jezek, P. Capuzzi, M. Guilleumas, and R. Mayol, Phys.

Rev. A 78, 053616 (2008).
[18] J. W. Reijnders and R. A. Duine, Phys. Rev. Lett. 93, 060401

(2004).
[19] J. W. Reijnders and R. A. Duine, Phys. Rev. A 71, 063607

(2005).
[20] H. Pu, L. O. Baksmaty, S. Yi, and N. P. Bigelow, Phys. Rev.

Lett. 94, 190401 (2005).
[21] S. Tung, V. Schweikhard, and E. A. Cornell, Phys. Rev. Lett.

97, 240402 (2006).

[22] R. K. Kumar, L. Tomio, and A. Gammal, J. Phys. B: At. Mol.
Opt. Phys. 52, 025302 (2019).

[23] A. S. Hassan, A. M. Elbadry, A. A. Mahmoud, A. M.
Mohammedein, and A. M. Abdallah, J. Low Temp. Phys. 200,
102 (2020).

[24] R. A. Williams, S. Al-Assam, and C. J. Foot, Phys. Rev. Lett.
104, 050404 (2010).

[25] A. Kato, Y. Nakano, K. Kasamatsu, and T. Matsui, Phys. Rev.
A 84, 053623 (2011).

[26] S. M. Roccuzzo, A. Gallemí, A. Recati, and S. Stringari, Phys.
Rev. Lett. 124, 045702 (2020).

[27] A. Gallemí, S. M. Roccuzzo, S. Stringari, and A. Recati, Phys.
Rev. A 102, 023322 (2020).

[28] F. Ancilotto, M. Barranco, M. Pi, and L. Reatto, Phys. Rev. A
103, 033314 (2021).

[29] L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti,
R.l N. Bisset, M. J. Mark, and F. Ferlaino, Nat. Phys. 18, 1453
(2022).

[30] M. Nigro, P. Capuzzi, and D. M. Jezek, J. Phys. B: At. Mol.
Opt. Phys. 53, 025301 (2020).

[31] E. P. Gross, Nuovo Cimento 20, 454 (1961); L. P. Pitaevskii,
Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451
(1961)].

[32] H. M. Cataldo and D. M. Jezek, Phys. Rev. A 84, 013602
(2011).

[33] M. Nigro, P. Capuzzi, H. M. Cataldo, and D. M. Jezek, Phys.
Rev. A 97, 013626 (2018).

[34] C. J. Foster, P. B. Blakie, and M. J. Davis, Phys. Rev. A 81,
023623 (2010).

[35] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-
Heinemann, New York, 1995).

[36] B. Damski and K. Sacha, J. Phys. A: Math. Gen. 36, 2339
(2003).

[37] K. Kasamatsu, Phys. Rev. A 79, 021604(R) (2009).
[38] R. P. Feynman, Prog. Low Temp. Phys. A 1, 17 (1955).
[39] V. Ambegaokar, B. I. Halperin, David R. Nelson, and Eric D.

Siggia, Phys. Rev. B 21, 1806 (1980).
[40] D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 063620

(2004).
[41] H. M. Nilsen, G. Baym, and C. J. Pethick, Proc. Natl. Acad. Sci.

USA 103, 7978 (2006).

023310-12

https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.85.2857
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1126/science.1060182
https://doi.org/10.1103/PhysRevLett.90.170405
https://doi.org/10.1103/PhysRevLett.92.050403
https://doi.org/10.1002/lapl.200410177
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1038/nature12958
https://doi.org/10.1103/PhysRevA.106.033319
https://doi.org/10.1103/PhysRevA.71.013605
https://doi.org/10.1103/PhysRevA.72.023619
https://doi.org/10.1088/0953-4075/42/14/145301
https://doi.org/10.1103/PhysRevA.78.053616
https://doi.org/10.1103/PhysRevLett.93.060401
https://doi.org/10.1103/PhysRevA.71.063607
https://doi.org/10.1103/PhysRevLett.94.190401
https://doi.org/10.1103/PhysRevLett.97.240402
https://doi.org/10.1088/1361-6455/aaf332
https://doi.org/10.1007/s10909-020-02467-6
https://doi.org/10.1103/PhysRevLett.104.050404
https://doi.org/10.1103/PhysRevA.84.053623
https://doi.org/10.1103/PhysRevLett.124.045702
https://doi.org/10.1103/PhysRevA.102.023322
https://doi.org/10.1103/PhysRevA.103.033314
https://doi.org/10.1038/s41567-022-01793-8
https://doi.org/10.1088/1361-6455/ab56d9
https://doi.org/10.1007/BF02731494
https://doi.org/10.1103/PhysRevA.84.013602
https://doi.org/10.1103/PhysRevA.97.013626
https://doi.org/10.1103/PhysRevA.81.023623
https://doi.org/10.1088/0305-4470/36/9/311
https://doi.org/10.1103/PhysRevA.79.021604
https://doi.org/10.1016/S0079-6417(08)60077-3
https://doi.org/10.1103/PhysRevB.21.1806
https://doi.org/10.1103/PhysRevA.70.063620
https://doi.org/10.1073/pnas.0602541103


VORTEX NUCLEATION PROCESSES IN ROTATING … PHYSICAL REVIEW A 108, 023310 (2023)

[42] D. M. Jezek and H. M. Cataldo, Phys. Rev. A 77, 043602
(2008).

[43] M. Abad, M. Guilleumas, R. Mayol, F. Piazza, D. M.
Jezek, and A. Smerzi, Europhys. Lett. 109, 40005
(2015).

[44] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997).

[45] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys.
Rev. A 59, 620 (1999).

[46] C. E. Creffield, Phys. Rev. A 75, 031607(R) (2007); J.-K.
Xue, A.-X. Zhang, and J. Liu, ibid. 77, 013602 (2008); T. J.
Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, Phys. Rev.
Lett. 96, 040401 (2006); B. Liu, L.-B. Fu, S.-P. Yang, and J.
Liu, Phys. Rev. A 75, 033601 (2007); Th. Anker, M. Albiez, R.
Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K.
Oberthaler, Phys. Rev. Lett. 94, 020403 (2005); B. Wang, P. Fu,
J. Liu, and B. Wu, Phys. Rev. A 74, 063610 (2006).

[47] A. Gallemí and L. Santos, Phys. Rev. A 106, 063301 (2022).

023310-13

https://doi.org/10.1103/PhysRevA.77.043602
https://doi.org/10.1209/0295-5075/109/40005
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.75.031607
https://doi.org/10.1103/PhysRevA.77.013602
https://doi.org/10.1103/PhysRevLett.96.040401
https://doi.org/10.1103/PhysRevA.75.033601
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevA.74.063610
https://doi.org/10.1103/PhysRevA.106.063301

